--- language: vi tags: - summarization - multi-answer-summarization - t5 - vietnamese - absosum license: apache-2.0 metrics: - rouge --- # ABSOSUM Phase 2 V1.0 - Weight-Aware Multi-Answer Summarization This model is a weight-aware T5-based model fine-tuned for multi-answer summarization on Q&A data (ABSOSUM Phase 2). ## Model Description - **Base Model:** T5-base - **Architecture:** V2++ with Weight-Aware Cross-Attention - **Task:** Multi-answer summarization with answer importance weighting - **Language:** Vietnamese ## Training Details - Special tokens: ``, `` - Max sequence length: 512 - Max target length: 400 - Weight injection: log-scaled weights in cross-attention ## Performance ROUGE Scores on Test Set: - ROUGE-1: 44.98% - ROUGE-2: 22.26% - ROUGE-L: 33.65% ## Usage ```python from transformers import T5Tokenizer, T5ForConditionalGeneration model = T5ForConditionalGeneration.from_pretrained("HuyTran1301/ABSOSUM_Phase2_v1.2") tokenizer = T5Tokenizer.from_pretrained("HuyTran1301/ABSOSUM_Phase2_v1.2") # Format input with special tokens input_text = " Your question here Answer 1 Answer 2 " input_ids = tokenizer(input_text, return_tensors="pt").input_ids # Generate summary outputs = model.generate(input_ids, max_length=150) summary = tokenizer.decode(outputs[0], skip_special_tokens=True) print(summary) ``` ## Citation If you use this model, please cite: ``` @misc{absosum_phase2_v1, title={ABSOSUM Phase 2: Weight-Aware Multi-Answer Summarization}, author={Huy Tran}, year={2025}, url={https://huggingface.co/HuyTran1301/ABSOSUM_Phase2_v1.2} } ``` ## Training Date November 28, 2025