Dummy LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: stable-baselines3
|
| 3 |
+
tags:
|
| 4 |
+
- LunarLander-v2
|
| 5 |
+
- deep-reinforcement-learning
|
| 6 |
+
- reinforcement-learning
|
| 7 |
+
- stable-baselines3
|
| 8 |
+
model-index:
|
| 9 |
+
- name: PPO
|
| 10 |
+
results:
|
| 11 |
+
- task:
|
| 12 |
+
type: reinforcement-learning
|
| 13 |
+
name: reinforcement-learning
|
| 14 |
+
dataset:
|
| 15 |
+
name: LunarLander-v2
|
| 16 |
+
type: LunarLander-v2
|
| 17 |
+
metrics:
|
| 18 |
+
- type: mean_reward
|
| 19 |
+
value: -169.07 +/- 112.84
|
| 20 |
+
name: mean_reward
|
| 21 |
+
verified: false
|
| 22 |
+
---
|
| 23 |
+
|
| 24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
| 25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
| 26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
| 27 |
+
|
| 28 |
+
## Usage (with Stable-baselines3)
|
| 29 |
+
TODO: Add your code
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
```python
|
| 33 |
+
from stable_baselines3 import ...
|
| 34 |
+
from huggingface_sb3 import load_from_hub
|
| 35 |
+
|
| 36 |
+
...
|
| 37 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79e357c1b6a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79e357c1b740>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79e357c1b7e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79e357c1b880>", "_build": "<function ActorCriticPolicy._build at 0x79e357c1b920>", "forward": "<function ActorCriticPolicy.forward at 0x79e357c1b9c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79e357c1ba60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79e357c1bb00>", "_predict": "<function ActorCriticPolicy._predict at 0x79e357c1bba0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79e357c1bc40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79e357c1bce0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79e357c1bd80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x79e357d82300>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1747449999934006713, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdgIAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAAIAAAAAAABmJiO6BtKEP74OpzyPxjK/mYUxvUQ/ub0AAAAAAAAAALZvkT6JGBM95ZqDPksdtr8+fvY+yLs2PgAAAAAAAIA/IBcpPot7OT9QO1o9rEdRv/vrCj9qoVe9AAAAAAAAAAAz1HE+vfWnP8OG5j6rQgm/r8F8O8F5Cz4AAAAAAAAAAM/lH79t+pw/C3JOv+PgOr+4+WY+M095vgAAAAAAAAAAjXNavoR8DT8j982+T+BTv/uCYT7FcOm9AAAAAAAAAACVI6G+hKRYPp6OYr6rqzq/dow4vjZ6C74AAAAAAAAAAAeUGr+y3DA/iutuv9qEPb+vhNs9gPV7vgAAAAAAAAAA+os3viWrpT9tcg2/p+OkvigxS7zr9sy9AAAAAAAAAADM7Cu/tHEmPzqaX76Z2Xm/UK8iv/7/br4AAAAAAAAAAKBlHr4fs5U/zksNv5JTJL8UAbc9bRUYPgAAAAAAAAAAho+wvtEFRz8tMfe9POZHvx0WWL8Tzuq+AAAAAAAAAACaows8LG+rP/3/ED7trBe/NiFavDbHDL0AAAAAAAAAAEA7/T1yv1E/PTG0O5C4Y79EP5I+eOujPAAAAAAAAAAAJZHlvvbcyT65GJm+KW9Yv+/x4b4J/Jq9AAAAAAAAAAAzk126w1SzP943krt7+Ri+c+cqvHAZ3r0AAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsIhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVhAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFS5qgh8pkSMAWyUS0OMAXSUR0Bli1Gus90SdX2UKGgGR8BboJIQOFxoaAdLcWgIR0Bli8oScslLdX2UKGgGR8BNqYp+c6NmaAdLZWgIR0BljXIEKVpsdX2UKGgGR8Beqtzjm0VraAdLTGgIR0BljtznzQNTdX2UKGgGR8BF50m+j/MoaAdLeWgIR0BlkVSGahHtdX2UKGgGR8Bc3cx9G7SRaAdLbmgIR0Blklet0V8DdX2UKGgGR8Axgu5BkZrIaAdLVmgIR0Blk/TkQwsYdX2UKGgGR8Bgyh5u63AmaAdLhWgIR0BllB7sv7FbdX2UKGgGR8Bguoaef7JoaAdLbmgIR0BllTlRxcVydX2UKGgGR8Bj+6kGiYb9aAdLeGgIR0BllbINmUW3dX2UKGgGR8BGh83uNPxhaAdLf2gIR0BllbgqEvkBdX2UKGgGR8BVUuzMRpUQaAdLaGgIR0BllgkRjBl+dX2UKGgGR8BUa9R3u/lAaAdLUmgIR0Bllf9kz41xdX2UKGgGR8BVx6N+9allaAdLVGgIR0BllrYVZcLSdX2UKGgGR8BSp8WGh24eaAdLgmgIR0Bllwdlum78dX2UKGgGR8BZzBkqc3ERaAdLe2gIR0Bll7onrpqzdX2UKGgGR8Bp9nsE7nxKaAdLemgIR0BlmBIg/1QJdX2UKGgGR8BrExOP/7zkaAdLgWgIR0BlmTEUCaJAdX2UKGgGR8Bcgx/RVp9JaAdLb2gIR0Blm6LKmsNldX2UKGgGR0AUdlz2exwAaAdLc2gIR0BlnRJAdGRWdX2UKGgGR8BXwwSBbwBpaAdLWGgIR0BlnTXnQpnZdX2UKGgGR8BhTYkTpPhyaAdLY2gIR0BlnZWgezUrdX2UKGgGR8BJpF4TsY2saAdLQmgIR0Bln5WgezUrdX2UKGgGR8Bi8/3Dej20aAdLZWgIR0BloDguRLbpdX2UKGgGR8BjA4Qrc0tRaAdLVmgIR0BloEPnSv1UdX2UKGgGR8BNgYdp7CzkaAdLVmgIR0BloDtVrAP/dX2UKGgGR8BWdBTXJ5miaAdLVmgIR0BlomO6unuRdX2UKGgGR0A0QFXJYDDCaAdLcGgIR0Blox9uxbB5dX2UKGgGR8BCXuq//NqyaAdLdGgIR0Blo7Ve8f3fdX2UKGgGR8BYUYFqzqrzaAdLd2gIR0Blo6gXdj5LdX2UKGgGR8BY3Kv7m+0xaAdLd2gIR0BlpSr92ovSdX2UKGgGR8BCaNfG+9J0aAdLTmgIR0BlpUTDfm9ydX2UKGgGR8BT+3J1aGHpaAdLRGgIR0BlpaRU3n6mdX2UKGgGR8Bifi72+PBBaAdLeWgIR0Blpb+717IDdX2UKGgGR8BdItQO4G2UaAdLa2gIR0BlpmEdvKlpdX2UKGgGR8BgzCMglnh9aAdLoGgIR0Blp6W5Yoy9dX2UKGgGR8BgcQ5BC2MLaAdLVGgIR0Blp9nyup0fdX2UKGgGR8BP0VEuxrzoaAdLQGgIR0BlqBZyMkyDdX2UKGgGR8BS5w1BMSK4aAdLXWgIR0BlqHLLZBcBdX2UKGgGR8BTrE8ifQKKaAdLXmgIR0Blq4vN/vv0dX2UKGgGR8BkhVwT/Q0GaAdLYmgIR0BlrA/TspocdX2UKGgGR8BLPupjtoi+aAdLSmgIR0Blrece8wpOdX2UKGgGR8Bu15WV/tpmaAdLV2gIR0BlriQHRkVfdX2UKGgGR8BJSpAlfJFLaAdLXWgIR0BlrukJrtVrdX2UKGgGR8BKKqn3ta6jaAdLgmgIR0Blr91KXfIkdX2UKGgGR8BaIx5TqB3BaAdLZGgIR0Blr8/6fra/dX2UKGgGR8A/galDWsijaAdLQmgIR0BlsN5OafBfdX2UKGgGR8BBNL9MsYl6aAdLSGgIR0BlsUl7dBSldX2UKGgGR8BUDssYl6Z6aAdLaWgIR0BlslOKwY+CdX