# Changelog All notable changes to Cancer@Home v2 will be documented in this file. ## [2.0.0] - 2025-11-19 ### 🎉 Initial Release #### Added - **Core Infrastructure** - FastAPI backend with REST and GraphQL APIs - Neo4j graph database integration - Docker Compose setup for easy deployment - Python virtual environment configuration - Comprehensive YAML-based configuration system - **BOINC Integration** - Distributed computing task submission - Task status monitoring and tracking - Support for variant calling, BLAST, and alignment tasks - Task statistics and performance metrics - JSON-based task persistence - **GDC Data Portal Integration** - API client for GDC cancer data - File search and download capabilities - Support for TCGA and TARGET projects - MAF and VCF file parsers - Clinical data extraction - **Bioinformatics Pipeline** - FASTQ quality control and filtering - Adapter trimming - BLAST sequence alignment (BLASTN/BLASTP) - Variant calling from sequencing data - Cancer variant identification - Tumor mutation burden calculation - **Neo4j Graph Database** - Comprehensive graph schema (Genes, Mutations, Patients, Cancer Types) - Repository pattern for data access - GraphQL schema with flexible querying - Sample dataset with 7 genes, 5 mutations, 5 patients, 4 cancer types - Optimized with constraints and indexes - **Web Dashboard** - Modern, responsive HTML5/CSS3/JavaScript interface - 5 main sections: Dashboard, Neo4j Visualization, BOINC Tasks, GDC Data, Pipeline - Interactive D3.js graph visualization - Chart.js analytics and statistics - Real-time data updates - Clean gradient-based design - **API Endpoints** - `/api/health` - System health check - `/api/neo4j/summary` - Database statistics - `/api/neo4j/genes/{symbol}` - Gene information - `/api/boinc/*` - BOINC task management - `/api/gdc/*` - GDC data access - `/api/pipeline/*` - Bioinformatics tools - `/graphql` - GraphQL playground - `/docs` - Swagger API documentation - **Documentation** - Comprehensive README with installation guide - Quick start guide (QUICKSTART.md) - Detailed user guide (USER_GUIDE.md) - GraphQL query examples (GRAPHQL_EXAMPLES.md) - Architecture documentation (ARCHITECTURE.md) - Project summary (PROJECT_SUMMARY.md) - MIT License - **Setup & Deployment** - Automated Windows setup script (setup.ps1) - Automated Linux/Mac setup script (setup.sh) - One-command application launcher (run.py) - Rich terminal output with progress tracking - Automatic directory structure creation - Database schema initialization - **Testing** - Comprehensive test suite (test_cancer_at_home.py) - Module import tests - Integration tests - Directory structure validation #### Features Highlights ✓ **Easy Installation**: 5-minute setup with automated scripts ✓ **Interactive Dashboard**: Modern web UI with real-time updates ✓ **Graph Visualization**: Neo4j-powered relationship mapping ✓ **Flexible Querying**: Both REST and GraphQL APIs ✓ **Distributed Computing**: BOINC integration for heavy workloads ✓ **Real Data**: GDC Portal integration for cancer genomics ✓ **Bioinformatics**: Complete FASTQ → BLAST → VCF pipeline ✓ **Well Documented**: 7 documentation files covering all aspects ✓ **Production Ready**: Error handling, logging, configuration #### Technical Specifications - **Python**: 3.8+ - **Neo4j**: 5.13 Community Edition - **FastAPI**: 0.104.1 - **Docker**: Latest - **Supported OS**: Windows, Linux, macOS #### Sample Data Included **Genes**: TP53, BRAF, BRCA1, BRCA2, PIK3CA, KRAS, EGFR **Cancer Types**: Breast Cancer, Lung Adenocarcinoma, Colon Adenocarcinoma, Glioblastoma **Projects**: TCGA-BRCA, TCGA-LUAD, TCGA-COAD, TCGA-GBM, TARGET-AML --- ## Version Numbering This project follows [Semantic Versioning](https://semver.org/): - **MAJOR**: Incompatible API changes - **MINOR**: New functionality, backwards compatible - **PATCH**: Bug fixes, backwards compatible --- ## Future Roadmap ### Planned Features (v2.1.0) - [ ] Machine learning for mutation prediction - [ ] Multi-omics data integration (RNA-seq, proteomics) - [ ] Advanced graph algorithms (PageRank, community detection) - [ ] Export and report generation (PDF, Excel) - [ ] User authentication and authorization - [ ] Data caching for improved performance ### Planned Features (v2.2.0) - [ ] Survival analysis and clinical outcomes - [ ] Drug response prediction - [ ] Mobile-responsive design improvements - [ ] Real-time collaboration features - [ ] Batch data import wizard - [ ] Advanced search and filtering ### Long-term Goals - [ ] Cloud deployment support (AWS, Azure, GCP) - [ ] Kubernetes orchestration - [ ] Microservices architecture - [ ] Real-time BOINC cluster management - [ ] Integration with additional data sources - [ ] AI-powered data analysis --- ## Contributing Contributions are welcome! Please see CONTRIBUTING.md (to be created) for guidelines. --- ## Support For issues, questions, or suggestions: - Check the documentation first - Review logs in `logs/cancer_at_home.log` - Open a GitHub issue (if applicable) --- ## Acknowledgments Built with inspiration from: - Cancer@Home v1 (HeroX DCx Challenge) - Andrew Kamal's Neo4j Cancer Visualization Dashboard - The Cancer Genome Atlas (TCGA) Project - BOINC Project at UC Berkeley Data provided by: - Genomic Data Commons (GDC) Portal - National Cancer Institute (NCI) - The Cancer Genome Atlas Program --- **Cancer@Home v2** - Making cancer genomics research accessible, distributed, and visual.