Update README.md
Browse files
README.md
CHANGED
|
@@ -9,8 +9,8 @@ pipeline_tag: image-to-image
|
|
| 9 |
# InstantIR Model Card
|
| 10 |
<div style="display: flex; gap: 10px; align-items: center; justify-content: center; height: auto;">
|
| 11 |
<a href='https://arxiv.org/abs/2410.06551'><img src='https://img.shields.io/badge/paper-arXiv-b31b1b.svg' style="height: 24px;"></a>
|
| 12 |
-
<a href='https://jy-joy.github.io/InstantIR'><img src='https://img.shields.io/badge/project-Website-
|
| 13 |
-
<a href='https://github.com/JY-Joy/InstantIR'><img src='https://img.shields.io/badge/code-Github-
|
| 14 |
</div>
|
| 15 |
|
| 16 |
> **InstantIR** is a novel single-image restoration model designed to resurrect your damaged images, delivering extrem-quality yet realistic details. You can further boost **InstantIR** performance with additional text prompts, even achieve customized editing!
|
|
@@ -46,55 +46,41 @@ hf_hub_download(repo_id="InstantX/InstantIR", filename="models/previewer_lora_we
|
|
| 46 |
import torch
|
| 47 |
from PIL import Image
|
| 48 |
|
| 49 |
-
from diffusers import DDPMScheduler
|
| 50 |
from schedulers.lcm_single_step_scheduler import LCMSingleStepScheduler
|
| 51 |
|
| 52 |
from transformers import AutoImageProcessor, AutoModel
|
| 53 |
|
| 54 |
-
from module.ip_adapter.utils import
|
| 55 |
-
from module.ip_adapter.resampler import Resampler
|
| 56 |
from pipelines.sdxl_instantir import InstantIRPipeline
|
| 57 |
|
| 58 |
-
# prepare 'dinov2'
|
| 59 |
-
image_encoder = AutoModel.from_pretrained('facebook/dinov2-large')
|
| 60 |
-
image_processor = AutoImageProcessor.from_pretrained('facebook/dinov2-large')
|
| 61 |
-
|
| 62 |
# prepare models under ./checkpoints
|
| 63 |
dcp_adapter = f'./models/adapter.pt'
|
| 64 |
previewer_lora_path = f'./models'
|
| 65 |
instantir_path = f'./models/aggregator.pt'
|
| 66 |
|
| 67 |
-
# load
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
# InstantIR pipeline
|
| 71 |
-
pipe = InstantIRPipeline(
|
| 72 |
-
sdxl.vae, sdxl.text_encoder, sdxl.text_encoder_2, sdxl.tokenizer, sdxl.tokenizer_2,
|
| 73 |
-
sdxl.unet, sdxl.scheduler, feature_extractor=image_processor, image_encoder=image_encoder,
|
| 74 |
-
)
|
| 75 |
|
| 76 |
# load adapter
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
output_dim=sdxl.unet.config.cross_attention_dim,
|
| 80 |
-
)
|
| 81 |
-
init_adapter_in_unet(
|
| 82 |
-
pipe.unet,
|
| 83 |
-
image_proj_model,
|
| 84 |
dcp_adapter,
|
|
|
|
| 85 |
)
|
| 86 |
|
| 87 |
# load previewer lora
|
| 88 |
pipe.prepare_previewers(previewer_lora_path)
|
| 89 |
pipe.scheduler = DDPMScheduler.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', subfolder="scheduler")
|
| 90 |
lcm_scheduler = LCMSingleStepScheduler.from_config(pipe.scheduler.config)
|
| 91 |
-
pipe.unet.to(dtype=torch.float16)
|
| 92 |
-
pipe.to('cuda')
|
| 93 |
|
| 94 |
# load aggregator weights
|
| 95 |
pretrained_state_dict = torch.load(instantir_path)
|
| 96 |
pipe.aggregator.load_state_dict(pretrained_state_dict)
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
| 98 |
```
|
| 99 |
|
| 100 |
Then, you can restore your broken images with:
|
|
|
|
| 9 |
# InstantIR Model Card
|
| 10 |
<div style="display: flex; gap: 10px; align-items: center; justify-content: center; height: auto;">
|
| 11 |
<a href='https://arxiv.org/abs/2410.06551'><img src='https://img.shields.io/badge/paper-arXiv-b31b1b.svg' style="height: 24px;"></a>
|
| 12 |
+
<a href='https://jy-joy.github.io/InstantIR'><img src='https://img.shields.io/badge/project-Website-green' style="height: 24px;"></a>
|
| 13 |
+
<a href='https://github.com/JY-Joy/InstantIR'><img src='https://img.shields.io/badge/code-Github-informational' style="height: 24px;"></a>
|
| 14 |
</div>
|
| 15 |
|
| 16 |
> **InstantIR** is a novel single-image restoration model designed to resurrect your damaged images, delivering extrem-quality yet realistic details. You can further boost **InstantIR** performance with additional text prompts, even achieve customized editing!
|
|
|
|
| 46 |
import torch
|
| 47 |
from PIL import Image
|
| 48 |
|
| 49 |
+
from diffusers import DDPMScheduler
|
| 50 |
from schedulers.lcm_single_step_scheduler import LCMSingleStepScheduler
|
| 51 |
|
| 52 |
from transformers import AutoImageProcessor, AutoModel
|
| 53 |
|
| 54 |
+
from module.ip_adapter.utils import load_adapter_to_pipe
|
|
|
|
| 55 |
from pipelines.sdxl_instantir import InstantIRPipeline
|
| 56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
# prepare models under ./checkpoints
|
| 58 |
dcp_adapter = f'./models/adapter.pt'
|
| 59 |
previewer_lora_path = f'./models'
|
| 60 |
instantir_path = f'./models/aggregator.pt'
|
| 61 |
|
| 62 |
+
# load pretrained models
|
| 63 |
+
pipe = InstantIRPipeline.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
# load adapter
|
| 66 |
+
load_adapter_to_pipe(
|
| 67 |
+
pipe,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
dcp_adapter,
|
| 69 |
+
image_encoder_or_path = 'facebook/dinov2-large',
|
| 70 |
)
|
| 71 |
|
| 72 |
# load previewer lora
|
| 73 |
pipe.prepare_previewers(previewer_lora_path)
|
| 74 |
pipe.scheduler = DDPMScheduler.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', subfolder="scheduler")
|
| 75 |
lcm_scheduler = LCMSingleStepScheduler.from_config(pipe.scheduler.config)
|
|
|
|
|
|
|
| 76 |
|
| 77 |
# load aggregator weights
|
| 78 |
pretrained_state_dict = torch.load(instantir_path)
|
| 79 |
pipe.aggregator.load_state_dict(pretrained_state_dict)
|
| 80 |
+
|
| 81 |
+
# send to GPU and fp16
|
| 82 |
+
pipe.to(dtype=torch.float16)
|
| 83 |
+
pipe.to('cuda')
|
| 84 |
```
|
| 85 |
|
| 86 |
Then, you can restore your broken images with:
|