File size: 6,387 Bytes
255fb0d fb68040 255fb0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import argparse
import json
from pathlib import Path
from huggingface_hub import hf_hub_download
import torch
import numpy as np
import torch.nn.functional as F
import torchio as tio
from torchvision.utils import save_image
from matplotlib.pyplot import get_cmap
from models import MSTRegression
def minmax_norm(x):
"""Normalizes input to [0, 1] for each batch and channel"""
return (x - x.min()) / (x.max() - x.min())
def tensor2image(tensor, batch=0):
"""Transform tensor into shape of multiple 2D RGB/gray images. """
return (tensor if tensor.ndim<5 else torch.swapaxes(tensor[batch], 0, 1).reshape(-1, *tensor.shape[-2:])[:,None])
def tensor_cam2image(tensor, cam, batch=0, alpha=0.5, color_map=get_cmap('jet')):
"""Transform a tensor and a (grad) cam into multiple 2D RGB images."""
img = tensor2image(tensor, batch) # -> [B, C, H, W]
img = torch.cat([img for _ in range(3)], dim=1) if img.shape[1]!=3 else img # Ensure RGB [B, 3, H, W]
cam_img = tensor2image(cam, batch) # -> [B, 1, H, W]
cam_img = cam_img[:,0].cpu().numpy() # -> [B, H, W]
cam_img = torch.tensor(color_map(cam_img)) # -> [B, H, W, 4], color_map expects input to be [0.0, 1.0]
cam_img = torch.moveaxis(cam_img, -1, 1)[:, :3] # -> [B, 3, H, W]
overlay = (1-alpha)*img + alpha*cam_img
return overlay
def crop_breast_height(image, margin_top=10) -> tio.Crop:
"""Crop height to 256 and try to cover breast based on intensity localization"""
threshold = int(np.quantile(image.data.float(), 0.9))
foreground = image.data>threshold
fg_rows = foreground[0].sum(axis=(0, 2))
top = min(max(512-int(torch.argwhere(fg_rows).max()) - margin_top, 0), 256)
bottom = 256-top
return tio.Crop((0,0, bottom, top, 0, 0))
def get_bilateral_transform(img:tio.ScalarImage, ref_img=None, target_spacing = (0.7, 0.7, 3), target_shape = (512, 512, 32)):
# -------- Settings --------------
ref_img = img if ref_img is None else ref_img
# Spacing
ref_img = tio.ToCanonical()(ref_img)
ref_img = tio.Resample(target_spacing)(ref_img)
resample = tio.Resample(ref_img)
# Crop
ref_img = tio.CropOrPad(target_shape, padding_mode='minimum')(ref_img)
crop_height = crop_breast_height(ref_img)
# Process input image
trans = tio.Compose([
resample,
tio.CropOrPad(target_shape, padding_mode='minimum'),
crop_height,
])
trans_inv = tio.Compose([
crop_height.inverse(),
tio.CropOrPad(img.spatial_shape, padding_mode='minimum'),
tio.Resample(img),
])
return trans(img), trans_inv
def get_unilateral_transform(img: tio.ScalarImage, target_shape=(224, 224, 32)):
transform = tio.Compose([
tio.Flip((1,0)),
tio.CropOrPad(target_shape),
tio.ZNormalization(masking_method=lambda x:(x>x.min()) & (x<x.max())),
])
inv_transform = tio.Compose([
tio.CropOrPad(img.spatial_shape),
tio.Flip((1,0)),
])
return transform(img), inv_transform
def run_prediction(img: tio.ScalarImage, model: MSTRegression):
img_bil, bil_trans_rev = get_bilateral_transform(img)
split_side = {
'right': tio.Crop((256, 0, 0, 0, 0, 0)),
'left': tio.Crop((0, 256, 0, 0, 0, 0)),
}
weights, probs = {}, {}
for side, crop in split_side.items():
img_side = crop(img_bil)
img_side, uni_trans_inv = get_unilateral_transform(img_side)
img_side = img_side.data.swapaxes(1,-1)
img_side = img_side.unsqueeze(0) # Add batch dim -> [1, C, H, W, D]
with torch.no_grad():
device = next(model.parameters()).device
logits, weight, weight_slice = model.forward_attention(img_side.to(device))
weight = F.interpolate(weight.unsqueeze(1), size=img_side.shape[2:], mode='trilinear', align_corners=False).cpu()
# pred_prob = model.logits2probabilities(logits).cpu()
pred_prob = F.softmax(logits, dim=-1).cpu()
probs[side] = pred_prob.squeeze(0)
weight = weight.squeeze(0).swapaxes(1,-1) # ->[C, W, H, D]
weight = uni_trans_inv(weight)
weights[side] = weight
weight = torch.concat([weights['left'], weights['right']], dim=1) # C, W, H, D
weight = tio.ScalarImage(tensor=weight, affine=img_bil.affine)
weight = bil_trans_rev(weight)
weight.set_data(minmax_norm(weight.data))
return probs, weight
def load_model(repo_id= "ODELIA-AI/MST") -> MSTRegression:
# Download config and state dict
config_path = hf_hub_download(repo_id=repo_id, repo_type="model", filename="model_config.json")
with open(config_path, "r", encoding="utf-8") as fp:
config = json.load(fp)
hparams = config.get("hparams", {})
model = MSTRegression(weights=False, **hparams)
state_dict_path = hf_hub_download(repo_id=repo_id, repo_type="model", filename="state_dict.pt")
state_dict = torch.load(state_dict_path, map_location="cpu")
model.load_state_dict(state_dict, strict=True)
return model
if __name__ == "__main__":
#------------ Get Arguments ----------------
parser = argparse.ArgumentParser()
parser.add_argument('--path_img', default='/home/homesOnMaster/gfranzes/Documents/datasets/ODELIA/UKA/data/UKA_2/Sub_1.nii.gz', type=str)
args = parser.parse_args()
#------------ Settings/Defaults ----------------
path_out_dir = Path().cwd()/'results/test_attention'
path_out_dir.mkdir(parents=True, exist_ok=True)
# ------------ Load Data ----------------
path_img = Path(args.path_img)
img = tio.ScalarImage(path_img)
# ------------ Initialize Model ------------
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = load_model()
model.to(device)
model.eval()
# ------------ Predict ----------------
probs, weight = run_prediction(img, model)
img.save(path_out_dir/f"input.nii.gz")
weight.save(path_out_dir/f"attention.nii.gz")
weight = weight.data.swapaxes(1,-1).unsqueeze(0) # C, D, H, W
img = img.data.swapaxes(1,-1).unsqueeze(0) # C, D, H, W
save_image(tensor_cam2image(minmax_norm(img), minmax_norm(weight), alpha=0.5),
path_out_dir/f"overlay.png", normalize=False)
for side in ['left', 'right']:
print(f"{side} breast predicted probabilities: {probs[side]}")
|