File size: 8,850 Bytes
1757cc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import torch
import numpy as np
from typing import List, Tuple
from tqdm import tqdm
from axengine import InferenceSession
from ml_dtypes import bfloat16


class InferManager:
    def __init__(self, config, model_dir):

        self.config = config
        self.max_seq_len = 2559
        self.kv_dim = config.hidden_size // config.num_attention_heads * config.num_key_value_heads

        self.k_caches = [
            np.zeros((1, self.max_seq_len, self.kv_dim), dtype=bfloat16)
            for _ in range(config.num_hidden_layers)
        ]
        self.v_caches = [
            np.zeros((1, self.max_seq_len, self.kv_dim), dtype=bfloat16)
            for _ in range(config.num_hidden_layers)
        ]

        self.decoder_sessions = []
        for layer_idx in tqdm(range(config.num_hidden_layers), desc="Init InferenceSession"):
            session = InferenceSession(
                f"{model_dir}/llama_p128_l{layer_idx}_together.axmodel"
            )
            self.decoder_sessions.append(session)
        self.post_process_session = InferenceSession(
            f"{model_dir}/llama_post.axmodel"
        )
        print("Model loaded successfully!")

    @staticmethod
    def _top_p(probs: np.ndarray, p: float) -> np.ndarray:
        sorted_indices = np.argsort(probs)
        filtered = probs.copy()
        cumulative = 0
        for idx in sorted_indices[::-1]:
            if cumulative >= p:
                filtered[idx] = 0
            cumulative += filtered[idx]
        return filtered / cumulative

    @staticmethod
    def _softmax(logits: np.ndarray) -> np.ndarray:
        logits = logits - logits.max()
        exp_logits = np.exp(logits)
        return (exp_logits / np.sum(exp_logits)).astype(np.float64)

    def post_process(self, logits, top_k=1, top_p=0.9, temperature=0.6):
        logits = logits.astype(np.float32).flatten()
        candidate_indices = np.argpartition(logits, -top_k)[-top_k:]
        candidate_logits = logits[candidate_indices] / temperature
        candidate_probs = self._softmax(candidate_logits)
        candidate_probs = self._top_p(candidate_probs, top_p)
        candidate_probs = candidate_probs.astype(np.float64) / candidate_probs.sum()
        chosen_idx = np.random.multinomial(1, candidate_probs).argmax()
        next_token = candidate_indices[chosen_idx]
        return next_token, candidate_indices, candidate_probs

    def gen_slice_indices(self, token_len, prefill=128, expand=128):
        remaining = max(0, token_len - prefill)
        extra_blocks = (remaining + expand - 1) // expand
        return list(range(extra_blocks + 1))

    def prefill(
        self,
        tokenizer,
        token_ids,
        embed_data,
        slice_len=128,
    ):
        """
        Prefill step for chunked inference.
        """
        seq_len = len(token_ids)
        slice_indices = [i for i in range(seq_len // slice_len + 1)]
        print(f"slice_indices: {slice_indices}")
        # total_prefill_len = (
        #     slice_len * slice_indices[-1]
        #     if slice_indices[-1] != 0
        #     else slice_len
        # )
        total_prefill_len = slice_len * (slice_indices[-1] + 1)
        # slice_indices = self.gen_slice_indices(seq_len)
        # import pdb; pdb.set_trace()

        if total_prefill_len > 0:
            for slice_idx in slice_indices:
                indices = np.arange(
                    slice_idx * slice_len,
                    (slice_idx + 1) * slice_len,
                    dtype=np.uint32
                ).reshape((1, slice_len))

                mask = (
                    np.zeros((1, slice_len, slice_len * (slice_idx + 1)))
                    - 65536
                )
                data = np.zeros((1, slice_len, self.config.hidden_size)).astype(bfloat16)
                for i, t in enumerate(
                    range(
                        slice_idx * slice_len,
                        (slice_idx + 1) * slice_len,
                    )
                ):
                    if t < len(token_ids):
                        mask[:, i, : slice_idx * slice_len + i + 1] = 0
                        data[:, i : i + 1, :] = (
                            embed_data[t]
                            .reshape((1, 1, self.config.hidden_size))
                            .astype(bfloat16)
                        )

