File size: 68,878 Bytes
a1dec5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b5e6db
a1dec5b
 
 
8b5e6db
a1dec5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b5e6db
 
a1dec5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b5e6db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1dec5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b5e6db
a1dec5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b5e6db
 
a1dec5b
 
 
8b5e6db
 
a1dec5b
8b5e6db
a1dec5b
8b5e6db
 
 
a1dec5b
8b5e6db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1dec5b
8b5e6db
a1dec5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b5e6db
a1dec5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b5e6db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1dec5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8b5e6db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1dec5b
 
8b5e6db
a1dec5b
 
 
 
 
8b5e6db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1dec5b
8b5e6db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1dec5b
8b5e6db
 
 
 
 
 
 
 
 
 
 
 
a1dec5b
8b5e6db
 
 
 
 
 
 
 
 
a1dec5b
8b5e6db
 
 
 
 
 
a1dec5b
 
 
 
 
 
 
8b5e6db
 
 
 
 
 
a1dec5b
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
# This file is modified based on https://github.com/huggingface/transformers/blob/v4.52.4/src/transformers/models/qwen3/modeling_qwen3.py.
#
#                🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
#           This file was automatically generated from src/transformers/models/qwen3/modular_qwen3.py.
#               Do NOT edit this file manually as any edits will be overwritten by the generation of
#             the file from the modular. If any change should be done, please apply the change to the
#                          modular_qwen3.py file directly. One of our CI enforces this.
#                🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2025 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Callable, Optional, Tuple, Union, List

import torch
from torch import nn
from einops import rearrange

from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache
from transformers.generation import GenerationMixin
from transformers.integrations import use_kernel_forward_from_hub
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.modeling_layers import GradientCheckpointingLayer
from transformers.modeling_outputs import (
    BaseModelOutputWithPast,
    CausalLMOutputWithPast,
    QuestionAnsweringModelOutput,
    SequenceClassifierOutputWithPast,
    TokenClassifierOutput,
)
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from transformers.processing_utils import Unpack
from transformers.utils import LossKwargs, auto_docstring, can_return_tuple, is_torch_flex_attn_available, logging
from configuration_sdar import SDARConfig
from fused_linear_diffusion_cross_entropy import FusedLinearDiffusionCrossEntropyLoss

from flash_attn.ops.triton.layer_norm import rms_norm_fn as flash_rms_norm

import torch.nn.functional as F
try:
    from flash_attn import flash_attn_func, flash_attn_varlen_func
    from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input
except:
    pass

try:
    from liger_kernel.ops.swiglu import LigerSiLUMulFunction  # noqa: F401
    liger_kernel_is_available = True
except ImportError:
    liger_kernel_is_available = False


if is_torch_flex_attn_available():
    from torch.nn.attention.flex_attention import BlockMask, create_block_mask, flex_attention
    from transformers.integrations.flex_attention import make_flex_block_causal_mask


logger = logging.get_logger(__name__)


def modify_padded_position_ids_2d(position_ids: torch.LongTensor) -> torch.LongTensor:
    """
    使用完全向量化的 PyTorch 操作修改一个 batch 的 packed position_ids。
    这个函数假设输入是一个 2D Tensor,形状为 (batch_size, sequence_length)。
    它会独立地处理 batch 中的每一行。

    Args:
        position_ids: 二维 PyTorch Tensor, shape (batch_size, sequence_length).

    Returns:
        修改后的 position_ids Tensor, shape (batch_size, sequence_length).
    """
    if position_ids.dim() != 2:
        raise ValueError(f"Input tensor must be 2D, but got {position_ids.dim()} dimensions.")
        
    batch_size, seq_len = position_ids.shape
    device = position_ids.device

    col_indices = torch.arange(seq_len, device=device, dtype=position_ids.dtype).expand(batch_size, -1)
    mask = (position_ids != 0)

    masked_indices = col_indices * mask
    last_nonzero_idx = torch.max(masked_indices, dim=1).values
    has_nonzero = torch.any(mask, dim=1)
    pad_start_idx = torch.where(has_nonzero, last_nonzero_idx + 1, torch.tensor(0, device=device, dtype=position_ids.dtype))

    padding_mask = col_indices >= pad_start_idx.unsqueeze(1)
    new_pad_values = col_indices - pad_start_idx.unsqueeze(1)
    position_ids = torch.where(padding_mask, new_pad_values, position_ids)

    return position_ids


def calculate_token_nums(position_ids: torch.Tensor):
    """
    使用 PyTorch 高效计算一个批次中每个打包序列的长度。

    Args:
        position_ids (torch.Tensor): 一个 2D Tensor,形状为 (batch_size, sequence_length)。
                                     例如:tensor([[0,1,2,3,4,0,1,2,3,4,5,0,1,2,3,0,0,0]])
    Returns:
        list[list[int]]: 一个嵌套列表,包含每个批次项中各个序列的长度。
                         例如:[[5, 6, 4, 1, 1, 1]]
    """
    # 检查输入是否为 2D Tensor
    if position_ids.dim() != 2:
        raise ValueError(f"输入必须是 2D Tensor,但得到了 {position_ids.dim()}D")

    all_lengths = []
    
    # 我们按批次逐行处理。因为每行的序列长度数量不同(ragged),
    # 所以 Python 循环在批次维度上是最高效且最清晰的写法。
    # 循环内部的操作是完全向量化的。
    for pids_row in position_ids:
        # 获取当前行的总长度
        seq_len = pids_row.shape[0]
        
        # 1. 找到所有值为 0 的元素的索引
        # pids_row == 0 会返回一个布尔 Tensor: [True, False, ..., True, ...]
        # torch.nonzero 会返回这些 True 值的索引
        # .flatten() 将其从 (N, 1) 形状的 Tensor 变为 (N,) 形状
        zero_indices = torch.nonzero(pids_row == 0).flatten()
        
        # 2. 将序列的总长度作为一个额外的切分点添加到末尾
        # 这对于计算最后一个序列的长度至关重要
        # 注意:要确保新创建的 tensor 和原始 tensor 在同一个设备上 (cpu/cuda)
        split_points = torch.cat([
            zero_indices,
            torch.tensor([seq_len], device=pids_row.device, dtype=zero_indices.dtype)
        ])
        
        # 3. 计算相邻切分点之间的差值,这就是我们想要的长度
        # torch.diff([a, b, c, d]) 会返回 [b-a, c-b, d-c]
        lengths = torch.diff(split_points)

        all_lengths.append(lengths)

    return all_lengths


def forward_add_noise_packed(
    inputs_ids: torch.Tensor,
    num_tokens_list: List[torch.Tensor],
    prompt_mask: torch.Tensor,
    mask_id: int,
    eps: float = 1e-3,
    max_tries: int = 10,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
    """
    为一批打包(packed)序列的 token ID 添加噪声。

