File size: 1,796 Bytes
a25dbe9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
---
language: en
tags:
- image-classification
- computer-vision
- pytorch
- cnn
- cifar10
license: mit
datasets:
- cifar10
model-index:
- name: SimpleCNN CIFAR-10 Classifier
results: []
---
# 🧠 SimpleCNN CIFAR-10 Classifier
📌 A simple Convolutional Neural Network (CNN) model trained on the [CIFAR-10 dataset](https://www.cs.toronto.edu/~kriz/cifar.html), capable of recognizing 10 classes of common objects. The model was trained using PyTorch and is suitable for educational and prototyping purposes.
## 🏷️ Classes
- Airplane
- Automobile
- Bird
- Cat
- Deer
- Dog
- Frog
- Horse
- Ship
- Truck
## 🧰 Training Procedure
1. Built a custom CNN model with 3 convolutional layers and 2 fully connected layers.
2. Used MaxPooling after each conv layer and dropout for regularization.
3. Resized all input images to 32x32 and applied normalization: `(mean=0.5, std=0.5)`.
4. Training/validation split:
- 80% Training
- 20% Validation
5. Training setup:
- Optimizer: Adam
- Loss Function: CrossEntropyLoss
- Batch size: 64
- Learning rate: 0.001
- Epochs: 10
6. Saved the best-performing model as `pytorch_model.bin`.
## 📊 Performance
| Metric | Value |
|----------------------|-----------|
| Best Validation Accuracy | 88.76% |
## ⚙️ Framework & Environment
- Python: 3.11
- PyTorch: 2.x (Colab)
- Torchvision: 0.15.x
- Platform: Google Colab (GPU enabled)
## 🧪 Hyperparameters
| Parameter | Value |
|-----------------|--------------|
| Epochs | 10 |
| Batch Size | 64 |
| Optimizer | Adam |
| Learning Rate | 0.001 |
| Loss Function | CrossEntropy |
| Image Size | 32x32 |
| Data Split | 80% Train / 20% Val |
---
|