AiAF commited on
Commit
5bd5b0c
·
verified ·
1 Parent(s): 17a1490

End of training

Browse files
Files changed (1) hide show
  1. README.md +159 -0
README.md ADDED
@@ -0,0 +1,159 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: apache-2.0
4
+ base_model: mistralai/Mistral-7B-v0.1
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ datasets:
9
+ - mhenrichsen/alpaca_2k_test
10
+ model-index:
11
+ - name: Mistral-QLoRA-Test
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
19
+ <details><summary>See axolotl config</summary>
20
+
21
+ axolotl version: `0.6.0`
22
+ ```yaml
23
+ base_model: mistralai/Mistral-7B-v0.1
24
+ # optionally might have model_type or tokenizer_type
25
+ model_type: MistralForCausalLM
26
+ tokenizer_type: LlamaTokenizer
27
+ # Automatically upload checkpoint and final model to HF
28
+ hub_model_id: AiAF/Mistral-QLoRA-Test
29
+
30
+ load_in_8bit: false
31
+ load_in_4bit: true
32
+ strict: false
33
+
34
+ datasets:
35
+ - path: mhenrichsen/alpaca_2k_test
36
+ type: alpaca
37
+ dataset_prepared_path: last_run_prepared
38
+ val_set_size: 0.1
39
+ output_dir: ./outputs/qlora-out
40
+
41
+ adapter: qlora
42
+ lora_model_dir:
43
+
44
+ sequence_len: 2048
45
+ sample_packing: true
46
+ pad_to_sequence_len: true
47
+
48
+ lora_r: 8
49
+ lora_alpha: 16
50
+ lora_dropout: 0.05
51
+ lora_target_linear: true
52
+ lora_fan_in_fan_out:
53
+ lora_target_modules:
54
+ - gate_proj
55
+ - down_proj
56
+ - up_proj
57
+ - q_proj
58
+ - v_proj
59
+ - k_proj
60
+ - o_proj
61
+
62
+ wandb_project: "LLM_QLoRA-Pretraining-Practice"
63
+ wandb_entity:
64
+ wandb_watch: "all"
65
+ wandb_name: "Mistral-QLoRA-Test-V1.0"
66
+ wandb_log_model: "false"
67
+
68
+ gradient_accumulation_steps: 4
69
+ micro_batch_size: 2
70
+ num_epochs: 1
71
+ optimizer: adamw_bnb_8bit
72
+ lr_scheduler: cosine
73
+ learning_rate: 0.0001
74
+
75
+ train_on_inputs: false
76
+ group_by_length: false
77
+ bf16: auto
78
+ fp16:
79
+ tf32: false
80
+
81
+ gradient_checkpointing: true
82
+ early_stopping_patience:
83
+ resume_from_checkpoint:
84
+ local_rank:
85
+ logging_steps: 1
86
+ xformers_attention:
87
+ flash_attention: true
88
+
89
+ loss_watchdog_threshold: 5.0
90
+ loss_watchdog_patience: 3
91
+
92
+ warmup_steps: 10
93
+ evals_per_epoch: 4
94
+ eval_table_size:
95
+ eval_max_new_tokens: 128
96
+ saves_per_epoch: 1
97
+ debug:
98
+ deepspeed:
99
+ weight_decay: 0.0
100
+ fsdp:
101
+ fsdp_config:
102
+ special_tokens:
103
+
104
+ ```
105
+
106
+ </details><br>
107
+
108
+ # Mistral-QLoRA-Test
109
+
110
+ This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the mhenrichsen/alpaca_2k_test dataset.
111
+ It achieves the following results on the evaluation set:
112
+ - Loss: 0.8640
113
+
114
+ ## Model description
115
+
116
+ More information needed
117
+
118
+ ## Intended uses & limitations
119
+
120
+ More information needed
121
+
122
+ ## Training and evaluation data
123
+
124
+ More information needed
125
+
126
+ ## Training procedure
127
+
128
+ ### Training hyperparameters
129
+
130
+ The following hyperparameters were used during training:
131
+ - learning_rate: 0.0001
132
+ - train_batch_size: 2
133
+ - eval_batch_size: 2
134
+ - seed: 42
135
+ - gradient_accumulation_steps: 4
136
+ - total_train_batch_size: 8
137
+ - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
138
+ - lr_scheduler_type: cosine
139
+ - lr_scheduler_warmup_steps: 10
140
+ - num_epochs: 1.0
141
+
142
+ ### Training results
143
+
144
+ | Training Loss | Epoch | Step | Validation Loss |
145
+ |:-------------:|:------:|:----:|:---------------:|
146
+ | 0.8459 | 0.0417 | 1 | 0.9399 |
147
+ | 0.9812 | 0.25 | 6 | 0.9012 |
148
+ | 0.8706 | 0.5 | 12 | 0.8773 |
149
+ | 0.8565 | 0.75 | 18 | 0.8659 |
150
+ | 0.8565 | 1.0 | 24 | 0.8640 |
151
+
152
+
153
+ ### Framework versions
154
+
155
+ - PEFT 0.14.0
156
+ - Transformers 4.48.3
157
+ - Pytorch 2.5.1+cu124
158
+ - Datasets 3.2.0
159
+ - Tokenizers 0.21.0