QWen2.5-eval-NEWA800 / remaining_eval_multi_process_get_answer_prompt_data.py
Xin-Rui's picture
Upload folder using huggingface_hub
a80200a verified
import random
import os
import argparse
import time
from vllm import LLM, SamplingParams
from datetime import datetime
from tqdm import tqdm
from transformers import AutoTokenizer, AutoModelForCausalLM
from eval_tools import apply_RL_prompt, solve_final_answer
from evaluate import evaluate
from utils import set_seed, load_jsonl, save_jsonl, construct_prompt
from parser import *
from trajectory import *
from data_loader import load_data
from python_executor import PythonExecutor
from model_utils import load_hf_lm_and_tokenizer, generate_completions
import logging
## 启动logging功能
if not os.path.exists(f'{os.environ["modelname"]}'):
os.mkdir(f'{os.environ["modelname"]}')
if not os.path.exists(f'{os.environ["model"]}'):
os.mkdir(f'{os.environ["model"]}')
DATA_NAME = os.environ["DATA_NAME"]
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S', filename=f'{os.environ["model"]}/{os.environ["mode"]}-{DATA_NAME}.log', filemode='a')
print(f"logging in {os.environ['model']}/{os.environ['mode']}-{DATA_NAME}.log")
logging.info(f"modelname's infor: {os.environ['modelname']}")
logging.info(f"mode's infor: {os.environ['mode']}")
logging.info(f"model's infor: {os.environ['model']}")
with open('./special_tokens.json') as f:
special_tokens = json.load(f)
bins_tokens = [
special_tokens[f"{i}"] for i in range(400)
]
import os
import multiprocessing
from multiprocessing import Process, Manager, Queue
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
import fcntl
import torch
def process_chunk(chunk, args, available_gpus, stop_words, output_queue, index, two_stage=False):
"""
处理一个数据块的函数
"""
GPU_LOCK_FILES = {gpu_id: f"/tmp/gpu_{gpu_id}.lock" for gpu_id in available_gpus}
# 设置当前进程使用的GPU
os.environ["CUDA_VISIBLE_DEVICES"] = str(available_gpus[index % len(available_gpus)])
gpu_id = available_gpus[index % len(available_gpus)]
lock_file = f"/tmp/gpu_{gpu_id}.lock" # 每个 GPU 对应一个锁文件
# llm = LLM(
# model=args.model_name_or_path,
# tensor_parallel_size=1,
# pipeline_parallel_size=1,
# trust_remote_code=True,
# gpu_memory_utilization=0.95,
# enforce_eager=True,
# max_seq_len_to_capture=65536,
# )
# chunk_outputs = []
# for i in range(0, len(chunk), 125):
# chunk_batch = chunk[i:i + 125]
# if args.use_vllm:
# if os.environ['stage'] == "add":
# budget = args.max_tokens_per_call + 50
# else:
# budget = args.max_tokens_per_call
# os.environ["position"] = 'start'
# chunk_batch_outputs = llm.generate(
# chunk_batch,
# SamplingParams(
# temperature=args.temperature,
# top_p=0.9,
# max_tokens=budget if not two_stage else 20,
# n=1,
# stop=stop_words,
# stop_token_ids=(
# [151645, 151643]
# if "qwen2" in args.model_name_or_path.lower()
# else None
# ),
# skip_special_tokens=False,
# ),
# )
# if os.path.exists('./start_positions.pt'):
# os.remove('./start_positions.pt')
# if os.path.exists('./early_positions.pt'):
# os.remove('./early_positions.pt')
# chunk_batch_outputs = sorted(chunk_batch_outputs, key=lambda x: int(x.request_id))
# chunk_batch_outputs = [output.outputs[0].text for output in chunk_batch_outputs]
# batch_chunk = [single_chunk + chunk_output for single_chunk, chunk_output in zip(chunk_batch, chunk_batch_outputs)]
# chunk_outputs.extend(batch_chunk)
# # 将处理结果存储到共享列表中
# output_queue.put((index, chunk_outputs))
# 获取文件锁(排他锁)
with open(lock_file, 'w') as f:
fcntl.flock(f, fcntl.LOCK_EX) # 获取排他锁,其他进程会阻塞直到锁释放
try:
# 设置当前进程使用的 GPU
os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_id)
