File size: 68,878 Bytes
a1dec5b 8b5e6db a1dec5b 8b5e6db a1dec5b 8b5e6db a1dec5b 8b5e6db a1dec5b 8b5e6db a1dec5b 8b5e6db a1dec5b 8b5e6db a1dec5b 8b5e6db a1dec5b 8b5e6db a1dec5b 8b5e6db a1dec5b 8b5e6db a1dec5b 8b5e6db a1dec5b 8b5e6db a1dec5b 8b5e6db a1dec5b 8b5e6db a1dec5b 8b5e6db a1dec5b 8b5e6db a1dec5b 8b5e6db a1dec5b 8b5e6db a1dec5b 8b5e6db a1dec5b 8b5e6db a1dec5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 |
# This file is modified based on https://github.com/huggingface/transformers/blob/v4.52.4/src/transformers/models/qwen3/modeling_qwen3.py.
#
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/qwen3/modular_qwen3.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_qwen3.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2025 The Qwen team, Alibaba Group and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Callable, Optional, Tuple, Union, List
import torch
from torch import nn
from einops import rearrange
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache, SlidingWindowCache, StaticCache
from transformers.generation import GenerationMixin
from transformers.integrations import use_kernel_forward_from_hub
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.modeling_layers import GradientCheckpointingLayer
from transformers.modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
QuestionAnsweringModelOutput,
SequenceClassifierOutputWithPast,
TokenClassifierOutput,
)
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from transformers.processing_utils import Unpack
from transformers.utils import LossKwargs, auto_docstring, can_return_tuple, is_torch_flex_attn_available, logging
from configuration_sdar import SDARConfig
from fused_linear_diffusion_cross_entropy import FusedLinearDiffusionCrossEntropyLoss
from flash_attn.ops.triton.layer_norm import rms_norm_fn as flash_rms_norm
import torch.nn.functional as F
try:
from flash_attn import flash_attn_func, flash_attn_varlen_func
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input
except:
pass
try:
from liger_kernel.ops.swiglu import LigerSiLUMulFunction # noqa: F401
liger_kernel_is_available = True
except ImportError:
liger_kernel_is_available = False
if is_torch_flex_attn_available():
from torch.nn.attention.flex_attention import BlockMask, create_block_mask, flex_attention
from transformers.integrations.flex_attention import make_flex_block_causal_mask
logger = logging.get_logger(__name__)
def modify_padded_position_ids_2d(position_ids: torch.LongTensor) -> torch.LongTensor:
"""
使用完全向量化的 PyTorch 操作修改一个 batch 的 packed position_ids。
这个函数假设输入是一个 2D Tensor,形状为 (batch_size, sequence_length)。
它会独立地处理 batch 中的每一行。
Args:
position_ids: 二维 PyTorch Tensor, shape (batch_size, sequence_length).
Returns:
修改后的 position_ids Tensor, shape (batch_size, sequence_length).
"""
if position_ids.dim() != 2:
raise ValueError(f"Input tensor must be 2D, but got {position_ids.dim()} dimensions.")
batch_size, seq_len = position_ids.shape
device = position_ids.device
col_indices = torch.arange(seq_len, device=device, dtype=position_ids.dtype).expand(batch_size, -1)
mask = (position_ids != 0)
masked_indices = col_indices * mask
last_nonzero_idx = torch.max(masked_indices, dim=1).values
has_nonzero = torch.any(mask, dim=1)
pad_start_idx = torch.where(has_nonzero, last_nonzero_idx + 1, torch.tensor(0, device=device, dtype=position_ids.dtype))
padding_mask = col_indices >= pad_start_idx.unsqueeze(1)
new_pad_values = col_indices - pad_start_idx.unsqueeze(1)
position_ids = torch.where(padding_mask, new_pad_values, position_ids)
return position_ids
def calculate_token_nums(position_ids: torch.Tensor):
"""
使用 PyTorch 高效计算一个批次中每个打包序列的长度。
Args:
position_ids (torch.Tensor): 一个 2D Tensor,形状为 (batch_size, sequence_length)。
例如:tensor([[0,1,2,3,4,0,1,2,3,4,5,0,1,2,3,0,0,0]])
Returns:
list[list[int]]: 一个嵌套列表,包含每个批次项中各个序列的长度。
例如:[[5, 6, 4, 1, 1, 1]]
"""
# 检查输入是否为 2D Tensor
if position_ids.dim() != 2:
raise ValueError(f"输入必须是 2D Tensor,但得到了 {position_ids.dim()}D")
all_lengths = []
# 我们按批次逐行处理。因为每行的序列长度数量不同(ragged),
# 所以 Python 循环在批次维度上是最高效且最清晰的写法。
# 循环内部的操作是完全向量化的。
for pids_row in position_ids:
# 获取当前行的总长度
seq_len = pids_row.shape[0]
