Upload folder using huggingface_hub
Browse files- __init__.py +5 -0
- config.json +9 -0
- config.py +32 -0
- pfsq.py +234 -0
- plpq.py +196 -0
- wavelet.py +167 -0
__init__.py
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
from .plpq import PLPQ
|
| 3 |
+
from .pfsq import PFSQ
|
| 4 |
+
from .config import PLPQConfig
|
| 5 |
+
from .wavelet import WaveletTransform
|
config.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "StanfordNeuroAILab/PLPQ",
|
| 3 |
+
"architectures": ["PLPQ"],
|
| 4 |
+
"auto_map": {
|
| 5 |
+
"AutoConfig": "config.PLPQConfig",
|
| 6 |
+
"AutoModel": "plpq.PLPQ"
|
| 7 |
+
},
|
| 8 |
+
"model_type": "PLPQ"
|
| 9 |
+
}
|
config.py
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
from typing import Tuple, List
|
| 3 |
+
from transformers import PretrainedConfig
|
| 4 |
+
|
| 5 |
+
class PLPQConfig(PretrainedConfig):
|
| 6 |
+
model_type: str = "PLPQ"
|
| 7 |
+
def __init__(self,
|
| 8 |
+
image_size: List[int, int],
|
| 9 |
+
patch_size: int,
|
| 10 |
+
dropout: float,
|
| 11 |
+
vocab_size: int,
|
| 12 |
+
levels: List[int],
|
| 13 |
+
num_quantizers: int,
|
| 14 |
+
num_in_channels: int,
|
| 15 |
+
num_out_channels: int,
|
| 16 |
+
use_wavelets: bool,
|
| 17 |
+
encoder_blocks: List[List],
|
| 18 |
+
decoder_blocks: List[List],
|
| 19 |
+
**kwargs
|
| 20 |
+
):
|
| 21 |
+
image_size = image_size
|
| 22 |
+
patch_size = patch_size
|
| 23 |
+
dropout = dropout
|
| 24 |
+
vocab_size = vocab_size
|
| 25 |
+
levels = levels
|
| 26 |
+
num_quantizers = num_quantizers
|
| 27 |
+
num_in_channels = num_in_channels
|
| 28 |
+
num_out_channels = num_out_channels
|
| 29 |
+
use_wavelets = use_wavelets
|
| 30 |
+
encoder_blocks = encoder_blocks
|
| 31 |
+
decoder_blocks = decoder_blocks
|
| 32 |
+
super.__init__(**kwargs)
|
pfsq.py
ADDED
|
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Finite Scalar Quantization: VQ-VAE Made Simple - https://arxiv.org/abs/2309.15505
|
| 3 |
+
Code adapted from Jax version in Appendix A.1
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
from __future__ import annotations
|
| 7 |
+
from functools import wraps, partial
|
| 8 |
+
from contextlib import nullcontext
|
| 9 |
+
from typing import List, Tuple
|
| 10 |
+
|
| 11 |
+
import torch
|
| 12 |
+
import torch.nn as nn
|
| 13 |
+
from torch.nn import Module
|
| 14 |
+
from torch import Tensor, int32
|
| 15 |
+
from torch.cuda.amp import autocast
|
| 16 |
+
|
| 17 |
+
from einops import rearrange, pack, unpack
|
| 18 |
+
|
| 19 |
+
# helper functions
|
| 20 |
+
|
| 21 |
+
def exists(v):
|
| 22 |
+
return v is not None
|
| 23 |
+
|
| 24 |
+
def default(*args):
|
| 25 |
+
for arg in args:
|
| 26 |
+
if exists(arg):
|
| 27 |
+
return arg
|
| 28 |
+
return None
|
| 29 |
+
|
| 30 |
+
def maybe(fn):
|
| 31 |
+
@wraps(fn)
|
| 32 |
+
def inner(x, *args, **kwargs):
|
| 33 |
+
if not exists(x):
|
| 34 |
+
return x
|
| 35 |
+
return fn(x, *args, **kwargs)
|
| 36 |
+
return inner
|
| 37 |
+
|
| 38 |
+
def pack_one(t, pattern):
|
| 39 |
+
return pack([t], pattern)
|
| 40 |
+
|
| 41 |
+
def unpack_one(t, ps, pattern):
|
| 42 |
+
return unpack(t, ps, pattern)[0]
|
| 43 |
+
|
| 44 |
+
# tensor helpers
|
| 45 |
+
|
| 46 |
+
def round_ste(z: Tensor) -> Tensor:
|
| 47 |
+
"""Round with straight through gradients."""