# 初始化 LLM(确保在锁内执行,避免多个进程同时初始化)
llm = LLM(
model=args.model_name_or_path,
tensor_parallel_size=1,
pipeline_parallel_size=1,
trust_remote_code=True,
gpu_memory_utilization=0.95,
enforce_eager=True,
max_seq_len_to_capture=65536,
)
chunk_outputs = []
for i in range(0, len(chunk), 125):
chunk_batch = chunk[i:i + 125]
if args.use_vllm:
if os.environ['stage'] == "add":
budget = args.max_tokens_per_call + (args.max_tokens_per_call // 50) + 50
else:
budget = args.max_tokens_per_call + (args.max_tokens_per_call // 50)
os.environ["position"] = 'start'
chunk_batch_outputs = llm.generate(
chunk_batch,
SamplingParams(
temperature=args.temperature,
top_p=0.9,
max_tokens=budget if not two_stage else 20,
n=1,
stop=stop_words,
stop_token_ids=(
[151645, 151643]
if "qwen2" in args.model_name_or_path.lower()
else None
),
skip_special_tokens=False,
),
)
if os.path.exists('./start_positions.pt'):
os.remove('./start_positions.pt')
if os.path.exists('./early_positions.pt'):
os.remove('./early_positions.pt')
chunk_batch_outputs = sorted(chunk_batch_outputs, key=lambda x: int(x.request_id))
chunk_batch_outputs = [output.outputs[0].text for output in chunk_batch_outputs]
batch_chunk = [single_chunk + chunk_output for single_chunk, chunk_output in zip(chunk_batch, chunk_batch_outputs)]
chunk_outputs.extend(batch_chunk)
# 处理完成后,将结果存入队列
output_queue.put((index, chunk_outputs))
finally:
# 显式销毁 llm 对象
if 'llm' in locals():
del llm # 确保 LLM 引擎被销毁
# torch.cuda.empty_cache() # 清理 GPU 内存
# 释放锁(确保即使发生异常也能释放)
fcntl.flock(f, fcntl.LOCK_UN)
def clean_code(code):
for bin_token in bins_tokens:
if bin_token in code:
code = code.replace(bin_token, "")
return code
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--ratio", type=float, default=-1, help="ratio of cot to use for generation")
parser.add_argument("--data_names", default="math", type=str)
parser.add_argument("--data_dir", default="./data", type=str)
parser.add_argument("--model_name_or_path", default="Qwen/QwQ-32B-Preview", type=str)
parser.add_argument("--output_dir", default="Qwen/QwQ-32B-Preview/math_eval", type=str)
parser.add_argument("--prompt_type", default="qwen25-math-cot", type=str)
parser.add_argument("--split", default="test", type=str)
parser.add_argument("--num_test_sample", default=-1, type=int) # -1 for full data
parser.add_argument("--seed", default=0, type=int)
parser.add_argument("--start", default=0, type=int)
parser.add_argument("--end", default=-1, type=int)
parser.add_argument("--temperature", default=0, type=float)
parser.add_argument("--n_sampling", default=1, type=int)
parser.add_argument("--top_p", default=1, type=float)
parser.add_argument("--max_tokens_per_call", default=4096, type=int)
parser.add_argument("--shuffle", action="store_true")
parser.add_argument("--use_vllm", action="store_true")
parser.add_argument("--save_outputs", action="store_true")
parser.add_argument("--overwrite", action="store_true")
parser.add_argument("--use_safetensors", action="store_true")
parser.add_argument("--num_shots", type=int, default=0)
parser.add_argument("--apply_chat_template", action="store_true", help="Apply chat template to prompt.",)
parser.add_argument("--pipeline_parallel_size", type=int, default=1)
parser.add_argument("--adapt_few_shot", action="store_true", help="Few shot for multiple-choice questions, zero shot for others.",)
args = parser.parse_args()
args.top_p = (1 if args.temperature == 0 else args.top_p) # top_p must be 1 when using greedy sampling (vllm)
# if args.ratio > 0:
# args.max_tokens_per_call = 50
return args
def set_output_path(args, data_name):