    此函数保留了为每个逻辑样本(在每个批次项内拼接)生成独立随机噪声率的逻辑。
    它会随机将一部分 token 的 ID 替换为 mask_id。
    这个过程会避开被 prompt_mask 标记的位置。

    Args:
        inputs_ids (torch.Tensor): 
            输入的 token ID 张量,形状为 (bsz, total_tokens)。
        num_tokens_list (List[torch.Tensor]): 
            一个张量列表,长度为 bsz。列表中的每个张量记录了对应批次项中
            每个逻辑样本的长度。例如: [tensor([len1, len2]), tensor([len3, len4, len5])].
        prompt_mask (torch.Tensor): 
            布尔型张量,形状为 (bsz, total_tokens),值为 True 的位置表示是 prompt,
            不应添加噪声。
        mask_id (int): 
            用于替换的 mask token 的 ID。
        eps (float): 
            微小值,用于防止噪声率 t 恰好为 0,确保 p_mask > 0。
        max_tries (int): 
            为确保至少一个非 prompt token 被 mask,对每个批次项尝试的最大次数。

    Returns:
        Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        - noisy_input_ids (torch.Tensor): 
            添加噪声后的 token ID 张量,形状为 (bsz, total_tokens)。
        - final_masked_indices (torch.Tensor): 
            布尔型张量,标记了哪些位置被实际 mask 了,形状为 (bsz, total_tokens)。
        - p_masks (torch.Tensor): 
            一个一维张量,包含了被 mask 的 token 对应的实际噪声率。
    """
    # 1. 验证和获取形状
    bsz, total_tokens = inputs_ids.shape
    device = inputs_ids.device

    # 检查输入的一致性
    assert len(num_tokens_list) == bsz, f"num_tokens_list 的长度 ({len(num_tokens_list)}) 必须等于 bsz ({bsz})"
    assert prompt_mask.shape == (bsz, total_tokens), f"prompt_mask 形状不匹配, 期望 {(bsz, total_tokens)}, 得到 {prompt_mask.shape}"

    # 准备结果容器
    noisy_ids_list = []
    final_masked_indices_list = []
    p_masks_per_token_list = []

    # 2. 在批次维度上迭代
    # 这是处理不同打包结构最直接有效的方法
    for i in range(bsz):
        # 提取当前批次项的数据
        current_ids = inputs_ids[i:i+1] # shape: (1, total_tokens)
        current_num_tokens = num_tokens_list[i]
        current_prompt_mask = prompt_mask[i:i+1] # shape: (1, total_tokens)
        
        num_samples_in_item = len(current_num_tokens)
        # 验证当前批次项的 token 总数是否匹配
        assert total_tokens == torch.sum(current_num_tokens), \
            f"批次项 {i} 的 num_tokens 之和 ({torch.sum(current_num_tokens)}) 与 total_tokens ({total_tokens}) 不匹配"

        eligible_for_masking = ~current_prompt_mask

        # 如果没有任何 token 可以被 mask,直接使用原始输入,并设置 p_mask 为 eps
        if not eligible_for_masking.any():
            noisy_ids_list.append(current_ids)
            final_masked_indices_list.append(torch.zeros_like(current_prompt_mask, dtype=torch.bool))
            # p_mask_per_token 的形状应为 (1, total_tokens) 以便后续拼接
            p_masks_per_token_list.append(torch.full((1, total_tokens), eps, device=device, dtype=torch.float))
            continue

        # --- 尝试生成 mask,确保至少 mask 一个 token ---
        final_masked_indices_item = torch.zeros_like(current_prompt_mask, dtype=torch.bool)
        p_mask_per_token = None
        
        for _ in range(max_tries):
            # 为每个逻辑样本生成一个独立的噪声率 t
            t = torch.rand(num_samples_in_item, device=device)
            p_mask_per_sample = (1 - eps) * t + eps

            # 将每个样本的噪声率扩展到其所有 token 上
            p_mask_per_token_1d = torch.repeat_interleave(p_mask_per_sample, current_num_tokens)
            p_mask_per_token = p_mask_per_token_1d.unsqueeze(0) # shape: (1, total_tokens)

            # 根据噪声率生成随机 mask
            masked_indices = torch.rand_like(p_mask_per_token) < p_mask_per_token
            # 应用 prompt mask,确保 prompt 不被 mask
            final_masked_indices_item = masked_indices & eligible_for_masking

            # 如果成功 mask 了至少一个 token,则跳出尝试循环
            if final_masked_indices_item.any():
                break
        
        # 如果 max_tries 之后仍然没有 mask 任何 token (极小概率),就强制 mask 一个可 mask 的 token
        if not final_masked_indices_item.any():
            eligible_indices = torch.nonzero(eligible_for_masking.squeeze(0), as_tuple=True)[0]
            if len(eligible_indices) > 0:
                # 随机选择一个可 mask 的位置
                random_choice = torch.randint(0, len(eligible_indices), (1,)).item()
                force_mask_idx = eligible_indices[random_choice]
                final_masked_indices_item[0, force_mask_idx] = True


        # --- 根据最终的 mask 生成带噪声的 IDs ---
        noisy_ids_item = torch.where(
            final_masked_indices_item,
            mask_id,
            current_ids
        )
        
        # 保存这个批次项的结果
        noisy_ids_list.append(noisy_ids_item)
        final_masked_indices_list.append(final_masked_indices_item)
        p_masks_per_token_list.append(p_mask_per_token)

    # 3. 将列表中的结果堆叠成最终的批处理张量
    noisy_input_ids = torch.cat(noisy_ids_list, dim=0)
    final_masked_indices = torch.cat(final_masked_indices_list, dim=0)
    p_mask_full = torch.cat(p_masks_per_token_list, dim=0)
    
    # 4. 提取被 mask 位置对应的噪声率
    p_masks = p_mask_full[final_masked_indices]
    
    return noisy_input_ids, final_masked_indices, p_masks


def block_diff_mask(b, h, q_idx, kv_idx, block_size=None, n=None):
    """
    Constructs the specialized block diffusion attention mask for training
    composed of three masks:
    - **Block Diagonal Mask (M_BD)**: Self-attention within noised blocks
    - **Offset Block Causal Mask (M_OBC)**: Cross-attention for conditional context
    - **Block Causal Mask (M_BC)**: Attention to update x0

    Args:
        b, h: Batch and head indices (ignored for mask logic).
        q_idx, kv_idx: Query and Key indices.
        seq_len: Total sequence length.
        block_size: Defines the block structure.