|
| 48 |
+
zhat = z.round()
|
| 49 |
+
return z + (zhat - z).detach()
|
| 50 |
+
|
| 51 |
+
# main class
|
| 52 |
+
|
| 53 |
+
class PFSQ(Module):
|
| 54 |
+
def __init__(
|
| 55 |
+
self,
|
| 56 |
+
levels: List[int],
|
| 57 |
+
dim: int | None = None,
|
| 58 |
+
num_codebooks = 1,
|
| 59 |
+
keep_num_codebooks_dim: bool | None = None,
|
| 60 |
+
scale: float | None = None,
|
| 61 |
+
allowed_dtypes: Tuple[torch.dtype, ...] = (torch.float32, torch.float64),
|
| 62 |
+
channel_first: bool = False,
|
| 63 |
+
projection_has_bias: bool = True,
|
| 64 |
+
return_indices = True,
|
| 65 |
+
force_quantization_f32 = True
|
| 66 |
+
):
|
| 67 |
+
super().__init__()
|
| 68 |
+
_levels = torch.tensor(levels, dtype=int32)
|
| 69 |
+
self.register_buffer("_levels", _levels, persistent = False)
|
| 70 |
+
|
| 71 |
+
_basis = torch.cumprod(torch.tensor([1] + levels[:-1]), dim=0, dtype=int32)
|
| 72 |
+
self.register_buffer("_basis", _basis, persistent = False)
|
| 73 |
+
|
| 74 |
+
self.scale = scale
|
| 75 |
+
|
| 76 |
+
codebook_dim = len(levels)
|
| 77 |
+
self.codebook_dim = codebook_dim
|
| 78 |
+
|
| 79 |
+
effective_codebook_dim = codebook_dim * num_codebooks
|
| 80 |
+
self.num_codebooks = num_codebooks
|
| 81 |
+
self.effective_codebook_dim = effective_codebook_dim
|
| 82 |
+
|
| 83 |
+
keep_num_codebooks_dim = default(keep_num_codebooks_dim, num_codebooks > 1)
|
| 84 |
+
assert not (num_codebooks > 1 and not keep_num_codebooks_dim)
|
| 85 |
+
self.keep_num_codebooks_dim = keep_num_codebooks_dim
|
| 86 |
+
|
| 87 |
+
self.dim = default(dim, len(_levels) * num_codebooks)
|
| 88 |
+
|
| 89 |
+
self.channel_first = channel_first
|
| 90 |
+
|
| 91 |
+
has_projections = self.dim != effective_codebook_dim
|
| 92 |
+
self.project_in = nn.Linear(self.dim, effective_codebook_dim, bias = projection_has_bias) if has_projections else nn.Identity()
|
| 93 |
+
self.project_out = nn.Linear(effective_codebook_dim, self.dim, bias = projection_has_bias) if has_projections else nn.Identity()
|
| 94 |
+
|
| 95 |
+
self.has_projections = has_projections
|
| 96 |
+
|
| 97 |
+
self.return_indices = return_indices
|
| 98 |
+
if return_indices:
|
| 99 |
+
self.codebook_size = self._levels.prod().item()
|
| 100 |
+
implicit_codebook = self._indices_to_codes(torch.arange(self.codebook_size))
|
| 101 |
+
self.register_buffer("implicit_codebook", implicit_codebook, persistent = False)
|
| 102 |
+
|
| 103 |
+
self.allowed_dtypes = allowed_dtypes
|
| 104 |
+
self.force_quantization_f32 = force_quantization_f32
|
| 105 |
+
|
| 106 |
+
def bound(self, z, eps: float = 1e-3):
|
| 107 |
+
""" Bound `z`, an array of shape (..., d). """
|
| 108 |
+
half_l = (self._levels - 1) * (1 + eps) / 2
|
| 109 |
+
offset = torch.where(self._levels % 2 == 0, 0.5, 0.0)
|
| 110 |
+
shift = (offset / half_l).atanh()
|
| 111 |
+
return (z + shift).tanh() * half_l - offset
|
| 112 |
+
|
| 113 |
+
def quantize(self, z):
|
| 114 |
+
""" Quantizes z, returns quantized zhat, same shape as z. """
|
| 115 |
+
quantized = round_ste(self.bound(z))
|
| 116 |
+
half_width = self._levels // 2 # Renormalize to [-1, 1].