# 1. 找到所有值为 0 的元素的索引
# pids_row == 0 会返回一个布尔 Tensor: [True, False, ..., True, ...]
# torch.nonzero 会返回这些 True 值的索引
# .flatten() 将其从 (N, 1) 形状的 Tensor 变为 (N,) 形状
zero_indices = torch.nonzero(pids_row == 0).flatten()
# 2. 将序列的总长度作为一个额外的切分点添加到末尾
# 这对于计算最后一个序列的长度至关重要
# 注意:要确保新创建的 tensor 和原始 tensor 在同一个设备上 (cpu/cuda)
split_points = torch.cat([
zero_indices,
torch.tensor([seq_len], device=pids_row.device, dtype=zero_indices.dtype)
])
# 3. 计算相邻切分点之间的差值,这就是我们想要的长度
# torch.diff([a, b, c, d]) 会返回 [b-a, c-b, d-c]
lengths = torch.diff(split_points)
all_lengths.append(lengths)
return all_lengths
def forward_add_noise_packed(
inputs_ids: torch.Tensor,
num_tokens_list: List[torch.Tensor],
prompt_mask: torch.Tensor,
mask_id: int,
eps: float = 1e-3,
max_tries: int = 10,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
为一批打包(packed)序列的 token ID 添加噪声。
此函数保留了为每个逻辑样本(在每个批次项内拼接)生成独立随机噪声率的逻辑。
它会随机将一部分 token 的 ID 替换为 mask_id。
这个过程会避开被 prompt_mask 标记的位置。
Args:
inputs_ids (torch.Tensor):
输入的 token ID 张量,形状为 (bsz, total_tokens)。
num_tokens_list (List[torch.Tensor]):
一个张量列表,长度为 bsz。列表中的每个张量记录了对应批次项中
每个逻辑样本的长度。例如: [tensor([len1, len2]), tensor([len3, len4, len5])].
prompt_mask (torch.Tensor):
布尔型张量,形状为 (bsz, total_tokens),值为 True 的位置表示是 prompt,
不应添加噪声。
mask_id (int):
用于替换的 mask token 的 ID。
eps (float):
微小值,用于防止噪声率 t 恰好为 0,确保 p_mask > 0。
max_tries (int):
为确保至少一个非 prompt token 被 mask,对每个批次项尝试的最大次数。
Returns:
Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
- noisy_input_ids (torch.Tensor):
添加噪声后的 token ID 张量,形状为 (bsz, total_tokens)。
- final_masked_indices (torch.Tensor):
布尔型张量,标记了哪些位置被实际 mask 了,形状为 (bsz, total_tokens)。
- p_masks (torch.Tensor):
一个一维张量,包含了被 mask 的 token 对应的实际噪声率。
"""
# 1. 验证和获取形状
bsz, total_tokens = inputs_ids.shape
device = inputs_ids.device
# 检查输入的一致性
assert len(num_tokens_list) == bsz, f"num_tokens_list 的长度 ({len(num_tokens_list)}) 必须等于 bsz ({bsz})"
assert prompt_mask.shape == (bsz, total_tokens), f"prompt_mask 形状不匹配, 期望 {(bsz, total_tokens)}, 得到 {prompt_mask.shape}"
# 准备结果容器
noisy_ids_list = []
final_masked_indices_list = []
p_masks_per_token_list = []
# 2. 在批次维度上迭代
# 这是处理不同打包结构最直接有效的方法
for i in range(bsz):
# 提取当前批次项的数据
current_ids = inputs_ids[i:i+1] # shape: (1, total_tokens)
current_num_tokens = num_tokens_list[i]
current_prompt_mask = prompt_mask[i:i+1] # shape: (1, total_tokens)
num_samples_in_item = len(current_num_tokens)
# 验证当前批次项的 token 总数是否匹配
assert total_tokens == torch.sum(current_num_tokens), \
f"批次项 {i} 的 num_tokens 之和 ({torch.sum(current_num_tokens)}) 与 total_tokens ({total_tokens}) 不匹配"
eligible_for_masking = ~current_prompt_mask
# 如果没有任何 token 可以被 mask,直接使用原始输入,并设置 p_mask 为 eps
if not eligible_for_masking.any():
noisy_ids_list.append(current_ids)
final_masked_indices_list.append(torch.zeros_like(current_prompt_mask, dtype=torch.bool))
# p_mask_per_token 的形状应为 (1, total_tokens) 以便后续拼接
p_masks_per_token_list.append(torch.full((1, total_tokens), eps, device=device, dtype=torch.float))
continue
# --- 尝试生成 mask,确保至少 mask 一个 token ---
final_masked_indices_item = torch.zeros_like(current_prompt_mask, dtype=torch.bool)
p_mask_per_token = None
for _ in range(max_tries):
# 为每个逻辑样本生成一个独立的噪声率 t
t = torch.rand(num_samples_in_item, device=device)
p_mask_per_sample = (1 - eps) * t + eps
# 将每个样本的噪声率扩展到其所有 token 上
p_mask_per_token_1d = torch.repeat_interleave(p_mask_per_sample, current_num_tokens)
p_mask_per_token = p_mask_per_token_1d.unsqueeze(0) # shape: (1, total_tokens)
# 根据噪声率生成随机 mask
masked_indices = torch.rand_like(p_mask_per_token) < p_mask_per_token
# 应用 prompt mask,确保 prompt 不被 mask
final_masked_indices_item = masked_indices & eligible_for_masking
# 如果成功 mask 了至少一个 token,则跳出尝试循环
if final_masked_indices_item.any():
break
# 如果 max_tries 之后仍然没有 mask 任何 token (极小概率),就强制 mask 一个可 mask 的 token
if not final_masked_indices_item.any():
eligible_indices = torch.nonzero(eligible_for_masking.squeeze(0), as_tuple=True)[0]
if len(eligible_indices) > 0:
# 随机选择一个可 mask 的位置
random_choice = torch.randint(0, len(eligible_indices), (1,)).item()
force_mask_idx = eligible_indices[random_choice]
final_masked_indices_item[0, force_mask_idx] = True
# --- 根据最终的 mask 生成带噪声的 IDs ---
noisy_ids_item = torch.where(
final_masked_indices_item,
mask_id,
current_ids
)
