--- library_name: peft license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: emotion-model2_0 results: [] --- # emotion-model2_0 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.9084 - Accuracy: 0.6936 - F1: 0.6742 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.3859 | 1.0 | 59 | 1.3517 | 0.3532 | 0.3095 | | 1.3202 | 2.0 | 118 | 1.2139 | 0.4638 | 0.3687 | | 1.2606 | 3.0 | 177 | 1.1094 | 0.4851 | 0.3847 | | 1.1821 | 4.0 | 236 | 1.0527 | 0.6213 | 0.6134 | | 1.1665 | 5.0 | 295 | 0.9899 | 0.6638 | 0.6531 | | 1.0941 | 6.0 | 354 | 0.9975 | 0.6043 | 0.5800 | | 1.0943 | 7.0 | 413 | 0.9871 | 0.6085 | 0.5815 | | 1.0671 | 8.0 | 472 | 0.9084 | 0.6936 | 0.6742 | | 1.0401 | 9.0 | 531 | 0.9085 | 0.6681 | 0.6488 | | 1.0221 | 10.0 | 590 | 0.9170 | 0.6681 | 0.6488 | ### Framework versions - PEFT 0.15.2 - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1