|
| 117 |
+
return quantized / half_width
|
| 118 |
+
|
| 119 |
+
def _scale_and_shift(self, zhat_normalized):
|
| 120 |
+
half_width = self._levels // 2
|
| 121 |
+
return (zhat_normalized * half_width) + half_width
|
| 122 |
+
|
| 123 |
+
def _scale_and_shift_inverse(self, zhat):
|
| 124 |
+
half_width = self._levels // 2
|
| 125 |
+
return (zhat - half_width) / half_width
|
| 126 |
+
|
| 127 |
+
def _indices_to_codes(self, indices):
|
| 128 |
+
level_indices = self.indices_to_level_indices(indices)
|
| 129 |
+
codes = self._scale_and_shift_inverse(level_indices)
|
| 130 |
+
return codes
|
| 131 |
+
|
| 132 |
+
def codes_to_indices(self, zhat):
|
| 133 |
+
""" Converts a `code` to an index in the codebook. """
|
| 134 |
+
assert zhat.shape[-1] == self.codebook_dim
|
| 135 |
+
zhat = self._scale_and_shift(zhat)
|
| 136 |
+
return (zhat * self._basis).sum(dim=-1).to(int32)
|
| 137 |
+
|
| 138 |
+
def indices_to_level_indices(self, indices):
|
| 139 |
+
""" Converts indices to indices at each level, perhaps needed for a transformer with factorized embeddings """
|
| 140 |
+
indices = rearrange(indices, '... -> ... 1')
|
| 141 |
+
codes_non_centered = (indices // self._basis) % self._levels
|
| 142 |
+
return codes_non_centered
|
| 143 |
+
|
| 144 |
+
def indices_to_codes(self, indices, return_first=False):
|
| 145 |
+
""" Inverse of `codes_to_indices`. """
|
| 146 |
+
assert exists(indices)
|
| 147 |
+
|
| 148 |
+
n_codes = indices.shape[-1]
|
| 149 |
+
|
| 150 |
+
is_img_or_video = indices.ndim >= (3 + int(self.keep_num_codebooks_dim))
|
| 151 |
+
|
| 152 |
+
codes = self._indices_to_codes(indices)
|
| 153 |
+
|
| 154 |
+
if self.keep_num_codebooks_dim:
|
| 155 |
+
codes = rearrange(codes, '... c d -> ... (c d)')
|
| 156 |
+
|
| 157 |
+
if n_codes == 1:
|
| 158 |
+
return codes
|
| 159 |
+
|
| 160 |
+
codes = self.project_out(codes)
|
| 161 |
+
|
| 162 |
+
if is_img_or_video or self.channel_first:
|
| 163 |
+
codes = rearrange(codes, 'b ... d -> b d ...')
|
| 164 |
+
|
| 165 |
+
return codes
|
| 166 |
+
|
| 167 |
+
@autocast(enabled = False)
|
| 168 |
+
def forward(self, z):
|
| 169 |
+
"""
|
| 170 |
+
einstein notation
|
| 171 |
+
b - batch
|
| 172 |
+
n - sequence (or flattened spatial dimensions)
|
| 173 |
+
d - feature dimension
|
| 174 |
+
c - number of codebook dim
|
| 175 |
+
"""
|
| 176 |
+
|
| 177 |
+
is_img_or_video = z.ndim >= 4
|
| 178 |
+
need_move_channel_last = is_img_or_video or self.channel_first
|
| 179 |
+
|
| 180 |
+
# standardize image or video into (batch, seq, dimension)
|
| 181 |
+
|
| 182 |
+
if need_move_channel_last:
|
| 183 |
+
z = rearrange(z, 'b d ... -> b ... d')
|
| 184 |
+
z, ps = pack_one(z, 'b * d')
|
| 185 |
+
|
| 186 |
+
assert z.shape[-1] == self.dim, f'expected dimension of {self.dim} but found dimension of {z.shape[-1]}'
|
| 187 |
+
|
| 188 |
+
z = self.project_in(z)
|
| 189 |
+
|
| 190 |
+
z = rearrange(z, 'b n (c d) -> b n c d', c = self.num_codebooks)
|
| 191 |
+
|
| 192 |
+
# whether to force quantization step to be full precision or not
|
| 193 |
+
|
| 194 |
+
force_f32 = self.force_quantization_f32
|
| 195 |
+
quantization_context = partial(autocast, enabled = False) if force_f32 else nullcontext
|
| 196 |
+
|
| 197 |
+
with quantization_context():
|
| 198 |
+
orig_dtype = z.dtype
|
| 199 |
+
|
| 200 |
+
if force_f32 and orig_dtype not in self.allowed_dtypes:
|
| 201 |
+
z = z.float()
|
| 202 |
+
|
| 203 |
+
codes = self.quantize(z)
|
| 204 |
+
|
| 205 |
+
# returning indices could be optional
|
| 206 |
+
|
| 207 |
+
indices = None
|
| 208 |
+
|
| 209 |
+
if self.return_indices:
|
| 210 |
+
indices = self.codes_to_indices(codes)
|
| 211 |
+
|
| 212 |
+
first_codes = codes[:, :, 0, :] # first codebook
|
| 213 |
+
codes = rearrange(codes, 'b n c d -> b n (c d)')
|
| 214 |
+
|
| 215 |
+
codes = codes.type(orig_dtype)
|
| 216 |
+
first_codes = first_codes.type(orig_dtype)
|
| 217 |
+
|
| 218 |
+
# project out
|
| 219 |
+
out = self.project_out(codes)
|
| 220 |
+
|
| 221 |
+
# reconstitute image or video dimensions
|
| 222 |
+
|
| 223 |
+
if need_move_channel_last:
|
| 224 |
+
out = unpack_one(out, ps, 'b * d')
|
| 225 |
+
out = rearrange(out, 'b ... d -> b d ...')