# 保存这个批次项的结果
noisy_ids_list.append(noisy_ids_item)
final_masked_indices_list.append(final_masked_indices_item)
p_masks_per_token_list.append(p_mask_per_token)
# 3. 将列表中的结果堆叠成最终的批处理张量
noisy_input_ids = torch.cat(noisy_ids_list, dim=0)
final_masked_indices = torch.cat(final_masked_indices_list, dim=0)
p_mask_full = torch.cat(p_masks_per_token_list, dim=0)
# 4. 提取被 mask 位置对应的噪声率
p_masks = p_mask_full[final_masked_indices]
return noisy_input_ids, final_masked_indices, p_masks
def block_diff_mask(b, h, q_idx, kv_idx, block_size=None, n=None):
"""
Constructs the specialized block diffusion attention mask for training
composed of three masks:
- **Block Diagonal Mask (M_BD)**: Self-attention within noised blocks
- **Offset Block Causal Mask (M_OBC)**: Cross-attention for conditional context
- **Block Causal Mask (M_BC)**: Attention to update x0
Args:
b, h: Batch and head indices (ignored for mask logic).
q_idx, kv_idx: Query and Key indices.
seq_len: Total sequence length.
block_size: Defines the block structure.
Returns:
A boolean attention mask.
"""
# Indicate whether token belongs to xt or x0
x0_flag_q = q_idx >= n
x0_flag_kv = kv_idx >= n
# Compute block indices
block_q = torch.where(
x0_flag_q == 1, (q_idx - n) // block_size, q_idx // block_size
)
block_kv = torch.where(
x0_flag_kv == 1, (kv_idx - n) // block_size, kv_idx // block_size
)
# **1. Block Diagonal Mask (M_BD) **
block_diagonal = (block_q == block_kv) & (x0_flag_q == x0_flag_kv)
# **2. Offset Block-Causal Mask (M_OBC) **
offset_block_causal = (block_q > block_kv) & (
x0_flag_kv == 1) & (x0_flag_q == 0)
# **3. Block-Causal Mask (M_BC) **
block_causal = (block_q >= block_kv) & (x0_flag_kv == 1) & (x0_flag_q == 1)
# **4. Combine Masks **
return block_diagonal | offset_block_causal | block_causal
def block_attn_mask(num_tokens, block_size, device):
masks = []
for i in range(len(num_tokens)):
cur_masks = []
for num in num_tokens[i]:
# 全部返回 n*n 而非 2n*2n
single_mask = block_diff_mask(
b=None,
h=None,
q_idx=torch.arange(num * 2, device=device)[:, None],
kv_idx=torch.arange(num * 2, device=device)[None, :],
block_size=block_size,
n=num,
)
cur_masks.append(single_mask)
masks.append(torch.block_diag(*cur_masks))
masks = torch.stack(masks, dim=0)
return masks
@torch.compile(fullgraph=True, mode="max-autotune-no-cudagraphs")
def fused_flex_attention(query, key, value, attention_mask, **kwargs):
return flex_attention(query, key, value, block_mask=attention_mask, **kwargs)
@use_kernel_forward_from_hub("RMSNorm")
class SDARRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
SDARRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
return flash_rms_norm(
hidden_states, weight=self.weight, bias=None, eps=self.variance_epsilon)
'''
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * \
torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
'''
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
class SDARMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(
self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(
self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(
self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
if liger_kernel_is_available:
return self.down_proj(LigerSiLUMulFunction.apply(self.gate_proj(x), self.up_proj(x)))
else:
down_proj = self.down_proj(self.act_fn(
self.gate_proj(x)) * self.up_proj(x))
return down_proj
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2:]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(
batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(
attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(
attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
class SDARAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: SDARConfig, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(
config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_causal = True
self.hidden_size = config.hidden_size
self.num_attention_heads = config.num_attention_heads
self.num_key_value_heads = config.num_key_value_heads
self.q_proj = nn.Linear(
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
)
self.k_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.v_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.o_proj = nn.Linear(
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
)