2UKGgGR8BVYKbjLjgiaAdLamgIR0Bls7IHTqjadX2UKGgGR8A6E8cMmWt2aAdLeGgIR0BltKRp1zQvdX2UKGgGR8BAtK2SdOIqaAdLmWgIR0BltayhSLqEdX2UKGgGR8BIXBpYcNpeaAdLd2gIR0BltrH2h7E6dX2UKGgGR8BnczXQMQVcaAdLX2gIR0Blt+G9HtngdX2UKGgGR8BiFtCgK4QSaAdLkmgIR0Blt/lyR0U5dX2UKGgGR8BdgjWGyon8aAdLW2gIR0Blt/ZqVQhwdX2UKGgGR8AmV8YyfthNaAdLf2gIR0Blt/AmAskIdX2UKGgGR8BT5vdl/YrbaAdLUGgIR0BluKdjG1hLdX2UKGgGR8BQoCJwbVBlaAdLTGgIR0BluVRJmNBGdX2UKGgGR8BhSTqD9OynaAdLUWgIR0BlucdeY2KmdX2UKGgGR8BANbbUPQOXaAdLRmgIR0BluvUhFEy+dX2UKGgGR8BfLS+pOvdNaAdLUGgIR0Bluxl8PWhAdX2UKGgGR8BW2De9Ba9saAdLdGgIR0BlvJplBhQWdX2UKGgGR8App+rlvIfbaAdLTmgIR0BlvRW5paicdX2UKGgGR8BVOT6SDAaeaAdLgWgIR0Blvu3H7xd6dX2UKGgGR8BVTNPgvUSaaAdLUWgIR0Blv0YVIqb0dX2UKGgGR8Bgyb5IpYs/aAdLgWgIR0BlwGQQtjCpdX2UKGgGR8BQnJJCjUNKaAdLVGgIR0BlwJWBBiTddX2UKGgGR8BdYvRzBAObaAdLUmgIR0BlwX8GcFyJdX2UKGgGR8BDbFjd56dEaAdLSGgIR0BlwbgTAWSEdX2UKGgGR8BQJ8mfGuLaaAdLbmgIR0Blwbi6xxDLdX2UKGgGR8BW3gG4ZuQ7aAdLVWgIR0BlweYnfEXMdX2UKGgGR8BL6tRNyo4uaAdLW2gIR0BlwypeeFtbdX2UKGgGR8BUA2VzIV/MaAdLZWgIR0Blw73dsSCfdX2UKGgGR8BdS+MQ2/BWaAdLTmgIR0BlxD79AHE/dX2UKGgGR8BQdOHnEETyaAdLUGgIR0BlxfUlRgqmdX2UKGgGR8BPqiz1K5CoaAdLRWgIR0BlyJ8BuGbkdX2UKGgGR8BRS5rLyMDPaAdLWWgIR0BlyRIxxkupdX2UKGgGR8BeOj28IzFdaAdLhWgIR0BlyW5WilBQdX2UKGgGR8BWY2kvboKVaAdLdWgIR0BlyWI9C/oJdX2UKGgGR8BH+HuRcNYsaAdLRWgIR0BlzGkDZDiPdX2UKGgGR8BZoVtj0+TvaAdLf2gIR0BlzvT/hl19dX2UKGgGR8BhcwK+i8FqaAdLc2gIR0Bl09LcsUZfdX2UKGgGR8BRfFxbSqlxaAdLXWgIR0Bl1Dslb/wRdX2UKGgGR8BhlSXBxgiNaAdLa2gIR0Bl1GiL2pQ2dX2UKGgGR8BcZThP0qYraAdLO2gIR0Bl1eoFV1fWdX2UKGgGR8BbSDcuanaWaAdLWGgIR0Bl1hAlfJFLdX2UKGgGR8BavVFx4ptraAdLb2gIR0Bl1lBBzFMqdX2UKGgGR8BW/+LR8c+8aAdLXWgIR0Bl1jdN34bkdX2UKGgGR8BRE/PgNwzdaAdLdWgIR0Bl1wp+c6NmdX2UKGgGR8BaP5emelKsaAdLbWgIR0Bl15pBX0XhdX2UKGgGR8Bl/vgzguRLaAdLYmgIR0Bl2PseGO+7dX2UKGgGR8BRu2oFV1fWaAdLWmgIR0Bl2ZJsfq5cdX2UKGgGR8BVaN1U2kzoaAdLk2gIR0Bl2jr9l2/0dX2UKGgGR8Bb5njdYW+HaAdLaGgIR0Bl2w5aNdZ8dX2UKGgGR8BHhNlRP421aAdLb2gIR0Bl3R5cC5mRdX2UKGgGR8BXlHJYDDCQaAdLeGgIR0Bl3Q6Oo5xSdX2UKGgGR8BJ4GHHmzSkaAdLUGgIR0Bl3T+T/yXldX2UKGgGR8BVV/kBCD28aAdLVGgIR0Bl39k8RtgsdX2UKGgGR8BYra7dznzQaAdLf2gIR0Bl4BZdOZb7dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 28, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV3AAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZROdWIu", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.123+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Mar 30 16:01:29 UTC 2025", "Python": "3.11.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.6.0+cu124", "GPU Enabled": "True", "Numpy": "2.0.2", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1cce1f31a6b8818db88dfeab87c4ff4abb15c35fbe55d54ccf3c5edb2058a3c6