                remain_len = (
                    seq_len - slice_idx * slice_len
                    if slice_idx == slice_indices[-1]
                    else slice_len
                )
                mask = mask.astype(bfloat16)
                for layer_idx in range(self.config.num_hidden_layers):
                    input_feed = {
                        "K_cache": (
                            self.k_caches[layer_idx][:, 0 : slice_len * slice_idx, :]
                            if slice_idx
                            else np.zeros((1, 1, self.config.hidden_size), dtype=bfloat16)
                        ),
                        "V_cache": (
                            self.v_caches[layer_idx][:, 0 : slice_len * slice_idx, :]
                            if slice_idx
                            else np.zeros((1, 1, self.config.hidden_size), dtype=bfloat16)
                        ),
                        "indices": indices,
                        "input": data,
                        "mask": mask,
                    }
                    # import pdb; pdb.set_trace()
                    outputs = self.decoder_sessions[layer_idx].run(None, input_feed, shape_group=slice_idx + 1)
                    self.k_caches[layer_idx][
                        :,
                        slice_idx * slice_len : slice_idx * slice_len + remain_len,
                        :,
                    ] = outputs[0][:, :remain_len, :]
                    self.v_caches[layer_idx][
                        :,
                        slice_idx * slice_len : slice_idx * slice_len + remain_len,
                        :,
                    ] = outputs[1][:, :remain_len, :]
                    data = outputs[2]

                print("Slice prefill done:", slice_idx)
            post_out = self.post_process_session.run(
                None,
                {
                    "input": data[
                        :, seq_len - (len(slice_indices) - 1) * slice_len - 1, None, :
                    ]
                }
            )[0]
            next_token, possible_tokens, possible_probs = self.post_process(post_out)
            possible_decoded = [tokenizer.decode([t]) for t in possible_tokens]
            possible_probs_str = [str((t, p)) for t, p in zip(possible_decoded, possible_probs)]
            token_ids.append(next_token)
            return token_ids

    def decode(
        self,
        tokenizer,
        token_ids,
        embed_matrix,
        prefill_len=128,
        slice_len=128
    ):
        # import pdb; pdb.set_trace()
        print("answer >>", tokenizer.decode(token_ids[-1], skip_special_tokens=True), end='', flush=True)
        self.max_seq_len = 2559
        mask = np.zeros((1, 1, self.max_seq_len + 1), dtype=np.float32).astype(bfloat16)
        mask[:, :, :self.max_seq_len] -= 65536
        seq_len = len(token_ids) - 1
        if prefill_len > 0:
            mask[:, :, :seq_len] = 0
        for step_idx in range(self.max_seq_len):
            if prefill_len > 0 and step_idx < seq_len:
                continue
            # import pdb; pdb.set_trace()
            cur_token = token_ids[step_idx]
            indices = np.array([step_idx], np.uint32).reshape((1, 1))
            data = embed_matrix[cur_token, :].reshape((1, 1, self.config.hidden_size)).astype(bfloat16)
            for layer_idx in range(self.config.num_hidden_layers):
                input_feed = {
                    "K_cache": self.k_caches[layer_idx],
                    "V_cache": self.v_caches[layer_idx],
                    "indices": indices,
                    "input": data,
                    "mask": mask,
                }
                outputs = self.decoder_sessions[layer_idx].run(None, input_feed, shape_group=0)
                self.k_caches[layer_idx][:, step_idx, :] = outputs[0][:, :, :]
                self.v_caches[layer_idx][:, step_idx, :] = outputs[1][:, :, :]
                data = outputs[2]
            mask[..., step_idx] = 0
            if step_idx < seq_len - 1:
                continue
            else:
                post_out = self.post_process_session.run(None, {"input": data})[0]
                next_token, possible_tokens, possible_probs = self.post_process(post_out)
                token_ids.append(next_token)
                if next_token == tokenizer.eos_token_id and next_token > seq_len:
                    break
            print(tokenizer.decode(next_token, skip_special_tokens=True), end='', flush=True)