|
| 226 |
+
|
| 227 |
+
indices = maybe(unpack_one)(indices, ps, 'b * c')
|
| 228 |
+
|
| 229 |
+
if not self.keep_num_codebooks_dim and self.return_indices:
|
| 230 |
+
indices = maybe(rearrange)(indices, '... 1 -> ...')
|
| 231 |
+
|
| 232 |
+
# return quantized output and indices
|
| 233 |
+
|
| 234 |
+
return out, first_codes, indices
|
plpq.py
ADDED
|
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
from transformers import PreTrainedModel
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
import math
|
| 7 |
+
|
| 8 |
+
from .wavelet import WaveletTransform
|
| 9 |
+
from .pfsq import PFSQ
|
| 10 |
+
from .config import PLPQConfig
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class PLPQ(PreTrainedModel):
|
| 14 |
+
"""
|
| 15 |
+
Pyramidal Local Patch Quantizer
|
| 16 |
+
"""
|
| 17 |
+
config_class = PLPQConfig
|
| 18 |
+
|
| 19 |
+
def __init__(self, config):
|
| 20 |
+
super().__init__(config)
|
| 21 |
+
self.config = config
|
| 22 |
+
|
| 23 |
+
if config.__dict__.get('use_wavelets', False):
|
| 24 |
+
wavelets = WaveletTransform(patch_size=config.patch_size)
|
| 25 |
+
wavelet_channels = wavelets.num_transformed_channels(config.num_in_channels)
|
| 26 |
+
in_proj = nn.Sequential(
|
| 27 |
+
wavelets,
|
| 28 |
+
nn.Conv2d(
|
| 29 |
+
wavelet_channels, config.encoder_blocks[0][1],
|
| 30 |
+
kernel_size=1, stride=1 # keep fully local
|
| 31 |
+
)
|
| 32 |
+
)
|
| 33 |
+
out_proj = nn.Sequential(
|
| 34 |
+
nn.Conv2d(
|
| 35 |
+
config.decoder_blocks[-1][2], wavelet_channels,
|
| 36 |
+
kernel_size=3, stride=1, padding=1
|
| 37 |
+
),
|
| 38 |
+
WaveletTransform(patch_size=config.patch_size, inverse=True)
|
| 39 |
+
)
|
| 40 |
+
else:
|
| 41 |
+
in_proj = nn.Conv2d(
|
| 42 |
+
config.num_in_channels, config.encoder_blocks[0][1],
|
| 43 |
+
kernel_size=config.patch_size, stride=config.patch_size
|
| 44 |
+
)
|
| 45 |
+
out_proj = nn.Conv2d(
|
| 46 |
+
config.decoder_blocks[-1][2], config.num_out_channels,
|
| 47 |
+
kernel_size=3, stride=1, padding=1
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
self.encoder = nn.Sequential(
|
| 51 |
+
in_proj,
|
| 52 |
+
nn.SiLU(),
|
| 53 |
+
*[
|
| 54 |
+
PatchResidualConvBlock(*block_params[1:]) if block_params[0] == "ResBlock" else Downsample(*block_params[1:])
|
| 55 |
+
for block_params in config.encoder_blocks
|
| 56 |
+
]
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
# Pyramidal Quantizer
|
| 60 |
+
self.quantizer = PFSQ(
|
| 61 |
+
levels = config.levels, # number of levels for each codebook
|
| 62 |
+
num_codebooks = config.num_quantizers, # number of quantizers
|
| 63 |
+
dim = config.encoder_blocks[-1][2], # this is the input feature dimension, defaults to log2(codebook_size) if not defined
|
| 64 |
+
)
|
| 65 |
+
|
| 66 |
+
# coarse decoder output -> 32x32 supervision
|
| 67 |
+
self.coarse_decoder = nn.Conv2d(len(config.levels), config.num_out_channels, kernel_size=1, stride=1)
|
| 68 |
+
|
| 69 |
+
self.decoder = nn.Sequential(
|
| 70 |
+
*[
|
| 71 |
+
PatchResidualConvBlock(*block_params[1:]) if block_params[0] == "ResBlock" else Upsample(*block_params[1:])
|
| 72 |
+
for block_params in config.decoder_blocks
|
| 73 |
+
],
|
| 74 |
+
out_proj
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def get_num_params(self) -> int:
|
| 79 |
+
"""
|
| 80 |
+
Return the number of parameters in the model.
