emmi-ai
BenediktAlkin commited on
Commit
9b88c4e
·
verified ·
1 Parent(s): ab49bcd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +29 -29
README.md CHANGED
@@ -1,30 +1,30 @@
1
- ---
2
- license: cc-by-nc-4.0
3
- tags:
4
- - emmi-ai
5
-
6
- ---
7
-
8
- ## Model Details
9
-
10
- Emmi AI developed and released **Anchor-Branched Universal Physics Transformers** (AB-UPT) model for aerodynamics simulations. The model has been trained on DrivAerML dataset.
11
-
12
- It is expected that the user will provide input geometry similar to the ones from the DrivAerML dataset.
13
-
14
- ## Hot to use
15
-
16
- We provide a standalone GitHub repository with relevant tutorial code on how execute inference. The corresponding repository can be found here: https://github.com/Emmi-AI/AB-UPT
17
-
18
- ## License
19
-
20
- **AB-UPT** is shared under the [CC-BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) license.
21
-
22
- ## Citation instructions
23
- ```
24
- @article{alkin2025abupt,
25
- title={{AB-UPT}: Scaling Neural CFD Surrogates for High-Fidelity Automotive Aerodynamics Simulations via Anchored-Branched Universal Physics Transformers},
26
- author={Benedikt Alkin and Maurits Bleeker and Richard Kurle and Tobias Kronlachner and Reinhard Sonnleitner and Matthias Dorfer and Johannes Brandstetter},
27
- journal={arXiv preprint arXiv:2502.09692},
28
- year={2025}
29
- }
30
  ```
 
1
+ ---
2
+ license: cc-by-nc-4.0
3
+ tags:
4
+ - emmi-ai
5
+
6
+ ---
7
+
8
+ ## Model Details
9
+
10
+ Emmi AI developed and released **Anchor-Branched Universal Physics Transformers** (AB-UPT) model for aerodynamics simulations. The model has been trained on DrivAerML dataset.
11
+
12
+ It is expected that the user will provide input geometry similar to the ones from the DrivAerML dataset.
13
+
14
+ ## How to use
15
+
16
+ We provide a standalone GitHub repository with relevant tutorial code on how execute inference. The corresponding repository can be found here: https://github.com/Emmi-AI/AB-UPT
17
+
18
+ ## License
19
+
20
+ **AB-UPT** is shared under the [CC-BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) license.
21
+
22
+ ## Citation instructions
23
+ ```
24
+ @article{alkin2025abupt,
25
+ title={{AB-UPT}: Scaling Neural CFD Surrogates for High-Fidelity Automotive Aerodynamics Simulations via Anchored-Branched Universal Physics Transformers},
26
+ author={Benedikt Alkin and Maurits Bleeker and Richard Kurle and Tobias Kronlachner and Reinhard Sonnleitner and Matthias Dorfer and Johannes Brandstetter},
27
+ journal={arXiv preprint arXiv:2502.09692},
28
+ year={2025}
29
+ }
30
  ```