Create handler.py
Browse files- handler.py +38 -0
handler.py
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
+
from typing import Dict, List, Any
|
| 5 |
+
|
| 6 |
+
# Replace with actual GraniteMoeForCausalLM import if available
|
| 7 |
+
# from granitemoe import GraniteMoeForCausalLM
|
| 8 |
+
|
| 9 |
+
class EndpointHandler:
|
| 10 |
+
def __init__(self, path: str = ""):
|
| 11 |
+
self.tokenizer = AutoTokenizer.from_pretrained(path)
|
| 12 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
| 13 |
+
path,
|
| 14 |
+
torch_dtype=torch.bfloat16,
|
| 15 |
+
device_map="auto"
|
| 16 |
+
)
|
| 17 |
+
self.model.eval()
|
| 18 |
+
|
| 19 |
+
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]:
|
| 20 |
+
inputs = data.get("inputs", "")
|
| 21 |
+
parameters = data.get("parameters", {})
|
| 22 |
+
input_ids = self.tokenizer(inputs, return_tensors="pt").input_ids.to(self.model.device)
|
| 23 |
+
max_length = parameters.get("max_length", 100)
|
| 24 |
+
temperature = parameters.get("temperature", 1.0)
|
| 25 |
+
top_p = parameters.get("top_p", 1.0)
|
| 26 |
+
do_sample = parameters.get("do_sample", True)
|
| 27 |
+
with torch.no_grad():
|
| 28 |
+
outputs = self.model.generate(
|
| 29 |
+
input_ids,
|
| 30 |
+
max_length=max_length,
|
| 31 |
+
temperature=temperature,
|
| 32 |
+
top_p=top_p,
|
| 33 |
+
do_sample=do_sample,
|
| 34 |
+
pad_token_id=self.tokenizer.pad_token_id,
|
| 35 |
+
eos_token_id=self.tokenizer.eos_token_id
|
| 36 |
+
)
|
| 37 |
+
generated_text = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 38 |
+
return {"generated_text": generated_text}
|