# unlike olmo, only on the head dim!
self.q_norm = SDARRMSNorm(self.head_dim, eps=config.rms_norm_eps)
# thus post q_norm does not need reshape
self.k_norm = SDARRMSNorm(self.head_dim, eps=config.rms_norm_eps)
self.sliding_window = config.sliding_window
if not (
self.config.use_sliding_window
and getattr(self.config, "sliding_window", None) is not None
and self.layer_idx >= self.config.max_window_layers
):
self.sliding_window = None
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
bsz, q_len = input_shape
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_norm(self.q_proj(
hidden_states).view(hidden_shape)).transpose(1, 2)
key_states = self.k_norm(self.k_proj(
hidden_states).view(hidden_shape)).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(
hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(
query_states, key_states, cos, sin)
if past_key_value is not None and kwargs.get("store_kv", False):
# sin and cos are specific to RoPE models; cache_position needed for the static cache
key_states, value_states = past_key_value.update(
key_states, value_states, self.layer_idx)
elif past_key_value is not None and not kwargs.get("store_kv", False) and len(past_key_value) > self.layer_idx:
# only retrive, do not store kv
past_key_states, past_value_states = past_key_value[self.layer_idx]
key_states = torch.cat(
[past_key_states, key_states], dim=-2)
value_states = torch.cat(
[past_value_states, value_states], dim=-2)
if self.training:
attn_output, attn_weights = fused_flex_attention(
query=query_states,
key=key_states,
value=value_states,
attention_mask=attention_mask,
enable_gqa=True,
scale=self.scaling,
return_lse=True
)
attn_weights = attn_weights.to(
value_states.dtype) if attn_weights is not None else None
attn_output = rearrange(attn_output, 'b h l d -> b l (h d)')
else:
attention_mask = attention_mask.bool() if attention_mask is not None else None
attn_weights = None
if torch.all(attention_mask): # decoding
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
attn_output = flash_attn_func(
query_states,
key_states,
value_states,
causal=False,
softmax_scale=self.scaling
)
attn_output = rearrange(attn_output, 'b l h d -> b l (h d)')
else: # prefilling
attn_output = F.scaled_dot_product_attention(
query=query_states,
key=key_states,
value=value_states,
attn_mask=attention_mask,
is_causal=False,
scale=self.scaling,
enable_gqa=True
)
attn_output = rearrange(attn_output, 'b h l d -> b l (h d)')
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights # , attn_weights
class SDARDecoderLayer(GradientCheckpointingLayer):
def __init__(self, config: SDARConfig, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.self_attn = SDARAttention(config=config, layer_idx=layer_idx)
self.mlp = SDARMLP(config)
self.input_layernorm = SDARRMSNorm(
config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = SDARRMSNorm(
config.hidden_size, eps=config.rms_norm_eps)
if (
config.sliding_window and config._attn_implementation != "flash_attention_2"
): # diff with Llama is this warning
logger.warning_once(
f"Sliding Window Attention is enabled but not implemented for `{config._attn_implementation}`; "
"unexpected results may be encountered."
)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
store_kv: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
# necessary, but kept here for BC
position_embeddings: Optional[Tuple[torch.Tensor,
torch.Tensor]] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
store_kv=store_kv,
cache_position=cache_position,
position_embeddings=position_embeddings,
**kwargs,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
@auto_docstring
class SDARPreTrainedModel(PreTrainedModel):
config_class = SDARConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["SDARDecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_flex_attn = True
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
_supports_attention_backend = True
def _init_weights(self, module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, SDARRMSNorm):
module.weight.data.fill_(1.0)
class SDARRotaryEmbedding(nn.Module):
def __init__(self, config: SDARConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get(
"rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(
self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
@torch.no_grad()
# power user: used with advanced RoPE types (e.g. dynamic rope)
@dynamic_rope_update
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(
position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(
x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @
position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos() * self.attention_scaling
sin = emb.sin() * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
@auto_docstring
class SDARModel(SDARPreTrainedModel):
def __init__(self, config: SDARConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(
config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[SDARDecoderLayer(config, layer_idx)
for layer_idx in range(config.num_hidden_layers)]
)
self.norm = SDARRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = SDARRotaryEmbedding(config=config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embed_tokens
def set_input_embeddings(self, value):
self.embed_tokens = value
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
store_kv: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> BaseModelOutputWithPast:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError(