|
| 81 |
+
"""
|
| 82 |
+
return sum(p.numel() for p in self.parameters())
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
@torch.no_grad()
|
| 86 |
+
def quantize(self, x: torch.Tensor) -> torch.Tensor:
|
| 87 |
+
"""
|
| 88 |
+
Quantize the input tensor
|
| 89 |
+
Parameters:
|
| 90 |
+
x (torch.Tensor): The input tensor. Size b, c, h, w
|
| 91 |
+
Returns:
|
| 92 |
+
torch.Tensor: The indices tensor. Size b, h, w
|
| 93 |
+
"""
|
| 94 |
+
# encode the input
|
| 95 |
+
z = self.encoder(x).permute(0, 2, 3, 1).contiguous()
|
| 96 |
+
# reshape the input
|
| 97 |
+
b, h, w, c = z.shape
|
| 98 |
+
z = z.view(b, h * w, -1)
|
| 99 |
+
|
| 100 |
+
# quantize the input
|
| 101 |
+
quantized, coarse_quantized, all_codes = self.quantizer(z)
|
| 102 |
+
|
| 103 |
+
return all_codes
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
@torch.no_grad()
|
| 107 |
+
def decode(self, indices: torch.Tensor) -> torch.Tensor:
|
| 108 |
+
"""
|
| 109 |
+
Parameters:
|
| 110 |
+
indices: torch.Tensor of shape (b, t, n_freq_bins)
|
| 111 |
+
Returns:
|
| 112 |
+
emb: torch.Tensor of shape (b, t, n_embd)
|
| 113 |
+
"""
|
| 114 |
+
|
| 115 |
+
ncodes = indices.shape[-1]
|
| 116 |
+
emb = self.quantizer.indices_to_codes(indices).squeeze(-1)
|
| 117 |
+
|
| 118 |
+
# reshape [b t c] -> [b c h w]
|
| 119 |
+
b, h, w = emb.size(0), int(math.sqrt(emb.size(1))), int(math.sqrt(emb.size(1)))
|
| 120 |
+
emb = emb.permute(0, 2, 1).view(b, -1, h, w).contiguous()
|
| 121 |
+
|
| 122 |
+
if ncodes == 1:
|
| 123 |
+
pred = self.coarse_decoder(emb)
|
| 124 |
+
return pred
|
| 125 |
+
|
| 126 |
+
# full decoder: full image prediction
|
| 127 |
+
pred = self.decoder(emb)
|
| 128 |
+
|
| 129 |
+
return pred
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
class LayerNorm(nn.Module):
|
| 134 |
+
""" LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False """
|
| 135 |
+
|
| 136 |
+
def __init__(self, ndim, bias):
|
| 137 |
+
super().__init__()
|
| 138 |
+
self.weight = nn.Parameter(torch.ones(ndim))
|
| 139 |
+
self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None
|
| 140 |
+
|
| 141 |
+
def forward(self, input):
|
| 142 |
+
return F.layer_norm(input, self.weight.shape, self.weight, self.bias, 1e-5)
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
class PatchResidualConvBlock(nn.Module):
|
| 147 |
+
|
| 148 |
+
def __init__(self, in_dim, out_dim, hidden_dim, kernel_size, stride, padding, dorpout=0.1) -> None:
|
| 149 |
+
super().__init__()
|
| 150 |
+
self.nonlinearity = nn.SiLU()
|
| 151 |
+
self.ln1 = LayerNorm(in_dim, bias=True)
|
| 152 |
+
self.dropout = nn.Dropout(dorpout)
|
| 153 |
+
self.conv1 = nn.Conv2d(in_dim, hidden_dim, kernel_size=kernel_size, stride=stride, padding=padding)
|
| 154 |
+
