File size: 3,647 Bytes
dcb8f7a
 
 
 
b838d51
cc77b85
 
b838d51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
---
license: apache-2.0
pipeline_tag: graph-ml
tags:
- Material Science
datasets:
- Allanatrix/Materials
---
# NexaMat: Battery Ion Property Prediction and Material Generation

**NexaMat** is an advanced dual-purpose model for material science, tailored for battery research. It predicts ion properties and generates novel battery-relevant materials using:

- **Graph Neural Network (GNN)**: Captures structural features for precise property prediction.
- **Variational Autoencoder (VAE)**: Generates optimized material candidates for battery applications.

NexaMat is a key component of the [Nexa Scientific AI Model Suite](https://huggingface.co/spaces/Allanatrix/NexaHub), driving innovation in domain-specific machine learning.

---

## Use Case

- Predicting ionic conductivity, stability, and electrochemical properties.
- Proposing novel materials for battery optimization.
- Accelerating research and development in next-generation battery technologies.

---

## Model Overview

- **Input**: Molecular or crystal graph representations (nodes: atoms, edges: bonds, lattice features).
- **Output**: 
  - GNN: Property predictions (e.g., ionic conductivity, formation energy, voltage window).
  - VAE: Generated material structures with targeted properties.
- **Architecture**:
  - **GNN**: Encodes structural data into high-dimensional embeddings for property prediction.
  - **VAE**: Learns a latent space for generating valid, battery-optimized material candidates.

---

## Dataset

- **Source**: Public materials databases (e.g., [Materials Project](https://materialsproject.org/), [OQMD](https://oqmd.org/)).
- **Preprocessing**: Structures cleaned, normalized, and converted into graph-based tensors.
- **Target**: Battery-relevant properties (e.g., ionic conductivity, electrochemical stability).

---

## Example Workflow

```python
from nexamat import GNNPredictor, VAEMaterialGenerator

# Initialize models
predictor = GNNPredictor.load("Allanatrix/predictor.pt")
vae = VAEMaterialGenerator.load("Allanatrix/vae.pt")

# Predict properties for a material
material_graph = load_material("LiFePO4.json")
prediction = predictor(material_graph)

# Generate novel material candidates
latent_sample = vae.sample_latent()
generated_material = vae.decode(latent_sample)
```

Refer to the model documentation for detailed input preparation and usage instructions.

---

## Applications

- **Solid-State Electrolyte Discovery**: Screening materials for high ionic conductivity.
- **High-Throughput Material Design**: Accelerating identification of battery components.
- **AI-Driven R&D**: Enhancing materials design with generative and predictive modeling.

---

## License and Citation

Licensed under the **Boost Software License 1.1 (BSL-1.1)**. If using NexaMat in academic or industrial work, please cite this repository and acknowledge the source datasets. Training data is derived from open scientific repositories.

---

## Related Nexa Projects

Explore the Nexa Scientific Ecosystem:
- [Nexa R&D](https://huggingface.co/spaces/Allanatrix/NexaR&D): Model optimization and experimentation platform.
- [Nexa Data Studio](https://huggingface.co/spaces/Allanatrix/NexaDataStudio): Tools for dataset processing and visualization.
- [Nexa Infrastructure](https://huggingface.co/spaces/Allanatrix/NexaInfrastructure): Scalable ML deployment solutions.
- [Nexa Hub](https://huggingface.co/spaces/Allanatrix/NexaHub): Central portal for Nexa resources.

---

*Developed and maintained by [Allan](https://huggingface.co/Allanatrix), an independent researcher advancing scientific machine learning for materials science and battery innovation.*