"You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
# TODO (joao): remove this exception in v4.56 -- it exists for users that try to pass a legacy cache
if not isinstance(past_key_values, (type(None), Cache)):
raise ValueError(
"The `past_key_values` should be either a `Cache` object or `None`.")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length(
) if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
# causal_mask = self._update_causal_mask(
# attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
# )
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = decoder_layer(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
store_kv=store_kv,
cache_position=cache_position,
position_embeddings=position_embeddings,
**flash_attn_kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
# add hidden states from the last decoder layer
if output_hidden_states:
all_hidden_states += (hidden_states,)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
def _update_causal_mask(
self,
attention_mask: Union[torch.Tensor, "BlockMask"],
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool = False,
):
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and past_key_values is not None:
is_padding_right = attention_mask[:, -
1].sum().item() != input_tensor.size()[0]
if is_padding_right:
raise ValueError(
"You are attempting to perform batched generation with padding_side='right'"
" this may lead to unexpected behaviour for Flash Attention version of Qwen3. Make sure to "
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
)
if attention_mask is not None and 0.0 in attention_mask:
return attention_mask
return None
if self.config._attn_implementation == "flex_attention":
if isinstance(attention_mask, torch.Tensor):
seq_len_q, seq_len_kv = attention_mask.shape
assert seq_len_q == seq_len_kv, f"got {attention_mask.shape=}"
attention_mask = create_block_mask(
# 2d bool tensor, shape: [2*seqlen, 2*seqlen]
lambda b, h, q_idx, kv_idx: attention_mask[q_idx, kv_idx],
B=None, H=None, Q_LEN=seq_len_q, KV_LEN=seq_len_kv,
)
else:
# Here we pass in flex mask computed externally
assert isinstance(attention_mask, BlockMask)
return attention_mask
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length(
) if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
using_sliding_window_cache = isinstance(
past_key_values, SlidingWindowCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if (
self.config._attn_implementation == "sdpa"
and not (using_static_cache or using_sliding_window_cache)
and not output_attentions
):
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
sliding_window=self.config.sliding_window,
is_training=self.training,
):
return None
dtype = input_tensor.dtype
min_dtype = torch.finfo(dtype).min
sequence_length = input_tensor.shape[1]
# SlidingWindowCache or StaticCache
if using_sliding_window_cache or using_static_cache:
target_length = past_key_values.get_max_cache_shape()
# DynamicCache or no cache
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length + 1
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
config=self.config,
past_key_values=past_key_values,
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type in ["cuda", "xpu", "npu"]
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
causal_mask = AttentionMaskConverter._unmask_unattended(
causal_mask, min_dtype)
return causal_mask
@staticmethod
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
cache_position: torch.Tensor,
batch_size: int,
config: SDARConfig,
past_key_values: Cache,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
config (`SDARConfig`):
The model's configuration class
past_key_values (`Cache`):
The cache class that is being used currently to generate
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device
)
diagonal_attend_mask = torch.arange(target_length, device=cache_position.device) > cache_position.reshape(
-1, 1
)
text_config = config.get_text_config()
if getattr(text_config, "use_sliding_window", True) and text_config.sliding_window is not None:
# if we have sliding window, we should not attend to tokens beyond sliding window length, so we mask them out also
# the check is needed to verify is current checkpoint was trained with sliding window or not
if not isinstance(past_key_values, SlidingWindowCache) or sequence_length > target_length:
sliding_attend_mask = torch.arange(target_length, device=cache_position.device) <= (
cache_position.reshape(-1, 1) -
text_config.sliding_window
)
diagonal_attend_mask.bitwise_or_(sliding_attend_mask)
causal_mask *= diagonal_attend_mask
causal_mask = causal_mask[None, None,
:, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
if attention_mask.shape[-1] > target_length:
attention_mask = attention_mask[:, :target_length]
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to(
causal_mask.device
)
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
class KwargsForCausalLM(FlashAttentionKwargs, LossKwargs):
...
@auto_docstring
class SDARForCausalLM(SDARPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
_tp_plan = {"lm_head": "colwise_rep"}
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
def __init__(self, config):
super().__init__(config)
self.model = SDARModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(
config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.model.embed_tokens
def set_input_embeddings(self, value):