self.conv2 = nn.Conv2d(hidden_dim, out_dim, kernel_size=kernel_size, stride=stride, padding=padding)
|
| 155 |
+
|
| 156 |
+
def forward(self, x):
|
| 157 |
+
b, c, h, w = x.shape
|
| 158 |
+
z = self.ln1(x.permute(0, 2, 3, 1).reshape(b * h * w, c)).reshape(b, h, w, c).permute(0, 3, 1, 2).contiguous()
|
| 159 |
+
z = self.nonlinearity(self.conv1(z))
|
| 160 |
+
z = self.dropout(z)
|
| 161 |
+
z = self.nonlinearity(self.conv2(z))
|
| 162 |
+
return z + x
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
class Upsample(nn.Module):
|
| 167 |
+
def __init__(self, in_channels, out_channels):
|
| 168 |
+
super().__init__()
|
| 169 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
| 170 |
+
out_channels,
|
| 171 |
+
kernel_size=3,
|
| 172 |
+
stride=1,
|
| 173 |
+
padding=1)
|
| 174 |
+
|
| 175 |
+
def forward(self, x):
|
| 176 |
+
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
| 177 |
+
x = self.conv(x)
|
| 178 |
+
return x
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
class Downsample(nn.Module):
|
| 183 |
+
def __init__(self, in_channels, out_channels):
|
| 184 |
+
super().__init__()
|
| 185 |
+
# no asymmetric padding in torch conv, must do it ourselves
|
| 186 |
+
self.conv = torch.nn.Conv2d(in_channels,
|
| 187 |
+
out_channels,
|
| 188 |
+
kernel_size=3,
|
| 189 |
+
stride=2,
|
| 190 |
+
padding=0)
|
| 191 |
+
|
| 192 |
+
def forward(self, x):
|
| 193 |
+
pad = (0,1,0,1)
|
| 194 |
+
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
| 195 |
+
x = self.conv(x)
|
| 196 |
+
return x
|
wavelet.py
ADDED
|
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
import numpy as np
|
| 6 |
+
import math
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class WaveletTransform(nn.Module):
|
| 10 |
+
|
| 11 |
+
def __init__(self, patch_size: int, inverse: bool = False):
|
| 12 |
+
'''
|
| 13 |
+
`patchwise` in forward/invert makes *no difference*; the result
|
| 14 |
+
is numerically identical either way. It's still enabled by default
|
| 15 |
+
in case we pass in a non-square image, which may not be equivalent.
|
| 16 |
+
`reshape` is pretty much useless.
|
| 17 |
+
TODO: Clean up these options.
|
| 18 |
+
'''
|
| 19 |
+
super().__init__()
|
| 20 |
+
self.patch_size = patch_size
|
| 21 |
+
self.inverse = inverse
|
| 22 |
+
# From https://github.com/NVIDIA/Cosmos-Tokenizer/blob/3584ae752ce8ebdbe06a420bf60d7513c0e878cc/cosmos_tokenizer/modules/patching.py#L33
|
| 23 |
+
self.haar = torch.tensor([0.7071067811865476, 0.7071067811865476])
|
| 24 |
+
self.arange = torch.arange(len(self.haar))
|
| 25 |
+
self.steps = int(math.log2(self.patch_size))
|
| 26 |
+
|
| 27 |
+
def num_transformed_channels(self, in_channels: int = 3) -> int:
|
| 28 |
+
'''
|
| 29 |
+
Returns the number of channels to expect in the transformed image
|
| 30 |
+
given the channels in the input image.