    Returns:
        A boolean attention mask.
    """

    # Indicate whether token belongs to xt or x0
    x0_flag_q = q_idx >= n
    x0_flag_kv = kv_idx >= n

    # Compute block indices
    block_q = torch.where(
        x0_flag_q == 1, (q_idx - n) // block_size, q_idx // block_size
    )
    block_kv = torch.where(
        x0_flag_kv == 1, (kv_idx - n) // block_size, kv_idx // block_size
    )

    # **1. Block Diagonal Mask (M_BD) **
    block_diagonal = (block_q == block_kv) & (x0_flag_q == x0_flag_kv)

    # **2. Offset Block-Causal Mask (M_OBC) **
    offset_block_causal = (block_q > block_kv) & (
        x0_flag_kv == 1) & (x0_flag_q == 0)

    # **3. Block-Causal Mask (M_BC) **
    block_causal = (block_q >= block_kv) & (x0_flag_kv == 1) & (x0_flag_q == 1)

    # **4. Combine Masks **
    return block_diagonal | offset_block_causal | block_causal


def block_attn_mask(num_tokens, block_size, device):
    masks = []
    for i in range(len(num_tokens)):
        cur_masks = []
        for num in num_tokens[i]:
            # 全部返回 n*n 而非 2n*2n
            single_mask = block_diff_mask(
                b=None,
                h=None,
                q_idx=torch.arange(num * 2, device=device)[:, None],
                kv_idx=torch.arange(num * 2, device=device)[None, :],
                block_size=block_size,
                n=num,
            )
            cur_masks.append(single_mask)
        masks.append(torch.block_diag(*cur_masks))
    masks = torch.stack(masks, dim=0)
    return masks


@torch.compile(fullgraph=True, mode="max-autotune-no-cudagraphs")
def fused_flex_attention(query, key, value, attention_mask, **kwargs):
    return flex_attention(query, key, value, block_mask=attention_mask, **kwargs)


@use_kernel_forward_from_hub("RMSNorm")
class SDARRMSNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-6):
        """
        SDARRMSNorm is equivalent to T5LayerNorm
        """
        super().__init__()
        self.weight = nn.Parameter(torch.ones(hidden_size))
        self.variance_epsilon = eps

    def forward(self, hidden_states):
        return flash_rms_norm(
            hidden_states, weight=self.weight, bias=None, eps=self.variance_epsilon)
        '''
        input_dtype = hidden_states.dtype
        hidden_states = hidden_states.to(torch.float32)
        variance = hidden_states.pow(2).mean(-1, keepdim=True)
        hidden_states = hidden_states * \
            torch.rsqrt(variance + self.variance_epsilon)
        return self.weight * hidden_states.to(input_dtype)
        '''

    def extra_repr(self):
        return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"


class SDARMLP(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.config = config
        self.hidden_size = config.hidden_size
        self.intermediate_size = config.intermediate_size
        self.gate_proj = nn.Linear(
            self.hidden_size, self.intermediate_size, bias=False)
        self.up_proj = nn.Linear(
            self.hidden_size, self.intermediate_size, bias=False)
        self.down_proj = nn.Linear(
            self.intermediate_size, self.hidden_size, bias=False)
        self.act_fn = ACT2FN[config.hidden_act]

    def forward(self, x):
        if liger_kernel_is_available:
            return self.down_proj(LigerSiLUMulFunction.apply(self.gate_proj(x), self.up_proj(x)))
        else:
            down_proj = self.down_proj(self.act_fn(
                self.gate_proj(x)) * self.up_proj(x))
            return down_proj


def rotate_half(x):
    """Rotates half the hidden dims of the input."""
    x1 = x[..., : x.shape[-1] // 2]
    x2 = x[..., x.shape[-1] // 2:]
    return torch.cat((-x2, x1), dim=-1)


def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
    """Applies Rotary Position Embedding to the query and key tensors.

    Args:
        q (`torch.Tensor`): The query tensor.
        k (`torch.Tensor`): The key tensor.
        cos (`torch.Tensor`): The cosine part of the rotary embedding.
        sin (`torch.Tensor`): The sine part of the rotary embedding.
        position_ids (`torch.Tensor`, *optional*):
            Deprecated and unused.
        unsqueeze_dim (`int`, *optional*, defaults to 1):
            The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
            sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
            that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
            k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
            cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
            the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
    Returns:
        `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
    """
    cos = cos.unsqueeze(unsqueeze_dim)
    sin = sin.unsqueeze(unsqueeze_dim)
    q_embed = (q * cos) + (rotate_half(q) * sin)
    k_embed = (k * cos) + (rotate_half(k) * sin)
    return q_embed, k_embed


def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    """
    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
    num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
    """
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
    if n_rep == 1:
        return hidden_states
    hidden_states = hidden_states[:, :, None, :, :].expand(
        batch, num_key_value_heads, n_rep, slen, head_dim)
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)


def eager_attention_forward(
    module: nn.Module,
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attention_mask: Optional[torch.Tensor],
    scaling: float,
    dropout: float = 0.0,
    **kwargs,
):
    key_states = repeat_kv(key, module.num_key_value_groups)
    value_states = repeat_kv(value, module.num_key_value_groups)

    attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
    if attention_mask is not None:
        causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
        attn_weights = attn_weights + causal_mask

    attn_weights = nn.functional.softmax(
        attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
    attn_weights = nn.functional.dropout(
        attn_weights, p=dropout, training=module.training)
    attn_output = torch.matmul(attn_weights, value_states)
    attn_output = attn_output.transpose(1, 2).contiguous()

    return attn_output, attn_weights


class SDARAttention(nn.Module):
    """Multi-headed attention from 'Attention Is All You Need' paper"""

    def __init__(self, config: SDARConfig, layer_idx: int):
        super().__init__()
        self.config = config
        self.layer_idx = layer_idx
        self.head_dim = getattr(
            config, "head_dim", config.hidden_size // config.num_attention_heads)
        self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
        self.scaling = self.head_dim**-0.5
        self.attention_dropout = config.attention_dropout
        self.is_causal = True

        self.hidden_size = config.hidden_size
        self.num_attention_heads = config.num_attention_heads
        self.num_key_value_heads = config.num_key_value_heads

        self.q_proj = nn.Linear(
            config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
        )
        self.k_proj = nn.Linear(
            config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
        )
        self.v_proj = nn.Linear(
            config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
        )
        self.o_proj = nn.Linear(
            config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
        )
        # unlike olmo, only on the head dim!
        self.q_norm = SDARRMSNorm(self.head_dim, eps=config.rms_norm_eps)
        # thus post q_norm does not need reshape
        self.k_norm = SDARRMSNorm(self.head_dim, eps=config.rms_norm_eps)
        self.sliding_window = config.sliding_window
        if not (
            self.config.use_sliding_window
            and getattr(self.config, "sliding_window", None) is not None
            and self.layer_idx >= self.config.max_window_layers
        ):
            self.sliding_window = None

    def forward(
        self,
        hidden_states: torch.Tensor,
        position_embeddings: Tuple[torch.Tensor, torch.Tensor],
        attention_mask: Optional[torch.Tensor],
        past_key_value: Optional[Cache] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs: Unpack[FlashAttentionKwargs],
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
        input_shape = hidden_states.shape[:-1]
        bsz, q_len = input_shape
        hidden_shape = (*input_shape, -1, self.head_dim)