self.model.embed_tokens = value
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model = decoder
def get_decoder(self):
return self.model
def prepare_for_bd_training(self, inputs_ids, position_ids, prompt_mask, masked_indices=None, p_mask_input=None):
bsz, seq_len = inputs_ids.shape
num_tokens = calculate_token_nums(position_ids) # List[torch.Tensor]
# 如果手动传入了 masked_indices,就直接用它
if masked_indices is not None:
# 手动mask模式:用于RL训练或固定mask实验
# 注意:外部传入的masked_indices已经只在response部分(通过 & response_mask),不需要再次过滤
noisy_inputs_ids = torch.where(masked_indices, self.config.mask_token_id, inputs_ids)
logits_to_keep_half = masked_indices # (B, L) bool
# 生成默认的p_mask:扁平化后的噪声率,形状为(M,),其中M=sum(masked_indices)
# 默认值0.5表示中等噪声水平(用于扩散loss)
M = masked_indices.sum().item()
p_mask = torch.full((M,), 0.5, device=inputs_ids.device, dtype=torch.float)
else:
# 随机mask模式:用于Block Diffusion预训练
# 返回:noisy_inputs_ids (B, L), logits_to_keep_half (B, L) bool, p_mask (M,) float
noisy_inputs_ids, logits_to_keep_half, p_mask = forward_add_noise_packed(
inputs_ids=inputs_ids,
num_tokens_list=num_tokens,
prompt_mask=prompt_mask,
mask_id=self.config.mask_token_id,
)
# 确保两个分支返回的形状一致
# logits_to_keep_half: (B, L) bool - 标记哪些位置被mask
# p_mask: (M,) float - 每个被mask位置的噪声率,其中M = sum(logits_to_keep_half)
assert logits_to_keep_half.shape == (bsz, seq_len), f"logits_to_keep_half shape error: {logits_to_keep_half.shape}"
assert p_mask.shape == (logits_to_keep_half.sum(),), f"p_mask shape error: {p_mask.shape}, expected ({logits_to_keep_half.sum()},)"
# 如果提供了p_mask_input(用于RL训练),计算p_to_keep
# p_to_keep表示从masked位置中选出p_mask=True的位置
p_to_keep = None
if p_mask_input is not None:
# 注意:外部传入的p_mask_input已经只在response部分(通过 & response_mask),不需要再次过滤
# p_mask_input (B, L), logits_to_keep_half (B, L)
# p_to_keep (M,) bool,其中M=sum(logits_to_keep_half)
p_to_keep = p_mask_input[logits_to_keep_half]
router_noisy_part_list = []
for i in range(bsz):
cur_router_noisy_part = (torch.arange(num_tokens[i].shape[0] *2) % 2 == 0).to(inputs_ids.device)
cur_router_noisy_part = cur_router_noisy_part.repeat_interleave(num_tokens[i].repeat_interleave(2))
router_noisy_part_list.append(cur_router_noisy_part)
router_noisy_part = torch.stack(router_noisy_part_list, dim=0)
# concated inputs_ids: (bzs, seq_len x 2)
concat_inputs_ids = inputs_ids.repeat(1, 2)
# concated logits_to_keep: (bsz, seq_len x 2)
logits_to_keep = torch.zeros(
bsz, 2 * seq_len, dtype=torch.bool, device=inputs_ids.device)
# concated position_ids: (bsz, seq_len x 2)
concat_position_ids = torch.zeros(
bsz, 2 * seq_len, dtype=position_ids.dtype, device=position_ids.device)
for i in range(bsz):
concat_inputs_ids[i][router_noisy_part[i]] = noisy_inputs_ids[i]
concat_inputs_ids[i][~router_noisy_part[i]] = inputs_ids[i]
logits_to_keep[i][router_noisy_part[i]] = logits_to_keep_half[i]
concat_position_ids[i][router_noisy_part[i]] = position_ids[i]
concat_position_ids[i][~router_noisy_part[i]] = position_ids[i]
# create flex_attention mask
attention_mask = block_attn_mask(num_tokens, self.config.block_size, inputs_ids.device)
flex_attention_mask_3d = create_block_mask(
lambda b, h, q_idx, kv_idx: attention_mask[b, q_idx, kv_idx],
B=attention_mask.size(0), H=None,
Q_LEN=attention_mask.size(1), KV_LEN=attention_mask.size(2),
)
return concat_inputs_ids, concat_position_ids, flex_attention_mask_3d, logits_to_keep_half, logits_to_keep, p_mask, p_to_keep
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
masked_indices: Optional[torch.Tensor] = None,
return_logits: bool = False,
# RL training parameters
compute_rl_loss: bool = False,
p_mask: Optional[torch.Tensor] = None,
adv: Optional[torch.Tensor] = None,
adv_optimization: bool = False,
logp_old_tok: Optional[torch.Tensor] = None,
logp_ref_tok: Optional[torch.Tensor] = None,
is_real: Optional[torch.Tensor] = None,
ppo_eps: float = 0.2,
kl_beta: float = 0.0,
use_kl_estimator_k3: bool = True,
return_entropy: bool = False,
dynamic_threshold: Optional[float] = None,
loss_mean: bool = True,
**kwargs: Unpack[KwargsForCausalLM],
) -> CausalLMOutputWithPast:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
if self.training:
assert inputs_embeds is None, "only support input_ids during training"
prompt_mask = (labels == -100) if labels is not None else None
position_ids = modify_padded_position_ids_2d(position_ids)
(
concat_inputs_ids,
concat_position_ids,
flex_attention_mask_3d,
logits_to_keep_half,
logits_to_keep,
p_mask_out,
p_to_keep,
) = self.prepare_for_bd_training(
input_ids, position_ids, prompt_mask, masked_indices, p_mask_input=p_mask
)
outputs = self.model(
input_ids=concat_inputs_ids,
attention_mask=flex_attention_mask_3d,
position_ids=concat_position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=True,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs.last_hidden_state
hidden_states = hidden_states[logits_to_keep].contiguous()
# 初始化 entropy
entropy = torch.tensor(0.0, device=input_ids.device)
# ====================== RL loss(PPO) ======================
if compute_rl_loss:
assert p_to_keep is not None, "p_mask must be provided for RL loss computation."
assert adv is not None, "adv must be provided for RL loss computation."
assert is_real is not None, "is_real must be provided for RL loss computation."
assert labels is not None, "labels must be provided for RL loss computation."
assert masked_indices is not None, "masked_indices must be provided for RL loss computation."