|
| 31 |
+
'''
|
| 32 |
+
return in_channels * (4 ** self.steps)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def forward(self, x: torch.Tensor, patchwise: bool = True, reshape: bool = False) -> torch.Tensor:
|
| 36 |
+
if self.inverse:
|
| 37 |
+
return self.invert(x, patchwise=patchwise, from_reshaped=reshape)
|
| 38 |
+
else:
|
| 39 |
+
return self.transform(x, patchwise=patchwise, reshape=reshape)
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def transform(self, x: torch.Tensor, patchwise: bool = True, reshape: bool = False) -> torch.Tensor:
|
| 43 |
+
'''
|
| 44 |
+
### Parameters:
|
| 45 |
+
`x`: ImageNet-normalized images with shape (B C H W)
|
| 46 |
+
`patchwise`: Whether to compute independently on patches
|
| 47 |
+
`reshape`: Reshape the results to match the input HxW
|
| 48 |
+
### Returns:
|
| 49 |
+
If `reshape`, returns (B C H W)
|
| 50 |
+
otherwise, returns (B C*patch_size**2 H/patch_size W/patch_size)
|
| 51 |
+
'''
|
| 52 |
+
p = self.patch_size
|
| 53 |
+
if patchwise:
|
| 54 |
+
# Place patches into batch dimension
|
| 55 |
+
# (B C H W) -> (B*L C H/root(L), W/root(L))
|
| 56 |
+
b, c, h, w = x.shape
|
| 57 |
+
init_b = b
|
| 58 |
+
# (B C H W) -> (B C LH LW P P)
|
| 59 |
+
x = x.reshape(b, c, h//p, p, w//p, p).moveaxis(4,3)
|
| 60 |
+
# (B C LH LW P P) -> (B' C P P)
|
| 61 |
+
x = x.moveaxis(1,3).reshape(-1, c, p, p)
|
| 62 |
+
|
| 63 |
+
for _ in range(self.steps):
|
| 64 |
+
x = self.dwt(x)
|
| 65 |
+
|
| 66 |
+
if patchwise:
|
| 67 |
+
# Extract patches from batch dimension
|
| 68 |
+
# (B' C' 1 1) -> (B LH LW C') -> (B C' LH LW)
|
| 69 |
+
x = x.reshape(init_b, h//p, w//p, -1).moveaxis(3,1)
|
| 70 |
+
if reshape:
|
| 71 |
+
# (B C*patch_size**2 H/patch_size W/patch_size) -> (B C H W)
|
| 72 |
+
b, cp2, hdp, wdp = x.shape
|
| 73 |
+
c, h, w = cp2//(p**2), hdp*p, wdp*p
|
| 74 |
+
x = x.reshape(b, p, p, c, hdp, wdp)
|
| 75 |
+
x = x.moveaxis(3,1).moveaxis(3,4).reshape(b, c, h, w).contiguous()
|
| 76 |
+
return x
|
| 77 |
+
|
| 78 |
+
def invert(self, x: torch.Tensor, patchwise: bool = True, from_reshaped: bool = False) -> torch.Tensor:
|
| 79 |
+
'''
|
| 80 |
+
### Parameters:
|
| 81 |
+
`x`: Wavelet-space input of either (B C H W) (when `from_reshaped=True`) or
|
| 82 |
+
(B C*patch_size**2 H/patch_size W/patch_size)
|
| 83 |
+
`patchwise`: Whether to compute independently on patches
|
| 84 |
+
`from_reshaped`: Determines the shape of `x`; should match the value of `reshape`
|
| 85 |
+
used when calling `forward`
|
| 86 |
+
'''
|
| 87 |
+
p = self.patch_size
|
| 88 |
+
if from_reshaped:
|
| 89 |
+
# (B C H W) -> (B C*patch_size**2 H/patch_size W/patch_size)
|
| 90 |
+
b, c, h, w = x.shape
|
| 91 |
+
cp2, hdp, wdp = c*self.patch_size**2, h//self.patch_size, w//self.patch_size
|
| 92 |
+
x = x.reshape(b, c, self.patch_size, hdp, self.patch_size, wdp)
|
| 93 |
+
x = x.moveaxis(4,3).moveaxis(1,3).reshape(b, cp2, hdp, wdp)
|
| 94 |
+
if patchwise:
|
| 95 |
+
# Put patches into batch dimension
|
| 96 |
+
# (B C' LH LW) -> (B LH LW C') -> (B' C' 1 1)
|
| 97 |
+
init_b, lh, lw = x.shape[0], x.shape[2], x.shape[3]