# args.output_dir defines experiment path,such as outputs/12_25
model_name_list = args.model_name_or_path.split('/')[-1]
model_name = model_name_list
for part in model_name_list:
if 'models' in part:
model_name = part
# print(f"args.output_dir: {args.output_dir}")
# print(f"model_name: {model_name}")
# print(f"args.prompt_type: {args.prompt_type}")
output_dir = os.path.join(args.output_dir, model_name, args.prompt_type)
out_file_prefix = f"{args.split}_{args.prompt_type}_{args.num_test_sample}_seed{args.seed}_t{args.temperature}"
out_file = f"{output_dir}/{data_name}/{out_file_prefix}_s{args.start}_e{args.end}_b{int(args.max_tokens_per_call)}_original.jsonl"
print(out_file)
os.makedirs(f"{output_dir}/{data_name}", exist_ok=True)
return out_file_prefix, output_dir, out_file
def prepare_data(data_name, args):
examples = load_data(data_name, args.split, args.data_dir)
# sample `num_test_sample` from dataset, -1 for full data
if args.num_test_sample > 0:
# examples = random.sample(examples, min(args.num_test_sample, len(examples)))
examples = examples[: args.num_test_sample]
# shuffle
if args.shuffle:
random.seed(datetime.now().timestamp())
random.shuffle(examples)
# select start and end
examples = examples[args.start : len(examples) if args.end == -1 else args.end]
# get out_file name
dt_string = datetime.now().strftime("%m-%d_%H-%M")
model_name = "/".join(args.model_name_or_path.split("/")[-2:])
# get out_file_prefix, output_dir and out_file
out_file_prefix, output_dir, out_file = set_output_path(args, data_name)
# load all processed samples
processed_samples = []
if not args.overwrite:
processed_files = [
f
for f in os.listdir(f"{output_dir}/{data_name}/")
if f.endswith(".jsonl") and f.startswith(out_file_prefix)
]
for f in processed_files:
processed_samples.extend(
list(load_jsonl(f"{output_dir}/{data_name}/{f}"))
)
# dedepulicate
processed_samples = {sample["idx"]: sample for sample in processed_samples}
processed_idxs = list(processed_samples.keys())
processed_samples = list(processed_samples.values())
examples = [example for example in examples if example["idx"] not in processed_idxs]
return examples, processed_samples, out_file
def setup(args):
# load model
available_gpus = os.environ["CUDA_VISIBLE_DEVICES"].split(",")
if args.use_vllm:
# llm = LLM(
# model=args.model_name_or_path,
# tensor_parallel_size=len(available_gpus) // args.pipeline_parallel_size,
# pipeline_parallel_size=args.pipeline_parallel_size,
# trust_remote_code=True,
# gpu_memory_utilization=0.85,
# enforce_eager=True,
# max_seq_len_to_capture=5000000,
# # enable_flash_attn=True
# )
llm = None
tokenizer = None
# if args.apply_chat_template:
tokenizer = AutoTokenizer.from_pretrained(
args.model_name_or_path, trust_remote_code=True, max_length=16000,
)
else:
llm, tokenizer = load_hf_lm_and_tokenizer(
model_name_or_path=args.model_name_or_path,
load_in_half=True,
use_fast_tokenizer=True,
use_safetensors=args.use_safetensors,
)
# infer & eval
data_list = args.data_names.split(",")
results = []
for data_name in data_list:
results.append(main(llm, tokenizer, data_name, args))
# add "avg" result to data_list and results
data_list.append("avg")
results.append(
{
"acc": sum([result["acc"] for result in results]) / len(results),
}
)
# print all results
pad = max([len(data_name) for data_name in data_list])
print("\t".join(data_name.ljust(pad, " ") for data_name in data_list))
print("\t".join([f"{result['acc']:.1f}".ljust(pad, " ") for result in results]))
logging.info("\t".join(data_name.ljust(pad, " ") for data_name in data_list))
