CancerAtHomeV2 / backend /pipeline /blast_runner.py
Mentors4EDU's picture
Upload 33 files
7a92197 verified
"""
BLAST Integration
Sequence alignment and homology searching
"""
from pathlib import Path
from typing import Dict, List, Optional
import subprocess
import yaml
import logging
from Bio import SeqIO
from Bio.Blast import NCBIXML
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class BLASTRunner:
"""Run BLAST searches for sequence alignment"""
def __init__(self, config_path: str = "config.yml"):
with open(config_path, 'r') as f:
self.config = yaml.safe_load(f)['pipeline']['blast']
self.database = self.config.get('database', 'nt')
self.evalue = self.config.get('evalue', 0.001)
self.num_threads = self.config.get('num_threads', 4)
self.output_dir = Path(self.config['output_dir'])
self.output_dir.mkdir(parents=True, exist_ok=True)
def run_blastn(
self,
query_file: Path,
output_file: Optional[Path] = None,
max_targets: int = 10
) -> Optional[Path]:
"""
Run BLASTN for nucleotide sequences
Args:
query_file: Input FASTA file with query sequences
output_file: Output XML file
max_targets: Maximum number of target sequences
Returns:
Path to output file or None if failed
"""
if output_file is None:
output_file = self.output_dir / f"{query_file.stem}_blastn.xml"
cmd = [
'blastn',
'-query', str(query_file),
'-db', self.database,
'-out', str(output_file),
'-evalue', str(self.evalue),
'-num_threads', str(self.num_threads),
'-max_target_seqs', str(max_targets),
'-outfmt', '5' # XML format
]
try:
logger.info(f"Running BLASTN on {query_file.name}")
result = subprocess.run(cmd, capture_output=True, text=True, check=True)
logger.info(f"BLASTN completed: {output_file}")
return output_file
except subprocess.CalledProcessError as e:
logger.error(f"BLASTN failed: {e.stderr}")
return None
except FileNotFoundError:
logger.warning("BLASTN not found - creating simulated results")
return self._simulate_blast_results(query_file, output_file)
def run_blastp(
self,
query_file: Path,
output_file: Optional[Path] = None,
max_targets: int = 10
) -> Optional[Path]:
"""
Run BLASTP for protein sequences
Args:
query_file: Input FASTA file with protein sequences
output_file: Output XML file
max_targets: Maximum number of target sequences
"""
if output_file is None:
output_file = self.output_dir / f"{query_file.stem}_blastp.xml"
cmd = [
'blastp',
'-query', str(query_file),
'-db', 'nr', # Non-redundant protein database
'-out', str(output_file),
'-evalue', str(self.evalue),
'-num_threads', str(self.num_threads),
'-max_target_seqs', str(max_targets),
'-outfmt', '5'
]
try:
logger.info(f"Running BLASTP on {query_file.name}")
subprocess.run(cmd, capture_output=True, text=True, check=True)
logger.info(f"BLASTP completed: {output_file}")
return output_file
except subprocess.CalledProcessError as e:
logger.error(f"BLASTP failed: {e.stderr}")
return None
except FileNotFoundError:
logger.warning("BLASTP not found - creating simulated results")
return self._simulate_blast_results(query_file, output_file)
def _simulate_blast_results(self, query_file: Path, output_file: Path) -> Path:
"""Create simulated BLAST results for demo purposes"""
with open(output_file, 'w') as f:
f.write("""<?xml version="1.0"?>
<!DOCTYPE BlastOutput PUBLIC "-//NCBI//NCBI BlastOutput/EN" "http://www.ncbi.nlm.nih.gov/dtd/NCBI_BlastOutput.dtd">
<BlastOutput>
<BlastOutput_program>blastn</BlastOutput_program>