        query_states = self.q_norm(self.q_proj(
            hidden_states).view(hidden_shape)).transpose(1, 2)
        key_states = self.k_norm(self.k_proj(
            hidden_states).view(hidden_shape)).transpose(1, 2)
        value_states = self.v_proj(hidden_states).view(
            hidden_shape).transpose(1, 2)

        cos, sin = position_embeddings
        query_states, key_states = apply_rotary_pos_emb(
            query_states, key_states, cos, sin)

        if past_key_value is not None and kwargs.get("store_kv", False):
            # sin and cos are specific to RoPE models; cache_position needed for the static cache
            key_states, value_states = past_key_value.update(
                key_states, value_states, self.layer_idx)
        elif past_key_value is not None and not kwargs.get("store_kv", False) and len(past_key_value) > self.layer_idx:
            # only retrive, do not store kv
            past_key_states, past_value_states = past_key_value[self.layer_idx]
            key_states = torch.cat(
                [past_key_states, key_states], dim=-2)
            value_states = torch.cat(
                [past_value_states, value_states], dim=-2)

        if self.training:
            attn_output, attn_weights = fused_flex_attention(
                query=query_states,
                key=key_states,
                value=value_states,
                attention_mask=attention_mask,
                enable_gqa=True,
                scale=self.scaling,
                return_lse=True
            )
            attn_weights = attn_weights.to(
                value_states.dtype) if attn_weights is not None else None
            attn_output = rearrange(attn_output, 'b h l d -> b l (h d)')
        else:
            attention_mask = attention_mask.bool() if attention_mask is not None else None
            attn_weights = None
            if torch.all(attention_mask):  # decoding
                query_states = query_states.transpose(1, 2)
                key_states = key_states.transpose(1, 2)
                value_states = value_states.transpose(1, 2)
                attn_output = flash_attn_func(
                    query_states,
                    key_states,
                    value_states,
                    causal=False,
                    softmax_scale=self.scaling
                )
                attn_output = rearrange(attn_output, 'b l h d -> b l (h d)')
            else:  # prefilling
                attn_output = F.scaled_dot_product_attention(
                    query=query_states,
                    key=key_states,
                    value=value_states,
                    attn_mask=attention_mask,
                    is_causal=False,
                    scale=self.scaling,
                    enable_gqa=True
                )
                attn_output = rearrange(attn_output, 'b h l d -> b l (h d)')
        attn_output = self.o_proj(attn_output)
        return attn_output, attn_weights  # , attn_weights


class SDARDecoderLayer(GradientCheckpointingLayer):
    def __init__(self, config: SDARConfig, layer_idx: int):
        super().__init__()
        self.hidden_size = config.hidden_size
        self.self_attn = SDARAttention(config=config, layer_idx=layer_idx)
        self.mlp = SDARMLP(config)
        self.input_layernorm = SDARRMSNorm(
            config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = SDARRMSNorm(
            config.hidden_size, eps=config.rms_norm_eps)
        if (
            config.sliding_window and config._attn_implementation != "flash_attention_2"
        ):  # diff with Llama is this warning
            logger.warning_once(
                f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; "
                "unexpected results may be encountered."
            )

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_value: Optional[Cache] = None,
        output_attentions: Optional[bool] = False,
        use_cache: Optional[bool] = False,
        store_kv: Optional[bool] = False,
        cache_position: Optional[torch.LongTensor] = None,
        # necessary, but kept here for BC
        position_embeddings: Optional[Tuple[torch.Tensor,
                                            torch.Tensor]] = None,
        **kwargs: Unpack[FlashAttentionKwargs],
    ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)

        # Self Attention
        hidden_states, self_attn_weights = self.self_attn(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_value=past_key_value,
            output_attentions=output_attentions,
            use_cache=use_cache,
            store_kv=store_kv,
            cache_position=cache_position,
            position_embeddings=position_embeddings,
            **kwargs,
        )
        hidden_states = residual + hidden_states

        # Fully Connected
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = self.mlp(hidden_states)
        hidden_states = residual + hidden_states

        outputs = (hidden_states,)
        if output_attentions:
            outputs += (self_attn_weights,)

        return outputs


@auto_docstring
class SDARPreTrainedModel(PreTrainedModel):
    config_class = SDARConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["SDARDecoderLayer"]
    _skip_keys_device_placement = ["past_key_values"]
    _supports_flash_attn_2 = True
    _supports_sdpa = True
    _supports_flex_attn = True
    _supports_cache_class = True
    _supports_quantized_cache = True
    _supports_static_cache = True
    _supports_attention_backend = True

    def _init_weights(self, module):
        std = self.config.initializer_range
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, SDARRMSNorm):
            module.weight.data.fill_(1.0)


class SDARRotaryEmbedding(nn.Module):
    def __init__(self, config: SDARConfig, device=None):
        super().__init__()
        # BC: "rope_type" was originally "type"
        if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
            self.rope_type = config.rope_scaling.get(
                "rope_type", config.rope_scaling.get("type"))
        else:
            self.rope_type = "default"
        self.max_seq_len_cached = config.max_position_embeddings
        self.original_max_seq_len = config.max_position_embeddings

        self.config = config
        self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]

        inv_freq, self.attention_scaling = self.rope_init_fn(
            self.config, device)
        self.register_buffer("inv_freq", inv_freq, persistent=False)
        self.original_inv_freq = self.inv_freq

    @torch.no_grad()
    # power user: used with advanced RoPE types (e.g. dynamic rope)
    @dynamic_rope_update
    def forward(self, x, position_ids):
        inv_freq_expanded = self.inv_freq[None, :, None].float().expand(
            position_ids.shape[0], -1, 1).to(x.device)
        position_ids_expanded = position_ids[:, None, :].float()

        device_type = x.device.type if isinstance(
            x.device.type, str) and x.device.type != "mps" else "cpu"
        with torch.autocast(device_type=device_type, enabled=False):  # Force float32
            freqs = (inv_freq_expanded.float() @
                     position_ids_expanded.float()).transpose(1, 2)
            emb = torch.cat((freqs, freqs), dim=-1)
            cos = emb.cos() * self.attention_scaling
            sin = emb.sin() * self.attention_scaling

        return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)


@auto_docstring
class SDARModel(SDARPreTrainedModel):
    def __init__(self, config: SDARConfig):
        super().__init__(config)
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = nn.Embedding(
            config.vocab_size, config.hidden_size, self.padding_idx)
        self.layers = nn.ModuleList(
            [SDARDecoderLayer(config, layer_idx)
             for layer_idx in range(config.num_hidden_layers)]
        )
        self.norm = SDARRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.rotary_emb = SDARRotaryEmbedding(config=config)
        self.gradient_checkpointing = False

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.embed_tokens

    def set_input_embeddings(self, value):
        self.embed_tokens = value

    @can_return_tuple
    @auto_docstring
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Cache] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        store_kv: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **flash_attn_kwargs: Unpack[FlashAttentionKwargs],
    ) -> BaseModelOutputWithPast:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache

        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError(
                "You must specify exactly one of input_ids or inputs_embeds")

        if self.gradient_checkpointing and self.training and use_cache:
            logger.warning_once(
                "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
            )
            use_cache = False

        # TODO (joao): remove this exception in v4.56 -- it exists for users that try to pass a legacy cache
        if not isinstance(past_key_values, (type(None), Cache)):
            raise ValueError(
                "The `past_key_values` should be either a `Cache` object or `None`.")

