Update README.md
Browse files
README.md
CHANGED
|
@@ -18,21 +18,37 @@ metrics:
|
|
| 18 |
pipeline_tag: token-classification
|
| 19 |
---
|
| 20 |
|
| 21 |
-
|
| 22 |
# roberta-base-finetuned-WikiNeural
|
| 23 |
|
| 24 |
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base).
|
| 25 |
|
| 26 |
It achieves the following results on the evaluation set:
|
| 27 |
- Loss: 0.0871
|
| 28 |
-
- Loc
|
| 29 |
-
-
|
| 30 |
-
-
|
| 31 |
-
-
|
| 32 |
-
-
|
| 33 |
-
-
|
| 34 |
-
-
|
| 35 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
## Model description
|
| 38 |
|
|
@@ -61,11 +77,12 @@ The following hyperparameters were used during training:
|
|
| 61 |
|
| 62 |
### Training results
|
| 63 |
|
| 64 |
-
| Training Loss | Epoch | Step | Validation Loss | Loc
|
| 65 |
-
|
| 66 |
-
| 0.1086
|
| 67 |
-
| 0.0727
|
| 68 |
|
|
|
|
| 69 |
|
| 70 |
### Framework versions
|
| 71 |
|
|
|
|
| 18 |
pipeline_tag: token-classification
|
| 19 |
---
|
| 20 |
|
|
|
|
| 21 |
# roberta-base-finetuned-WikiNeural
|
| 22 |
|
| 23 |
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base).
|
| 24 |
|
| 25 |
It achieves the following results on the evaluation set:
|
| 26 |
- Loss: 0.0871
|
| 27 |
+
- Loc
|
| 28 |
+
- Precision: 0.9276567437219359
|
| 29 |
+
- Recall: 0.9366918555835433
|
| 30 |
+
- F1: 0.9321524064171123
|
| 31 |
+
- Number: 5955
|
| 32 |
+
- Misc
|
| 33 |
+
- Precision: 0.8334231805929919
|
| 34 |
+
- Recall: 0.916419679905157
|
| 35 |
+
- F1: 0.872953133822699
|
| 36 |
+
- Number: 5061
|
| 37 |
+
- Org
|
| 38 |
+
- Precision: 0.9296179258833669
|
| 39 |
+
- Recall: 0.9382429689765149
|
| 40 |
+
- F1: 0.9339105339105339
|
| 41 |
+
- Number: 3449
|
| 42 |
+
- Per
|
| 43 |
+
- Precision: 0.9688723570869224
|
| 44 |
+
- Recall: 0.9499040307101727
|
| 45 |
+
- F1: 0.9592944369063772
|
| 46 |
+
- Number: 5210
|
| 47 |
+
- Overall
|
| 48 |
+
- Precision: 0.9124
|
| 49 |
+
- Recall: 0.9352
|
| 50 |
+
- F1: 0.9237
|
| 51 |
+
- Accuracy: 0.9910
|
| 52 |
|
| 53 |
## Model description
|
| 54 |
|
|
|
|
| 77 |
|
| 78 |
### Training results
|
| 79 |
|
| 80 |
+
| Training Loss | Epoch | Step | Validation Loss | Loc Precision | Loc Recall | Loc F1 | Loc Number | Misc Precision | Misc Recall | Misc F1 | Misc Number | Org Precision | Org Recall | Org F1 | Org Number | Per Precision | Per Recall | Per F1 | Per Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
| 81 |
+
|:-------------:|:-----:|:-----:|:----------:|:-----------:|:------------:|:------------:|:------------:|:-----------------:|:--------------:|:----------:|:--------:|:----------:|:--------:|:----------:|:--------:|:----------:|:--------:|:----------:|:--------:|:----------:|:--------:|:----------:|:--------:|
|
| 82 |
+
| 0.1086 | 1.0 | 5795 | 0.1001 | 0.9149 | 0.9333 | 0.9240 | 5955 | 0.8158 | 0.9030 | 0.8572 | 5061 | 0.9134 | 0.9295 | 0.9214 | 3449 | 0.9642 | 0.9461 | 0.9550 | 5210 | 0.8997 | 0.9282 | 0.9137 | 0.9896 |
|
| 83 |
+
| 0.0727 | 2.0 | 11590 | 0.0871 | 0.9277 | 0.9367 | 0.9325 | 5955 | 0.8334 | 0.9164 | 0.8730 | 5061 | 0.9296 | 0.9382 | 0.9339 | 3449 | 0.9689 | 0.9499 | 0.9593 | 5210 | 0.9124 | 0.9352 | 0.9237 | 0.9910 |
|
| 84 |
|
| 85 |
+
* All values in the cahrt above are rounded to the nearest ten-thousandths.
|
| 86 |
|
| 87 |
### Framework versions
|
| 88 |
|