device = input_ids.device
# logits (M, V) — 保持原样
logits = self.lm_head(hidden_states)
# mask — 保持原样
is_real_tensor = (
is_real.to(device=device, dtype=torch.bool)
if torch.is_tensor(is_real)
else torch.tensor(is_real, dtype=torch.bool, device=device)
)
p_mask_real = p_mask & is_real_tensor.unsqueeze(1) # (B, L)
p_to_keep_real = p_mask_real[masked_indices] # (M,) bool
# 选出 logits — 保持原样
logits_p = logits[p_to_keep_real] # (N, V)
N = p_to_keep_real.sum().item()
total_response_tokens = (labels != -100).sum().item()
total_p_mask = p_mask.sum().item()
total_masked_indices = masked_indices.sum().item()
total_is_real = is_real_tensor.sum().item() if is_real_tensor.dim() > 0 else (1 if is_real_tensor.item() else 0)
# log_softmax
log_probs_p = torch.nn.functional.log_softmax(logits_p, dim=-1)
# labels / logp — 保持原样
labels_p = labels[masked_indices][p_to_keep_real] # (N,)
logp_p = log_probs_p.gather(dim=-1, index=labels_p.unsqueeze(-1)).squeeze(-1)
# entropy(可选)
if return_entropy:
with torch.no_grad():
entropy_p = -(log_probs_p.exp() * log_probs_p).sum(dim=-1)
entropy = entropy_p.mean() if entropy_p.numel() > 0 else torch.tensor(0.0, device=device)
del entropy_p
# advantage 处理
adv_tensor = adv.to(device) if torch.is_tensor(adv) else torch.tensor(adv, dtype=torch.float, device=device)
adv_optimization=False
if adv_optimization:
# token级别优化:对相同前缀取最大advantage(剪枝优化版本)
response_mask = (labels != -100) # (B, L)
bsz, seq_len = input_ids.shape
# 预计算每个样本的response起始位置
response_starts = torch.full((bsz,), seq_len, dtype=torch.long, device=device)
for b in range(bsz):
if response_mask[b].any():
response_starts[b] = response_mask[b].long().argmax()
# 剪枝1: 找出已经是最大advantage的样本,直接填充不参与比较
max_adv_value = adv_tensor.max()
is_max_adv = (adv_tensor == max_adv_value) # (B,) bool
# 创建优化后的 advantage map (B, L),确保dtype与adv_tensor一致
optimized_adv = torch.zeros_like(labels, dtype=adv_tensor.dtype)
# 对于已是最大advantage的样本,直接填充
for b in range(bsz):
if is_max_adv[b]:
optimized_adv[b][response_mask[b]] = max_adv_value
# 统计信息
total_response_tokens = 0
updated_tokens = 0
skipped_tokens = 0
original_adv_sum = 0.0
optimized_adv_sum = 0.0
# 按position处理,批量比较前缀
for pos in range(seq_len):
valid_samples = response_mask[:, pos] # (B,)
if not valid_samples.any():
continue
# 剪枝2: 排除已是最大advantage的样本
valid_samples = valid_samples & ~is_max_adv
if not valid_samples.any():
# 所有样本都是最大值,统计后跳过
max_count = (response_mask[:, pos] & is_max_adv).sum().item()
total_response_tokens += max_count
skipped_tokens += max_count
original_adv_sum += max_adv_value.item() * max_count
optimized_adv_sum += max_adv_value.item() * max_count
continue
# 获取所有需要处理的样本索引
valid_indices = valid_samples.nonzero(as_tuple=True)[0] # (N,)
for b in valid_indices:
b_item = b.item()
response_start = response_starts[b_item].item()
prefix_len = pos + 1 - response_start
if prefix_len <= 0:
optimized_adv[b_item, pos] = adv_tensor[b_item]
continue
# 找出所有response起始位置相同且在pos位置有效的样本(包括已是最大值的)
same_start_mask = (response_starts == response_start) & response_mask[:, pos]
same_start_indices = same_start_mask.nonzero(as_tuple=True)[0]
if len(same_start_indices) == 1:
# 只有自己,不需要比较
optimized_adv[b_item, pos] = adv_tensor[b_item]
total_response_tokens += 1
original_adv_sum += adv_tensor[b_item].item()
optimized_adv_sum += adv_tensor[b_item].item()
continue
# 剪枝3: 如果候选中有最大advantage样本,可以直接用最大值
has_max_in_candidates = (same_start_mask & is_max_adv).any()
prefix_end = pos + 1
current_prefix = input_ids[b_item, response_start:prefix_end]
# 批量比较:提取所有候选样本的前缀
prefixes = input_ids[same_start_indices, response_start:prefix_end] # (M, prefix_len)
# 使用广播比较:(M, prefix_len) vs (prefix_len,)
matches = (prefixes == current_prefix.unsqueeze(0)).all(dim=1) # (M,)
# 找到匹配的样本
matching_indices = same_start_indices[matches]
# 在相同前缀的样本中取最大 advantage
original_adv_value = adv_tensor[b_item].item()
if matching_indices.numel() > 0:
# 剪枝4: 如果匹配中有最大值样本,直接用最大值
if has_max_in_candidates and is_max_adv[matching_indices].any():
max_adv = max_adv_value
else:
max_adv = adv_tensor[matching_indices].max()
optimized_adv[b_item, pos] = max_adv