logging.info(f"os.environ['PE_MODE'] = {os.environ['PE_MODE']}")
logging.info(f"path = {args.model_name_or_path}")
logging.info(f"tip = {os.environ['tip']}")
logging.info(f"BUDGET = {os.environ['BUDGET']}")
logging.info("\t".join([f"{result['acc']:.1f}".ljust(pad, " ") for result in results]))
def is_multi_choice(answer):
for c in answer:
if c not in ["A", "B", "C", "D", "E"]:
return False
return True
def main(llm, tokenizer, data_name, args):
examples, processed_samples, out_file = prepare_data(data_name, args)
print(examples[0])
print("\n" + "-" * 50)
print("data:", data_name, ", remain samples:", len(examples))
if len(examples) > 0:
print(examples[0])
available_gpus = os.environ["CUDA_VISIBLE_DEVICES"].split(",")
print(f"available_gpus = {available_gpus}")
# init python executor
if "pal" in args.prompt_type:
executor = PythonExecutor(get_answer_expr="solution()")
else:
executor = PythonExecutor(get_answer_from_stdout=True)
# load done samples
if args.ratio > 0 :
done_samples_path = out_file.replace("_r" + str(args.ratio), "")
done_samples = list(load_jsonl(done_samples_path))
else:
done_samples = []
done_samples = {sample["idx"]: sample for sample in done_samples}
samples = []
print("\nProcessing", len(examples), "examples", "=" * 50)
for example in tqdm(examples, total=len(examples)):
idx = example["idx"]
# parse question and answer
example["question"] = parse_question(example, data_name)
if example["question"] == "":
continue
gt_cot, gt_ans = parse_ground_truth(example, data_name)
example["gt_ans"] = gt_ans
full_prompt = construct_prompt(example, data_name, args)
# # add ratio part of complete cot
if args.ratio > 0 :
done_cot = done_samples[idx]["code"][0]
cut_cot = done_cot[:int(len(done_cot)*args.ratio)]
# # 将prompt中的<|im_start|>assistant\n换成新内容
# full_prompt = full_prompt.replace("<|im_start|>assistant\n", "<|im_start|>assistant\n" + cut_cot + "\n\nFinal answer within \\boxed{{}}:\n")
# 直接在prompt的后面添加新内容
full_prompt = full_prompt + cut_cot + "\n\nFinal answer within \\boxed{{}}:\n"
if idx == args.start:
print(full_prompt)
sample = {
"idx": idx,
"question": example["question"],
"gt_cot": gt_cot,
"gt": gt_ans,
"prompt": full_prompt,
}
# add remain fields
for key in [
"level",
"type",
"unit",
"solution_type",
"choices",
"solution",
"ques_type",
"ans_type",
"answer_type",
"dataset",
"subfield",
"filed",
"theorem",
"answer",
]:
if key in example:
sample[key] = example[key]
samples.append(sample)
# repeat n times
input_prompts = [sample["prompt"] for sample in samples for _ in range(args.n_sampling)]
input_prompts = apply_RL_prompt(input_prompts, args, budget = args.max_tokens_per_call)
if args.apply_chat_template:
input_prompts = [
tokenizer.apply_chat_template(
[{"role": "user", "content": prompt.strip()}],
tokenize=False,
add_generation_prompt=True,
)
for prompt in input_prompts
]
remain_prompts = input_prompts
remain_prompts = [(i, prompt) for i, prompt in enumerate(remain_prompts)]
end_prompts = []
max_func_call = 1 if args.prompt_type in ["cot", "pal", "qwen25-math-cot"] else 4
stop_words = ["</s>", "<|im_end|>", "<|endoftext|>", "<|end▁of▁sentence|>"]
if args.prompt_type in ["cot"]:
stop_words.append("\n\nQuestion:")
if args.prompt_type in ["pal", "tool-integrated", "jiuzhang_tora"]:
stop_words.extend(["\n\n---", "```output"])
elif args.prompt_type in ["wizard_zs", "platypus_fs"]:
stop_words.extend(["Instruction", "Response"])
elif "jiuzhang" in args.prompt_type:
stop_words.append("\n\n## Question")
elif "numina" in args.prompt_type:
stop_words.append("\n### Problem")
elif "pure" in args.prompt_type:
stop_words.append("\n\n\n")
# start inference
# measure time use
start_time = time.time()
print(f"start_time: {start_time}")
for epoch in range(max_func_call):
print("-" * 20, "Epoch", epoch)
current_prompts = remain_prompts
if len(current_prompts) == 0:
break
prompts = [item[1] for item in current_prompts]
# prompts = apply_RL_prompt(prompts, args, budget = args.max_tokens_per_call)
num_prompts = len(prompts)
chunk_size = 256
#(num_prompts + 4) // 5 # 确保包含所有的 prompts
outputs = []
if os.environ['tip'] == "remaining" or os.environ['tip'] == "ATD_R":
for i in range(0, num_prompts, chunk_size):
# print(prompts[i])
chunk = prompts[i:i + chunk_size] # 获取当前的 chunk
if args.use_vllm:
budget = args.max_tokens_per_call
i = 0
while 50*(2**i) < budget:
i += 1
i -= 1
for k in range(i, -2, -1):
stop_budget = budget - 50*(2**k) if k >= 0 else 50
# print(f"stop_budget: {stop_budget}")
# chunk = [data + f"\n<remaining>[{budget} token]</remaining>\n" for data in chunk]
if budget == args.max_tokens_per_call:
chunk = chunk
else:
# "<|end▁of▁sentence|>"
chunk = [data + f"\n<remaining>{budget}</remaining>\n" if "<|end▁of▁sentence|>" not in data else data for data in chunk]
print(f"chunk0: {chunk[0]}")
if stop_budget > 0:
chunk_outputs = llm.generate(
chunk,
SamplingParams(
temperature=args.temperature,
top_p=args.top_p,
max_tokens=stop_budget,
n=1,
stop=stop_words,
stop_token_ids=(
[151645, 151643]
if "qwen2" in args.model_name_or_path.lower()
else None
),
skip_special_tokens=False, #G 设置特殊token的可见性
),
)
if os.path.exists('./start_positions.pt'):
os.remove('./start_positions.pt')
print('start_positions.pt removed')
if os.path.exists('./early_positions.pt'):
os.remove('./early_positions.pt')
print('early_positions.pt removed')
chunk_outputs = sorted(chunk_outputs, key=lambda x: int(x.request_id))
chunk_outputs = [output.outputs[0].text for output in chunk_outputs]
### 输出已经被整理过了,不需要再进行排序
chunk = [single_chunk + chunk_output for single_chunk, chunk_output in zip(chunk, chunk_outputs)]
budget = 50*(2**k) if k >= 0 else 0
chunk, end_chunk, open_chunk = solve_final_answer(chunk)
print(f"len of end_chunk: {len(end_chunk)}")
print(f"len of open_chunk: {len(open_chunk)}")
# outputs.extend(end_chunk)
# chunk = open_chunk
# print(f"now budget: {budget}")
# print(f"k = {k}")
chunk_outputs = chunk
outputs.extend(chunk_outputs)
# chunk_outputs = sorted(chunk, key=lambda x: int(x.request_id))
# initial_outputs = [output.outputs[0].text for output in chunk_outputs]
# Add the think/final answer tags and create new prompts
# modified_outputs = []
# for output in chunk_outputs:
# modified_output = output.rstrip() + "</think>\n\n**Final Answer**\n\\boxed"
# modified_outputs.append(modified_output)
# # Second generation with modified outputs
# second_prompts = [p + mo for p, mo in zip(chunk, modified_outputs)]
# second_outputs = llm.generate(
# second_prompts,
# SamplingParams(
# temperature=args.temperature,
# top_p=args.top_p,
# max_tokens=20,
# n=1,
# stop=stop_words,
# stop_token_ids=(
# [151645, 151643]
# if "qwen2" in args.model_name_or_path.lower()
# else None
# ),
# ),
# )
# if os.path.exists('./start_positions.pt'):
# os.remove('./start_positions.pt')
# print('start_positions.pt removed')
# if os.path.exists('./early_positions.pt'):
# os.remove('./early_positions.pt')
# print('early_positions.pt removed')
# second_outputs = sorted(second_outputs, key=lambda x: int(x.request_id))
# second_outputs = [output.outputs[0].text for output in second_outputs]
# # Combine initial and second outputs
# combined_outputs = [init + "</think>\n\n**Final Answer**\n\\boxed" + second for init, second in zip(second_prompts, second_outputs)]
# outputs.extend(combined_outputs)
else:
# Similar modification for non-vllm case
chunk_outputs = generate_completions(
model=llm,
tokenizer=tokenizer,
prompts=chunk,
max_new_tokens=args.max_tokens_per_call,
batch_size=16,
stop_id_sequences=stop_words,
)
# Add the think/final answer tags and create new prompts
modified_outputs = []
for output in chunk_outputs:
modified_output = output.rstrip() + "\n</think>\n\n**Final Answer**\n\\boxed"
modified_outputs.append(modified_output)
# Second generation with modified outputs
second_prompts = [p + mo for p, mo in zip(chunk, modified_outputs)]
second_outputs = generate_completions(
model=llm,
tokenizer=tokenizer,
prompts=second_prompts,
max_new_tokens=args.max_tokens_per_call,
batch_size=16,
stop_id_sequences=stop_words,
)
# Combine initial and second outputs
combined_outputs = [init + second for init, second in zip(chunk_outputs, second_outputs)]
outputs.extend(combined_outputs)
elif os.environ["tip"] == "TCM":
for i in range(0, num_prompts, chunk_size):
chunk = prompts[i:i + chunk_size] # 获取当前的 chunk
if args.use_vllm:
budget = args.max_tokens_per_call
i = budget // 50 + 1
for k in reversed(range(i)):
stop_budget = budget - 50 * k
if budget == args.max_tokens_per_call:
chunk = chunk
else:
chunk = [data + f"\n<remaining>{budget}</remaining>\n" if "<|end▁of▁sentence|>" not in data else data for data in chunk]
print(f"chunk0: {chunk[0]}")
if stop_budget > 0:
chunk_outputs = llm.generate(
chunk,
SamplingParams(
temperature=args.temperature,
top_p=args.top_p,
max_tokens=stop_budget,
n=1,
stop=stop_words,
stop_token_ids=(
[151645, 151643]
if "qwen2" in args.model_name_or_path.lower()
else None
),
skip_special_tokens=False, #G 设置特殊token的可见性
),
)
if os.path.exists('./start_positions.pt'):
os.remove('./start_positions.pt')
print('start_positions.pt removed')
if os.path.exists('./early_positions.pt'):
os.remove('./early_positions.pt')
print('early_positions.pt removed')
chunk_outputs = sorted(chunk_outputs, key=lambda x: int(x.request_id))
chunk_outputs = [output.outputs[0].text for output in chunk_outputs]
### 输出已经被整理过了,不需要再进行排序
chunk = [single_chunk + chunk_output for single_chunk, chunk_output in zip(chunk, chunk_outputs)]
budget = 50 * k if k >= 0 else 0
chunk, end_chunk, open_chunk = solve_final_answer(chunk)
print(f"len of end_chunk: {len(end_chunk)}")
print(f"len of open_chunk: {len(open_chunk)}")
print(F"len of chunk: {len(chunk)}s")
# outputs.extend(end_chunk)
# chunk = open_chunk
chunk_outputs = chunk
outputs.extend(chunk_outputs)
else:
raise(ValueError("Not implemented for non-vllm mode while tip == TCM"))
elif os.environ["tip"] == "SST":
for i in range(0, num_prompts, chunk_size):
chunk = prompts[i:i + chunk_size] # 获取当前的 chunk
if args.use_vllm:
budget = args.max_tokens_per_call
i = budget // 50 + 1
for k in reversed(range(i)):
stop_budget = budget - 50 * k
if budget == args.max_tokens_per_call:
chunk = chunk
else:
chunk = [data + f"\n<countdown>\n" if "<|end▁of▁sentence|>" not in data else data for data in chunk]
print(f"chunk0: {chunk[0]}")
if stop_budget > 0:
chunk_outputs = llm.generate(
chunk,
SamplingParams(
temperature=args.temperature,
top_p=args.top_p,
max_tokens=stop_budget,
n=1,
stop=stop_words,
stop_token_ids=(
[151645, 151643]
if "qwen2" in args.model_name_or_path.lower()
else None
),
),
)
if os.path.exists('./start_positions.pt'):
os.remove('./start_positions.pt')
print('start_positions.pt removed')
if os.path.exists('./early_positions.pt'):
os.remove('./early_positions.pt')