|
| 98 |
+
x = x.moveaxis(1,3).reshape(-1, x.shape[1], 1, 1)
|
| 99 |
+
|
| 100 |
+
for _ in range(self.steps):
|
| 101 |
+
x = self.idwt(x)
|
| 102 |
+
|
| 103 |
+
if patchwise:
|
| 104 |
+
# Extract patches from batch dimension and expand
|
| 105 |
+
# (B' C P P) -> (B C LH LW P P)
|
| 106 |
+
x = x.reshape(init_b, lh, lw, *x.shape[1:]).moveaxis(3,1)
|
| 107 |
+
# (B C LH LW P P) -> (B C H W)
|
| 108 |
+
x = x.moveaxis(3,4).reshape(*x.shape[:2], lh*p, lw*p)
|
| 109 |
+
return x
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
def dwt(self, x: torch.Tensor):
|
| 113 |
+
dtype = x.dtype
|
| 114 |
+
h = self.haar
|
| 115 |
+
|
| 116 |
+
n = h.shape[0]
|
| 117 |
+
g = x.shape[1]
|
| 118 |
+
hl = h.flip(0).reshape(1, 1, -1).repeat(g, 1, 1)
|
| 119 |
+
hh = (h * ((-1) ** self.arange)).reshape(1, 1, -1).repeat(g, 1, 1)
|
| 120 |
+
hh = hh.to(device=x.device, dtype=dtype)
|
| 121 |
+
hl = hl.to(device=x.device, dtype=dtype)
|
| 122 |
+
|
| 123 |
+
x = F.pad(x, pad=(n - 2, n - 1, n - 2, n - 1), mode='reflect').to(dtype)
|
| 124 |
+
xl = F.conv2d(x, hl.unsqueeze(2), groups=g, stride=(1, 2))
|
| 125 |
+
xh = F.conv2d(x, hh.unsqueeze(2), groups=g, stride=(1, 2))
|
| 126 |
+
xll = F.conv2d(xl, hl.unsqueeze(3), groups=g, stride=(2, 1))
|
| 127 |
+
xlh = F.conv2d(xl, hh.unsqueeze(3), groups=g, stride=(2, 1))
|
| 128 |
+
xhl = F.conv2d(xh, hl.unsqueeze(3), groups=g, stride=(2, 1))
|
| 129 |
+
xhh = F.conv2d(xh, hh.unsqueeze(3), groups=g, stride=(2, 1))
|
| 130 |
+
|
| 131 |
+
return 0.5 * torch.cat([xll, xlh, xhl, xhh], dim=1)
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
def idwt(self, x: torch.Tensor):
|
| 135 |
+
dtype = x.dtype
|
| 136 |
+
h = self.haar
|
| 137 |
+
n = h.shape[0]
|
| 138 |
+
|
| 139 |
+
g = x.shape[1] // 4
|
| 140 |
+
hl = h.flip([0]).reshape(1, 1, -1).repeat([g, 1, 1])
|
| 141 |
+
hh = (h * ((-1) ** self.arange)).reshape(1, 1, -1).repeat(g, 1, 1)
|
| 142 |
+
hh = hh.to(device=x.device, dtype=dtype)
|
| 143 |
+
hl = hl.to(device=x.device, dtype=dtype)
|
| 144 |
+
|
| 145 |
+
xll, xlh, xhl, xhh = torch.chunk(x.to(dtype), 4, dim=1)
|
| 146 |
+
|
| 147 |
+
# Inverse transform.
|
| 148 |
+
yl = torch.nn.functional.conv_transpose2d(
|
| 149 |
+
xll, hl.unsqueeze(3), groups=g, stride=(2, 1), padding=(n - 2, 0)
|
| 150 |
+
)
|
| 151 |
+
yl += torch.nn.functional.conv_transpose2d(
|
| 152 |
+
xlh, hh.unsqueeze(3), groups=g, stride=(2, 1), padding=(n - 2, 0)
|
| 153 |
+
)
|
| 154 |
+
yh = torch.nn.functional.conv_transpose2d(
|
| 155 |
+
xhl, hl.unsqueeze(3), groups=g, stride=(2, 1), padding=(n - 2, 0)
|
| 156 |
+
)
|
| 157 |
+
yh += torch.nn.functional.conv_transpose2d(
|
| 158 |
+
xhh, hh.unsqueeze(3), groups=g, stride=(2, 1), padding=(n - 2, 0)
|
| 159 |
+
)
|
| 160 |
+
y = torch.nn.functional.conv_transpose2d(
|
| 161 |
+
yl, hl.unsqueeze(2), groups=g, stride=(1, 2), padding=(0, n - 2)
|
| 162 |
+
)
|
| 163 |
+
y += torch.nn.functional.conv_transpose2d(
|
| 164 |
+
yh, hh.unsqueeze(2), groups=g, stride=(1, 2), padding=(0, n - 2)
|
| 165 |
+
)
|
| 166 |
+
|
| 167 |
+
return 2.0 * y
|