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)

        if use_cache and past_key_values is None:
            past_key_values = DynamicCache()

        if cache_position is None:
            past_seen_tokens = past_key_values.get_seq_length(
            ) if past_key_values is not None else 0
            cache_position = torch.arange(
                past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
            )

        if position_ids is None:
            position_ids = cache_position.unsqueeze(0)

        # causal_mask = self._update_causal_mask(
        #     attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
        # )

        hidden_states = inputs_embeds

        # create position embeddings to be shared across the decoder layers
        position_embeddings = self.rotary_emb(hidden_states, position_ids)

        # decoder layers
        all_hidden_states = () if output_hidden_states else None
        all_self_attns = () if output_attentions else None

        for decoder_layer in self.layers[: self.config.num_hidden_layers]:
            if output_hidden_states:
                all_hidden_states += (hidden_states,)

            layer_outputs = decoder_layer(
                hidden_states,
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_value=past_key_values,
                output_attentions=output_attentions,
                use_cache=use_cache,
                store_kv=store_kv,
                cache_position=cache_position,
                position_embeddings=position_embeddings,
                **flash_attn_kwargs,
            )

            hidden_states = layer_outputs[0]

            if output_attentions:
                all_self_attns += (layer_outputs[1],)

        hidden_states = self.norm(hidden_states)

        # add hidden states from the last decoder layer
        if output_hidden_states:
            all_hidden_states += (hidden_states,)

        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=past_key_values if use_cache else None,
            hidden_states=all_hidden_states,
            attentions=all_self_attns,
        )

    def _update_causal_mask(
        self,
        attention_mask: Union[torch.Tensor, "BlockMask"],
        input_tensor: torch.Tensor,
        cache_position: torch.Tensor,
        past_key_values: Cache,
        output_attentions: bool = False,
    ):
        if self.config._attn_implementation == "flash_attention_2":
            if attention_mask is not None and past_key_values is not None:
                is_padding_right = attention_mask[:, -
                                                  1].sum().item() != input_tensor.size()[0]
                if is_padding_right:
                    raise ValueError(
                        "You are attempting to perform batched generation with padding_side='right'"
                        " this may lead to unexpected behaviour for Flash Attention version of Qwen3. Make sure to "
                        " call `tokenizer.padding_side  = 'left'` before tokenizing the input. "
                    )
            if attention_mask is not None and 0.0 in attention_mask:
                return attention_mask
            return None
        if self.config._attn_implementation == "flex_attention":
            if isinstance(attention_mask, torch.Tensor):
                seq_len_q, seq_len_kv = attention_mask.shape
                assert seq_len_q == seq_len_kv, f"got {attention_mask.shape=}"
                attention_mask = create_block_mask(
                    # 2d bool tensor, shape: [2*seqlen, 2*seqlen]
                    lambda b, h, q_idx, kv_idx: attention_mask[q_idx, kv_idx],
                    B=None, H=None, Q_LEN=seq_len_q, KV_LEN=seq_len_kv,
                )
            else:
                # Here we pass in flex mask computed externally
                assert isinstance(attention_mask, BlockMask)
            return attention_mask

        # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
        # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
        # to infer the attention mask.
        past_seen_tokens = past_key_values.get_seq_length(
        ) if past_key_values is not None else 0
        using_static_cache = isinstance(past_key_values, StaticCache)
        using_sliding_window_cache = isinstance(
            past_key_values, SlidingWindowCache)

        # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
        if (
            self.config._attn_implementation == "sdpa"
            and not (using_static_cache or using_sliding_window_cache)
            and not output_attentions
        ):
            if AttentionMaskConverter._ignore_causal_mask_sdpa(
                attention_mask,
                inputs_embeds=input_tensor,
                past_key_values_length=past_seen_tokens,
                sliding_window=self.config.sliding_window,
                is_training=self.training,
            ):
                return None

        dtype = input_tensor.dtype
        min_dtype = torch.finfo(dtype).min
        sequence_length = input_tensor.shape[1]
        # SlidingWindowCache or StaticCache
        if using_sliding_window_cache or using_static_cache:
            target_length = past_key_values.get_max_cache_shape()
        # DynamicCache or no cache
        else:
            target_length = (
                attention_mask.shape[-1]
                if isinstance(attention_mask, torch.Tensor)
                else past_seen_tokens + sequence_length + 1
            )

        # In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
        causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
            attention_mask,
            sequence_length=sequence_length,
            target_length=target_length,
            dtype=dtype,
            cache_position=cache_position,
            batch_size=input_tensor.shape[0],
            config=self.config,
            past_key_values=past_key_values,
        )

        if (
            self.config._attn_implementation == "sdpa"
            and attention_mask is not None
            and attention_mask.device.type in ["cuda", "xpu", "npu"]
            and not output_attentions
        ):
            # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
            # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
            # Details: https://github.com/pytorch/pytorch/issues/110213
            causal_mask = AttentionMaskConverter._unmask_unattended(
                causal_mask, min_dtype)

        return causal_mask

    @staticmethod
    def _prepare_4d_causal_attention_mask_with_cache_position(
        attention_mask: torch.Tensor,
        sequence_length: int,
        target_length: int,
        dtype: torch.dtype,
        cache_position: torch.Tensor,
        batch_size: int,
        config: SDARConfig,
        past_key_values: Cache,
    ):
        """
        Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
        `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.