print('early_positions.pt removed')
chunk_outputs = sorted(chunk_outputs, key=lambda x: int(x.request_id))
chunk_outputs = [output.outputs[0].text for output in chunk_outputs]
### 输出已经被整理过了,不需要再进行排序
chunk = [single_chunk + chunk_output for single_chunk, chunk_output in zip(chunk, chunk_outputs)]
budget = 50 * k if k >= 0 else 0
chunk, end_chunk, open_chunk = solve_final_answer(chunk)
print(f"len of end_chunk: {len(end_chunk)}")
print(f"len of open_chunk: {len(open_chunk)}")
print(F"len of chunk: {len(chunk)}s")
# outputs.extend(end_chunk)
# chunk = open_chunk
chunk_outputs = chunk
outputs.extend(chunk_outputs)
else:
raise(ValueError("Not implemented for non-vllm mode while tip == TTS"))
# elif os.environ["tip"] == "TCMv2":
else:
available_gpus = os.environ["CUDA_VISIBLE_DEVICES"].split(",") # 示例GPU列表,根据实际情况修改
num_gpus = len(available_gpus)
manager = Manager()
output_queue = Queue()
processes = []
multi_outputs = []
chunk_size = len(prompts) // num_gpus
chunks = [prompts[i:i + chunk_size] for i in range(0, len(prompts), chunk_size)]
num_rounds = (len(chunks) + num_gpus - 1) // num_gpus #g 轮次数等于最大GPU上的任务数
for round_idx in range(num_rounds):
start_idx = round_idx * num_gpus
end_idx = min((round_idx + 1) * num_gpus, len(chunks))
for i in range(start_idx, end_idx):
chunk = chunks[i]
p = Process(target=process_chunk, args=(chunk, args, available_gpus, stop_words, output_queue, i))
processes.append(p)
p.start()
# for i, chunk in enumerate(chunks):
# print(f"Processing chunk {i} with size {len(chunk)}")
# p = Process(target=process_chunk, args=(chunk, args, available_gpus, stop_words, output_queue, i))
# processes.append(p)
# p.start()
for _ in range(len(chunks)):
result = output_queue.get()
if isinstance(result, tuple) and len(result) == 2:
multi_outputs.append(result)
else:
print(f"Error: Received non-tuple result: {result}")
# multi_outputs.extend(output_queue.get())
for p in processes:
p.join()
multi_outputs.sort(key=lambda x: x[0])
outputs = []
for _, chunk_output in multi_outputs:
outputs.extend(chunk_output)
print('stage one finished!!!\n' * 20)
# print("Special tokens in tokenizer:", tokenizer.special_tokens_map)
# test_token = "\n<remaining>50</remaining>\n"
# print(f"Encoding '{test_token}':", tokenizer.encode(test_token, add_special_tokens=False))
print(outputs[:3])
#################!
###! stage? 1 or 2 or add
if os.environ['stage'] == "2":
print("stage 2")
two_stage_outputs = []
modified_outputs = []
print(f"len of outputs: {len(outputs)}")
for output in outputs:
# 去除output字符串末尾的换行符,并添加</think>和**Final Answer**\n\\boxed字符串,将结果添加到modified_outputs列表中
if "<|end▁of▁sentence|>" in output:
start_index = output.index("<|end▁of▁sentence|>")
output = output[:start_index]
# output = output.replace("<|end▁of▁sentence|>", "")
modified_output = output + "\n</think>\n\n**Final Answer**\\boxed"
modified_outputs.append(modified_output)
# print(f"modified_output_len: {len(modified_output)}")
available_gpus = os.environ["CUDA_VISIBLE_DEVICES"].split(",") # 示例GPU列表,根据实际情况修改
num_gpus = len(available_gpus)
manager = Manager()
output_queue = Queue()
processes = []
multi_outputs = []
prompts = modified_outputs
chunk_size = len(prompts) // num_gpus
chunks = [prompts[i:i + chunk_size] for i in range(0, len(prompts), chunk_size)]
num_rounds = (len(chunks) + num_gpus - 1) // num_gpus #g 轮次数等于最大GPU上的任务数
for round_idx in range(num_rounds):
start_idx = round_idx * num_gpus
end_idx = min((round_idx + 1) * num_gpus, len(chunks))
for i in range(start_idx, end_idx):
chunk = chunks[i]
p = Process(target=process_chunk, args=(chunk, args, available_gpus, stop_words, output_queue, i))
