Upload folder using huggingface_hub
Browse files- README.md +57 -3
- metadata.json +11 -0
README.md
CHANGED
|
@@ -1,3 +1,57 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# JITServe QRF Length Predictor
|
| 2 |
+
|
| 3 |
+
This repository provides the **pretrained QRF (Quantile Regression Forest) length predictor**
|
| 4 |
+
used by **[JITServe (NSDIβ26)](https://arxiv.org/abs/2504.20068)** to estimate conservative upper bounds on LLM output lengths.
|
| 5 |
+
|
| 6 |
+
This predictor is:
|
| 7 |
+
- **Not an LLM evaluation model**
|
| 8 |
+
- **Not fine-tuned during inference**
|
| 9 |
+
- A lightweight **offline-trained prediction model** used solely for scheduling decisions
|
| 10 |
+
|
| 11 |
+
It is released to ensure **full reproducibility** of the JITServe artifact.
|
| 12 |
+
|
| 13 |
+
---
|
| 14 |
+
|
| 15 |
+
## What Is Included
|
| 16 |
+
|
| 17 |
+
This repository contains two components that must be used together:
|
| 18 |
+
|
| 19 |
+
```text
|
| 20 |
+
qrf_model/
|
| 21 |
+
βββ 0_qrf_lmsys_chat_llama3_8b.pkl
|
| 22 |
+
βββ 0_qrf_lmsys_chat_qwen25_7b.pkl
|
| 23 |
+
|
| 24 |
+
qrf_vectorizer/
|
| 25 |
+
βββ 0_qrf_lmsys_chat_llama3_8b.pkl
|
| 26 |
+
βββ 0_qrf_lmsys_chat_qwen25_7b.pkl
|
| 27 |
+
```
|
| 28 |
+
|
| 29 |
+
## Usage
|
| 30 |
+
|
| 31 |
+
These artifacts are consumed by JITServe at runtime.
|
| 32 |
+
|
| 33 |
+
Expected directory layout in the JITServe artifact:
|
| 34 |
+
```
|
| 35 |
+
assets/qrf/
|
| 36 |
+
βββ qrf_model/
|
| 37 |
+
βββ qrf_vectorizer/
|
| 38 |
+
```
|
| 39 |
+
|
| 40 |
+
After downloading this repository, place its contents under the path above.
|
| 41 |
+
|
| 42 |
+
JITServe loads the predictor automatically during startup and does not require
|
| 43 |
+
any additional configuration by default.
|
| 44 |
+
|
| 45 |
+
## Citation
|
| 46 |
+
If you use these artifacts, please consider to cite our paper:
|
| 47 |
+
```
|
| 48 |
+
@misc{zhang2025jitservesloawarellmserving,
|
| 49 |
+
title={JITServe: SLO-aware LLM Serving with Imprecise Request Information},
|
| 50 |
+
author={Wei Zhang and Zhiyu Wu and Yi Mu and Rui Ning and Banruo Liu and Nikhil Sarda and Myungjin Lee and Fan Lai},
|
| 51 |
+
year={2025},
|
| 52 |
+
eprint={2504.20068},
|
| 53 |
+
archivePrefix={arXiv},
|
| 54 |
+
primaryClass={cs.DC},
|
| 55 |
+
url={https://arxiv.org/abs/2504.20068},
|
| 56 |
+
}
|
| 57 |
+
```
|
metadata.json
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"type": "quantile_regression_forest",
|
| 3 |
+
"task": "llm_output_length_upper_bound_prediction",
|
| 4 |
+
"training_trace": "lmsys-chat",
|
| 5 |
+
"models": ["llama-3.1-8b", "qwen2.5-7b"],
|
| 6 |
+
"quantile": 0.95,
|
| 7 |
+
"framework": "scikit-learn",
|
| 8 |
+
"serialization": "joblib/pickle",
|
| 9 |
+
"jitserve_version": "nsdi26",
|
| 10 |
+
"notes": "QRF predictor and vectorizer must be loaded together"
|
| 11 |
+
}
|