<BlastOutput_version>BLASTN 2.14.0+</BlastOutput_version>
<BlastOutput_reference>Simulated results for demo</BlastOutput_reference>
<BlastOutput_db>nt</BlastOutput_db>
<BlastOutput_query-ID>Query_1</BlastOutput_query-ID>
<BlastOutput_query-def>Sample sequence</BlastOutput_query-def>
<BlastOutput_query-len>100</BlastOutput_query-len>
<BlastOutput_iterations>
<Iteration>
<Iteration_iter-num>1</Iteration_iter-num>
<Iteration_query-ID>Query_1</Iteration_query-ID>
<Iteration_query-def>Sample sequence</Iteration_query-def>
<Iteration_query-len>100</Iteration_query-len>
<Iteration_hits>
</Iteration_hits>
</Iteration>
</BlastOutput_iterations>
</BlastOutput>
""")
return output_file
def parse_results(self, blast_output: Path) -> List[Dict]:
"""
Parse BLAST XML output
Returns:
List of hit dictionaries
"""
hits = []
try:
with open(blast_output, 'r') as f:
blast_records = NCBIXML.parse(f)
for blast_record in blast_records:
for alignment in blast_record.alignments:
for hsp in alignment.hsps:
hit = {
'query': blast_record.query,
'hit_id': alignment.hit_id,
'hit_def': alignment.hit_def,
'length': alignment.length,
'e_value': hsp.expect,
'score': hsp.score,
'identities': hsp.identities,
'positives': hsp.positives,
'gaps': hsp.gaps,
'query_start': hsp.query_start,
'query_end': hsp.query_end,
'hit_start': hsp.sbjct_start,
'hit_end': hsp.sbjct_end,
'alignment_length': hsp.align_length
}
hits.append(hit)
logger.info(f"Parsed {len(hits)} BLAST hits")
return hits
except Exception as e:
logger.error(f"Error parsing BLAST results: {e}")
return []
def filter_hits(
self,
hits: List[Dict],
min_identity: float = 0.9,
max_evalue: float = 0.001
) -> List[Dict]:
"""
Filter BLAST hits by identity and e-value
Args:
hits: List of hit dictionaries
min_identity: Minimum identity percentage (0-1)
max_evalue: Maximum e-value threshold
"""
filtered = []
for hit in hits:
identity_pct = hit['identities'] / hit['alignment_length']
if identity_pct >= min_identity and hit['e_value'] <= max_evalue:
hit['identity_pct'] = identity_pct
filtered.append(hit)
logger.info(f"Filtered to {len(filtered)} high-quality hits")
return filtered
class SequenceAligner:
"""Sequence alignment utilities"""
def __init__(self):
self.blast_runner = BLASTRunner()
def align_to_reference(
self,
query_sequences: Path,
reference_db: str = 'nt'
) -> Dict:
"""
Align query sequences to reference database
Returns:
Alignment results and statistics
"""
# Run BLAST
blast_output = self.blast_runner.run_blastn(query_sequences)
if blast_output is None:
return {'error': 'BLAST search failed'}
# Parse results
hits = self.blast_runner.parse_results(blast_output)
# Calculate statistics
stats = {
'total_queries': 0,
'queries_with_hits': 0,
'total_hits': len(hits),
'avg_identity': 0,
'avg_evalue': 0
}
if hits:
stats['avg_identity'] = sum(h.get('identity_pct', 0) for h in hits) / len(hits)
stats['avg_evalue'] = sum(h['e_value'] for h in hits) / len(hits)
return {
'statistics': stats,
'hits': hits,
'output_file': str(blast_output)
}
def find_homologs(
self,
sequence_file: Path,
min_identity: float = 0.8
) -> List[Dict]:
"""
Find homologous sequences
Args:
sequence_file: Input FASTA file
min_identity: Minimum identity threshold
"""
blast_output = self.blast_runner.run_blastn(sequence_file)
if blast_output:
hits = self.blast_runner.parse_results(blast_output)
return self.blast_runner.filter_hits(hits, min_identity=min_identity)
return []