processes.append(p)
p.start()
# for i, chunk in enumerate(chunks):
# print(f"Processing chunk {i} with size {len(chunk)}")
# p = Process(target=process_chunk, args=(chunk, args, available_gpus, stop_words, output_queue, i))
# processes.append(p)
# p.start()
for _ in range(len(chunks)):
result = output_queue.get()
if isinstance(result, tuple) and len(result) == 2:
multi_outputs.append(result)
else:
print(f"Error: Received non-tuple result: {result}")
# multi_outputs.extend(output_queue.get())
for p in processes:
p.join()
multi_outputs.sort(key=lambda x: x[0])
outputs = []
for _, chunk_output in multi_outputs:
outputs.extend(chunk_output)
elif os.environ['stage'] == "1":
outputs = outputs
with open("/mnt/lyc/wuxinrui/LLaMA-Factory/TCMv4/TCMv4_format_random2000_answer_prompt_generate.jsonl", "w") as f:
for output in outputs:
f.write(output + "\n")
print('TCMv4_format_random2000_answer_prompt_generated!!!\n' * 20)
# elif os.environ['stage'] == "add":
# llm = LLM(
# model=args.model_name_or_path,
# tensor_parallel_size=1,
# pipeline_parallel_size=1,
# trust_remote_code=True,
# gpu_memory_utilization=0.85,
# enforce_eager=True,
# max_seq_len_to_capture=5000000,
# )
# two_stage_outputs = []
# modified_outputs = []
# print(f"len of outputs: {len(outputs)}")
# for output in outputs:
# # 去除output字符串末尾的换行符,并添加</think>和**Final Answer**\n\\boxed字符串,将结果添加到modified_outputs列表中
# if "<|end▁of▁sentence|>" in output:
# start_index = output.index("<|end▁of▁sentence|>")
# output = output[:start_index]
# # output = output.replace("<|end▁of▁sentence|>", "")
# modified_output = output
# modified_outputs.append(modified_output)
# # print(f"modified_output_len: {len(modified_output)}")
# for i in range(0, num_prompts, chunk_size):
# modified_chunk = outputs[i:i + chunk_size] # 获取当前的 chunk
# if args.use_vllm:
# os.environ["position"] = 'start'
# second_outputs = llm.generate(
# modified_chunk,
# SamplingParams(
# temperature=args.temperature,
# top_p=args.top_p,
# max_tokens=50,
# n=1,
# stop=stop_words,
# stop_token_ids=(
# [151645, 151643]
# ),
# skip_special_tokens=False, #G 设置特殊token的可见性
# ),
# )
# if os.path.exists('./start_positions.pt'):
# os.remove('./start_positions.pt')
# print('start_positions.pt removed')
# if os.path.exists('./early_positions.pt'):
# os.remove('./early_positions.pt')
# print('early_positions.pt removed')
# second_outputs = sorted(second_outputs, key=lambda x: int(x.request_id))
# second_outputs = [output.outputs[0].text for output in second_outputs]
# # Combine initial and second outputs
# combined_outputs = [init + second for init, second in zip(modified_chunk, second_outputs)]
# print(f"len of combined_outputs:{len(combined_outputs)}")
# two_stage_outputs.extend(combined_outputs) ## 直接覆盖掉就好
# outputs = two_stage_outputs
#################!
print(f"outputs:{len(outputs)}")
print(f"current_prompts:{len(current_prompts)}")
assert len(outputs) == len(current_prompts)
#g 以防万一,再次sort回答
# print(f"outputs[:5]: {outputs[:5]}")
# print(f"current_prompts[:5]: {current_prompts[:5]}")
# sorted_outputs = []
# for (index, prompt) in current_prompts:
# for i in range(len(outputs)):
# if prompt in outputs[i]:
# sorted_outputs.append(outputs[i])
# outputs = sorted_outputs
# print(f"outputs[:5]: {outputs[123:128]}")
# print(f"current_prompts[:5]: {current_prompts[123:128]}")
# assert len(outputs) == len(current_prompts)
# print(outputs)
# process all outputs
if __name__ == "__main__":
multiprocessing.set_start_method('spawn')
args = parse_args()
set_seed(args.seed)
setup(args)