        Args:
            attention_mask (`torch.Tensor`):
                A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
            sequence_length (`int`):
                The sequence length being processed.
            target_length (`int`):
                The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
            dtype (`torch.dtype`):
                The dtype to use for the 4D attention mask.
            cache_position (`torch.Tensor`):
                Indices depicting the position of the input sequence tokens in the sequence.
            batch_size (`torch.Tensor`):
                Batch size.
            config (`SDARConfig`):
                The model's configuration class
            past_key_values (`Cache`):
                The cache class that is being used currently to generate
        """
        if attention_mask is not None and attention_mask.dim() == 4:
            # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
            causal_mask = attention_mask
        else:
            min_dtype = torch.finfo(dtype).min
            causal_mask = torch.full(
                (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device
            )
            diagonal_attend_mask = torch.arange(target_length, device=cache_position.device) > cache_position.reshape(
                -1, 1
            )
            text_config = config.get_text_config()
            if getattr(text_config, "use_sliding_window", True) and text_config.sliding_window is not None:
                # if we have sliding window, we should not attend to tokens beyond sliding window length, so we mask them out also
                # the check is needed to verify is current checkpoint was trained with sliding window or not
                if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length:
                    sliding_attend_mask = torch.arange(target_length, device=cache_position.device) <= (
                        cache_position.reshape(-1, 1) -
                        text_config.sliding_window
                    )
                    diagonal_attend_mask.bitwise_or_(sliding_attend_mask)
            causal_mask *= diagonal_attend_mask
            causal_mask = causal_mask[None, None,
                                      :, :].expand(batch_size, 1, -1, -1)
            if attention_mask is not None:
                causal_mask = causal_mask.clone()  # copy to contiguous memory for in-place edit
                if attention_mask.shape[-1] > target_length:
                    attention_mask = attention_mask[:, :target_length]
                mask_length = attention_mask.shape[-1]
                padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
                    causal_mask.device
                )
                padding_mask = padding_mask == 0
                causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
                    padding_mask, min_dtype
                )
        return causal_mask


class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs):
    ...


@auto_docstring
class SDARForCausalLM(SDARPreTrainedModel, GenerationMixin):
    _tied_weights_keys = ["lm_head.weight"]
    _tp_plan = {"lm_head": "colwise_rep"}
    _pp_plan = {"lm_head": (["hidden_states"], ["logits"])}

    def __init__(self, config):
        super().__init__(config)
        self.model = SDARModel(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(
            config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_input_embeddings(self):
        return self.model.embed_tokens

    def set_input_embeddings(self, value):
        self.model.embed_tokens = value

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def set_decoder(self, decoder):
        self.model = decoder

    def get_decoder(self):
        return self.model

    def prepare_for_bd_training(self, inputs_ids, position_ids, prompt_mask, masked_indices=None, p_mask_input=None):
        bsz, seq_len = inputs_ids.shape
        num_tokens = calculate_token_nums(position_ids) # List[torch.Tensor]
        
        # 如果手动传入了 masked_indices,就直接用它
        if masked_indices is not None:
            # 手动mask模式:用于RL训练或固定mask实验
            # 注意:外部传入的masked_indices已经只在response部分(通过 & response_mask),不需要再次过滤
            noisy_inputs_ids = torch.where(masked_indices, self.config.mask_token_id, inputs_ids)
            logits_to_keep_half = masked_indices  # (B, L) bool
            # 生成默认的p_mask:扁平化后的噪声率,形状为(M,),其中M=sum(masked_indices)
            # 默认值0.5表示中等噪声水平(用于扩散loss)
            M = masked_indices.sum().item()
            p_mask = torch.full((M,), 0.5, device=inputs_ids.device, dtype=torch.float)
        else:
            # 随机mask模式:用于Block Diffusion预训练
            # 返回:noisy_inputs_ids (B, L), logits_to_keep_half (B, L) bool, p_mask (M,) float
            noisy_inputs_ids, logits_to_keep_half, p_mask = forward_add_noise_packed(
                inputs_ids=inputs_ids,
                num_tokens_list=num_tokens,
                prompt_mask=prompt_mask,
                mask_id=self.config.mask_token_id,
            )
        
        # 确保两个分支返回的形状一致
        # logits_to_keep_half: (B, L) bool - 标记哪些位置被mask
        # p_mask: (M,) float - 每个被mask位置的噪声率,其中M = sum(logits_to_keep_half)
        assert logits_to_keep_half.shape == (bsz, seq_len), f"logits_to_keep_half shape error: {logits_to_keep_half.shape}"
        assert p_mask.shape == (logits_to_keep_half.sum(),), f"p_mask shape error: {p_mask.shape}, expected ({logits_to_keep_half.sum()},)"
        
        # 如果提供了p_mask_input(用于RL训练),计算p_to_keep
        # p_to_keep表示从masked位置中选出p_mask=True的位置
        p_to_keep = None
        if p_mask_input is not None:
            # 注意:外部传入的p_mask_input已经只在response部分(通过 & response_mask),不需要再次过滤
            # p_mask_input (B, L), logits_to_keep_half (B, L)
            # p_to_keep (M,) bool,其中M=sum(logits_to_keep_half)
            p_to_keep = p_mask_input[logits_to_keep_half]
        
        router_noisy_part_list = []
        for i in range(bsz):
            cur_router_noisy_part = (torch.arange(num_tokens[i].shape[0] *2) % 2 == 0).to(inputs_ids.device)
            cur_router_noisy_part = cur_router_noisy_part.repeat_interleave(num_tokens[i].repeat_interleave(2))
            router_noisy_part_list.append(cur_router_noisy_part)
        router_noisy_part = torch.stack(router_noisy_part_list, dim=0)

        # concated inputs_ids: (bzs, seq_len x 2)
        concat_inputs_ids = inputs_ids.repeat(1, 2)
        # concated logits_to_keep: (bsz, seq_len x 2)
        logits_to_keep = torch.zeros(
                    bsz, 2 * seq_len, dtype=torch.bool, device=inputs_ids.device)
        # concated position_ids: (bsz, seq_len x 2)
        concat_position_ids = torch.zeros(
                    bsz, 2 * seq_len, dtype=position_ids.dtype, device=position_ids.device)
        for i in range(bsz):
            concat_inputs_ids[i][router_noisy_part[i]] = noisy_inputs_ids[i]
            concat_inputs_ids[i][~router_noisy_part[i]] = inputs_ids[i]

            logits_to_keep[i][router_noisy_part[i]] = logits_to_keep_half[i]

            concat_position_ids[i][router_noisy_part[i]] = position_ids[i]
            concat_position_ids[i][~router_noisy_part[i]] = position_ids[i]

        # create flex_attention mask
        attention_mask = block_attn_mask(num_tokens, self.config.block_size, inputs_ids.device)
        flex_attention_mask_3d = create_block_mask(
                            lambda b, h, q_idx, kv_idx: attention_mask[b, q_idx, kv_idx],
                            B=attention_mask.size(0), H=None,
                            Q_LEN=attention_mask.size(1), KV_LEN=attention_mask.size(2),
        )

        return concat_inputs_ids, concat_position_ids, flex_attention_mask_3d, logits_to_keep_half, logits_to_keep, p_mask, p_to_keep