# 统计
if abs(max_adv.item() - original_adv_value) > 1e-6:
updated_tokens += 1
original_adv_sum += original_adv_value
optimized_adv_sum += max_adv.item()
else:
optimized_adv[b_item, pos] = adv_tensor[b_item]
original_adv_sum += original_adv_value
optimized_adv_sum += original_adv_value
total_response_tokens += 1
# 输出统计信息
if total_response_tokens > 0:
update_ratio = updated_tokens / total_response_tokens
skip_ratio = skipped_tokens / total_response_tokens
avg_original = original_adv_sum / total_response_tokens
avg_optimized = optimized_adv_sum / total_response_tokens
print(f"[Adv Optimization] Total: {total_response_tokens}, "
f"Updated: {updated_tokens} ({update_ratio:.2%}), "
f"Skipped: {skipped_tokens} ({skip_ratio:.2%}), "
f"Avg adv: {avg_original:.4f} -> {avg_optimized:.4f} "
f"(+{avg_optimized - avg_original:.4f})")
# 使用优化后的 advantage
adv_expanded = optimized_adv
else:
# 不优化:直接使用原始 advantage
adv_expanded = adv_tensor.unsqueeze(1).expand_as(p_mask)
adv_p = adv_expanded[masked_indices][p_to_keep_real]
# old logp
if logp_old_tok is not None and logp_old_tok.numel() > 0:
logp_old_p = logp_old_tok.to(device)[masked_indices][p_to_keep_real]
else:
logp_old_p = logp_p.detach()
# ratio/exp
ratio_p = (logp_p - logp_old_p).clamp(-10.0, 10.0).exp()
clipped = ratio_p.clamp(1 - ppo_eps, 1 + ppo_eps+0.08)
surrogate_p = torch.minimum(ratio_p * adv_p, clipped * adv_p)
# 输出离1最远的ratio值
# if not torch.allclose(ratio_p, torch.ones_like(ratio_p)):
furthest_value = ratio_p[torch.abs(ratio_p - 1).argmax()]
# print(f"Furthest ratio from 1: {furthest_value.item()}")
# Policy loss: use mean or sum based on loss_mean parameter
num_masked = masked_indices.sum().item()
num_loss_elements = surrogate_p.numel()
print(f"masked_indices.sum()={num_masked}, surrogate_p.numel()={num_loss_elements}")
if loss_mean:
policy_loss = -surrogate_p.mean()
else:
policy_loss = -surrogate_p.sum()
# KL(可选)
kl_loss = torch.tensor(0.0, device=device)
if kl_beta > 0 and logp_ref_tok is not None:
logp_ref_p = logp_ref_tok.to(device)[masked_indices][p_to_keep_real]
kl_seq_p = logp_p - logp_ref_p
if use_kl_estimator_k3:
kl_seq_p = (-kl_seq_p).clamp(-10.0, 10.0).exp() - 1.0 + kl_seq_p
# KL loss: use mean or sum based on loss_mean parameter
if loss_mean:
kl_loss = kl_beta * kl_seq_p.mean()
else:
kl_loss = kl_beta * kl_seq_p.sum()
del logp_ref_p, kl_seq_p
loss = policy_loss + kl_loss
kl_loss_value = kl_loss.detach().clone()
# 清理
del logits, logits_p, log_probs_p, labels_p
del is_real_tensor, p_mask_real, p_to_keep_real
del adv_tensor, adv_expanded, adv_p
del logp_p, logp_old_p, ratio_p, clipped, surrogate_p
del policy_loss, kl_loss
logits = None
# ====================== GRPO / return logits ======================
elif return_logits:
logits = self.lm_head(hidden_states)
loss = None
# ====================== Block Diffusion fused loss ======================
else:
assert labels is not None, "Labels must be provided for training."
answer_len = (labels != -100).sum()
loss_fct = FusedLinearDiffusionCrossEntropyLoss(reduction="sum")
loss = loss_fct(
x=hidden_states,
target=labels[logits_to_keep_half].contiguous(),
weight=self.lm_head.weight,
bias=self.lm_head.bias,
p_mask=p_mask_out,
)
loss = loss / answer_len
logits = None
# ====================== eval / inference ======================
else:
outputs: BaseModelOutputWithPast = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs.last_hidden_state
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
hidden_states = hidden_states[:, slice_indices, :].contiguous()
fuse_linear_and_cross_entropy = self.config.fuse_cross_entropy and self.training
if fuse_linear_and_cross_entropy:
logits = None
else:
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
loss_fct = nn.CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
output = CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
if self.training and compute_rl_loss:
output.entropy = entropy
output.kl_loss = kl_loss_value if "kl_loss_value" in locals() else torch.tensor(0.0, device=input_ids.device)
return output
__all__ = [
"SDARForCausalLM",
"SDARModel",
"SDARPreTrainedModel",
] |