    @can_return_tuple
    @auto_docstring
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Cache] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        logits_to_keep: Union[int, torch.Tensor] = 0,
        masked_indices: Optional[torch.Tensor] = None,
        return_logits: bool = False,
        # RL training parameters
        compute_rl_loss: bool = False,
        p_mask: Optional[torch.Tensor] = None,
        adv: Optional[torch.Tensor] = None,
        adv_optimization: bool = False,
        logp_old_tok: Optional[torch.Tensor] = None,
        logp_ref_tok: Optional[torch.Tensor] = None,
        is_real: Optional[torch.Tensor] = None,
        ppo_eps: float = 0.2,
        kl_beta: float = 0.0,
        use_kl_estimator_k3: bool = True,
        return_entropy: bool = False,
        dynamic_threshold: Optional[float] = None,
        loss_mean: bool = True,
        **kwargs: Unpack[KwargsForCausalLM],
    ) -> CausalLMOutputWithPast:

        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )

        if self.training:
            assert inputs_embeds is None, "only support input_ids during training"

            prompt_mask = (labels == -100) if labels is not None else None
            position_ids = modify_padded_position_ids_2d(position_ids)

            (
                concat_inputs_ids,
                concat_position_ids,
                flex_attention_mask_3d,
                logits_to_keep_half,
                logits_to_keep,
                p_mask_out,
                p_to_keep,
            ) = self.prepare_for_bd_training(
                input_ids, position_ids, prompt_mask, masked_indices, p_mask_input=p_mask
            )

            outputs = self.model(
                input_ids=concat_inputs_ids,
                attention_mask=flex_attention_mask_3d,
                position_ids=concat_position_ids,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                return_dict=True,
                cache_position=cache_position,
                **kwargs,
            )

            hidden_states = outputs.last_hidden_state
            hidden_states = hidden_states[logits_to_keep].contiguous()

            # 初始化 entropy
            entropy = torch.tensor(0.0, device=input_ids.device)

            # ====================== RL loss(PPO) ======================
            if compute_rl_loss:
                assert p_to_keep is not None, "p_mask must be provided for RL loss computation."
                assert adv is not None, "adv must be provided for RL loss computation."
                assert is_real is not None, "is_real must be provided for RL loss computation."
                assert labels is not None, "labels must be provided for RL loss computation."
                assert masked_indices is not None, "masked_indices must be provided for RL loss computation."

                device = input_ids.device

                # logits (M, V) — 保持原样
                logits = self.lm_head(hidden_states)

                # mask — 保持原样
                is_real_tensor = (
                    is_real.to(device=device, dtype=torch.bool)
                    if torch.is_tensor(is_real)
                    else torch.tensor(is_real, dtype=torch.bool, device=device)
                )
                p_mask_real = p_mask & is_real_tensor.unsqueeze(1)      # (B, L)
                p_to_keep_real = p_mask_real[masked_indices]            # (M,) bool

                # 选出 logits — 保持原样
                logits_p = logits[p_to_keep_real]                       # (N, V)
                N = p_to_keep_real.sum().item()
                total_response_tokens = (labels != -100).sum().item()
                total_p_mask = p_mask.sum().item()
                total_masked_indices = masked_indices.sum().item()
                total_is_real = is_real_tensor.sum().item() if is_real_tensor.dim() > 0 else (1 if is_real_tensor.item() else 0)


                # log_softmax
                log_probs_p = torch.nn.functional.log_softmax(logits_p, dim=-1)

                # labels / logp — 保持原样
                labels_p = labels[masked_indices][p_to_keep_real]        # (N,)
                logp_p = log_probs_p.gather(dim=-1, index=labels_p.unsqueeze(-1)).squeeze(-1)

                # entropy(可选)
                if return_entropy:
                    with torch.no_grad():
                        entropy_p = -(log_probs_p.exp() * log_probs_p).sum(dim=-1)
                        entropy = entropy_p.mean() if entropy_p.numel() > 0 else torch.tensor(0.0, device=device)
                        del entropy_p

                # advantage 处理
                adv_tensor = adv.to(device) if torch.is_tensor(adv) else torch.tensor(adv, dtype=torch.float, device=device)
                adv_optimization=False
                if adv_optimization:
                    # token级别优化:对相同前缀取最大advantage(剪枝优化版本)
                    response_mask = (labels != -100)  # (B, L)
                    bsz, seq_len = input_ids.shape
                    
                    # 预计算每个样本的response起始位置
                    response_starts = torch.full((bsz,), seq_len, dtype=torch.long, device=device)
                    for b in range(bsz):
                        if response_mask[b].any():
                            response_starts[b] = response_mask[b].long().argmax()
                    
                    # 剪枝1: 找出已经是最大advantage的样本,直接填充不参与比较
                    max_adv_value = adv_tensor.max()
                    is_max_adv = (adv_tensor == max_adv_value)  # (B,) bool
                    
                    # 创建优化后的 advantage map (B, L),确保dtype与adv_tensor一致
                    optimized_adv = torch.zeros_like(labels, dtype=adv_tensor.dtype)
                    
                    # 对于已是最大advantage的样本,直接填充
                    for b in range(bsz):
                        if is_max_adv[b]:
                            optimized_adv[b][response_mask[b]] = max_adv_value
                    
                    # 统计信息
                    total_response_tokens = 0
                    updated_tokens = 0
                    skipped_tokens = 0
                    original_adv_sum = 0.0
                    optimized_adv_sum = 0.0
                    
                    # 按position处理,批量比较前缀
                    for pos in range(seq_len):
                        valid_samples = response_mask[:, pos]  # (B,)
                        if not valid_samples.any():
                            continue
                        
                        # 剪枝2: 排除已是最大advantage的样本
                        valid_samples = valid_samples & ~is_max_adv
                        if not valid_samples.any():
                            # 所有样本都是最大值,统计后跳过
                            max_count = (response_mask[:, pos] & is_max_adv).sum().item()
                            total_response_tokens += max_count
                            skipped_tokens += max_count
                            original_adv_sum += max_adv_value.item() * max_count
                            optimized_adv_sum += max_adv_value.item() * max_count
                            continue
                        
                        # 获取所有需要处理的样本索引
                        valid_indices = valid_samples.nonzero(as_tuple=True)[0]  # (N,)
                        
                        for b in valid_indices:
                            b_item = b.item()
                            response_start = response_starts[b_item].item()
                            prefix_len = pos + 1 - response_start
                            
                            if prefix_len <= 0:
                                optimized_adv[b_item, pos] = adv_tensor[b_item]
                                continue
                            
                            # 找出所有response起始位置相同且在pos位置有效的样本(包括已是最大值的)
                            same_start_mask = (response_starts == response_start) & response_mask[:, pos]
                            same_start_indices = same_start_mask.nonzero(as_tuple=True)[0]
                            
                            if len(same_start_indices) == 1:
                                # 只有自己,不需要比较
                                optimized_adv[b_item, pos] = adv_tensor[b_item]
                                total_response_tokens += 1
                                original_adv_sum += adv_tensor[b_item].item()
                                optimized_adv_sum += adv_tensor[b_item].item()
                                continue
                            
                            # 剪枝3: 如果候选中有最大advantage样本,可以直接用最大值
                            has_max_in_candidates = (same_start_mask & is_max_adv).any()
                            
                            prefix_end = pos + 1
                            current_prefix = input_ids[b_item, response_start:prefix_end]
                            
                            # 批量比较:提取所有候选样本的前缀
                            prefixes = input_ids[same_start_indices, response_start:prefix_end]  # (M, prefix_len)
                            
                            # 使用广播比较:(M, prefix_len) vs (prefix_len,)
                            matches = (prefixes == current_prefix.unsqueeze(0)).all(dim=1)  # (M,)
                            
                            # 找到匹配的样本
                            matching_indices = same_start_indices[matches]
                            
                            # 在相同前缀的样本中取最大 advantage
                            original_adv_value = adv_tensor[b_item].item()
                            if matching_indices.numel() > 0:
                                # 剪枝4: 如果匹配中有最大值样本,直接用最大值
                                if has_max_in_candidates and is_max_adv[matching_indices].any():
                                    max_adv = max_adv_value
                                else:
                                    max_adv = adv_tensor[matching_indices].max()
                                
                                optimized_adv[b_item, pos] = max_adv
                                # 统计
                                if abs(max_adv.item() - original_adv_value) > 1e-6:
                                    updated_tokens += 1
                                original_adv_sum += original_adv_value
                                optimized_adv_sum += max_adv.item()
                            else:
                                optimized_adv[b_item, pos] = adv_tensor[b_item]
                                original_adv_sum += original_adv_value
                                optimized_adv_sum += original_adv_value
                            
                            total_response_tokens += 1
                    
                    # 输出统计信息
                    if total_response_tokens > 0:
                        update_ratio = updated_tokens / total_response_tokens
                        skip_ratio = skipped_tokens / total_response_tokens
                        avg_original = original_adv_sum / total_response_tokens
                        avg_optimized = optimized_adv_sum / total_response_tokens
                        print(f"[Adv Optimization] Total: {total_response_tokens}, "
                              f"Updated: {updated_tokens} ({update_ratio:.2%}), "
                              f"Skipped: {skipped_tokens} ({skip_ratio:.2%}), "
                              f"Avg adv: {avg_original:.4f} -> {avg_optimized:.4f} "
                              f"(+{avg_optimized - avg_original:.4f})")
                    
                    # 使用优化后的 advantage
                    adv_expanded = optimized_adv
                else:
                    # 不优化:直接使用原始 advantage
                    adv_expanded = adv_tensor.unsqueeze(1).expand_as(p_mask)
                
                adv_p = adv_expanded[masked_indices][p_to_keep_real]

                # old logp
                if logp_old_tok is not None and logp_old_tok.numel() > 0:
                    logp_old_p = logp_old_tok.to(device)[masked_indices][p_to_keep_real]
                else:
                    logp_old_p = logp_p.detach()

                # ratio/exp
                ratio_p = (logp_p - logp_old_p).clamp(-10.0, 10.0).exp()
                clipped = ratio_p.clamp(1 - ppo_eps, 1 + ppo_eps+0.08)
                surrogate_p = torch.minimum(ratio_p * adv_p, clipped * adv_p)
                # 输出离1最远的ratio值
                # if not torch.allclose(ratio_p, torch.ones_like(ratio_p)):
                furthest_value = ratio_p[torch.abs(ratio_p - 1).argmax()]
                # print(f"Furthest ratio from 1: {furthest_value.item()}")

                # Policy loss: use mean or sum based on loss_mean parameter
                num_masked = masked_indices.sum().item()
                num_loss_elements = surrogate_p.numel()
                print(f"masked_indices.sum()={num_masked}, surrogate_p.numel()={num_loss_elements}")
                if loss_mean:
                    policy_loss = -surrogate_p.mean()
                else:
                    policy_loss = -surrogate_p.sum()

                # KL(可选)
                kl_loss = torch.tensor(0.0, device=device)
                if kl_beta > 0 and logp_ref_tok is not None:
                    logp_ref_p = logp_ref_tok.to(device)[masked_indices][p_to_keep_real]
                    kl_seq_p = logp_p - logp_ref_p

                    if use_kl_estimator_k3:
                        kl_seq_p = (-kl_seq_p).clamp(-10.0, 10.0).exp() - 1.0 + kl_seq_p

                    # KL loss: use mean or sum based on loss_mean parameter
                    if loss_mean:
                        kl_loss = kl_beta * kl_seq_p.mean()
                    else:
                        kl_loss = kl_beta * kl_seq_p.sum()
                    del logp_ref_p, kl_seq_p

                loss = policy_loss + kl_loss
                kl_loss_value = kl_loss.detach().clone()

                # 清理
                del logits, logits_p, log_probs_p, labels_p
                del is_real_tensor, p_mask_real, p_to_keep_real
                del adv_tensor, adv_expanded, adv_p
                del logp_p, logp_old_p, ratio_p, clipped, surrogate_p
                del policy_loss, kl_loss

                logits = None

            # ====================== GRPO / return logits ======================
            elif return_logits:
                logits = self.lm_head(hidden_states)
                loss = None

            # ====================== Block Diffusion fused loss ======================
            else:
                assert labels is not None, "Labels must be provided for training."
                answer_len = (labels != -100).sum()
                loss_fct = FusedLinearDiffusionCrossEntropyLoss(reduction="sum")
                loss = loss_fct(
                    x=hidden_states,
                    target=labels[logits_to_keep_half].contiguous(),
                    weight=self.lm_head.weight,
                    bias=self.lm_head.bias,
                    p_mask=p_mask_out,
                )
                loss = loss / answer_len
                logits = None

        # ====================== eval / inference ======================
        else:
            outputs: BaseModelOutputWithPast = self.model(
                input_ids=input_ids,
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_values=past_key_values,
                inputs_embeds=inputs_embeds,
                use_cache=use_cache,
                output_attentions=output_attentions,
                output_hidden_states=output_hidden_states,
                cache_position=cache_position,
                **kwargs,
            )

            hidden_states = outputs.last_hidden_state
            slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
            hidden_states = hidden_states[:, slice_indices, :].contiguous()

            fuse_linear_and_cross_entropy = self.config.fuse_cross_entropy and self.training
            if fuse_linear_and_cross_entropy:
                logits = None
            else:
                logits = self.lm_head(hidden_states)

            loss = None
            if labels is not None:
                loss_fct = nn.CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))

        output = CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

        if self.training and compute_rl_loss:
            output.entropy = entropy
            output.kl_loss = kl_loss_value if "kl_loss_value" in locals() else torch.tensor(0.0, device=input_ids.device)

        return output


__all__ = [
    "SDARForCausalLM",
    "SDARModel",
    "SDARPreTrainedModel",
]