|
| 3 |
+
size 147995
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
|
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"policy_class": {
|
| 3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
| 4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
| 5 |
+
"__module__": "stable_baselines3.common.policies",
|
| 6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
| 7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x79e357c1b6a0>",
|
| 8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79e357c1b740>",
|
| 9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79e357c1b7e0>",
|
| 10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79e357c1b880>",
|
| 11 |
+
"_build": "<function ActorCriticPolicy._build at 0x79e357c1b920>",
|
| 12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x79e357c1b9c0>",
|
| 13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x79e357c1ba60>",
|
| 14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79e357c1bb00>",
|
| 15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x79e357c1bba0>",
|
| 16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79e357c1bc40>",
|
| 17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79e357c1bce0>",
|
| 18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x79e357c1bd80>",
|
| 19 |
+
"__abstractmethods__": "frozenset()",
|
| 20 |
+
"_abc_impl": "<_abc._abc_data object at 0x79e357d82300>"
|
| 21 |
+
},
|
| 22 |
+
"verbose": 1,
|
| 23 |
+
"policy_kwargs": {},
|
| 24 |
+
"num_timesteps": 114688,
|
| 25 |
+
"_total_timesteps": 100000,
|
| 26 |
+
"_num_timesteps_at_start": 0,
|
| 27 |
+
"seed": null,
|
| 28 |
+
"action_noise": null,
|
| 29 |
+
"start_time": 1747449999934006713,
|
| 30 |
+
"learning_rate": 0.0003,
|
| 31 |
+
"tensorboard_log": null,
|
| 32 |
+
"_last_obs": {
|
| 33 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 34 |
+
":serialized:": "gAWVdgIAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAAIAAAAAAABmJiO6BtKEP74OpzyPxjK/mYUxvUQ/ub0AAAAAAAAAALZvkT6JGBM95ZqDPksdtr8+fvY+yLs2PgAAAAAAAIA/IBcpPot7OT9QO1o9rEdRv/vrCj9qoVe9AAAAAAAAAAAz1HE+vfWnP8OG5j6rQgm/r8F8O8F5Cz4AAAAAAAAAAM/lH79t+pw/C3JOv+PgOr+4+WY+M095vgAAAAAAAAAAjXNavoR8DT8j982+T+BTv/uCYT7FcOm9AAAAAAAAAACVI6G+hKRYPp6OYr6rqzq/dow4vjZ6C74AAAAAAAAAAAeUGr+y3DA/iutuv9qEPb+vhNs9gPV7vgAAAAAAAAAA+os3viWrpT9tcg2/p+OkvigxS7zr9sy9AAAAAAAAAADM7Cu/tHEmPzqaX76Z2Xm/UK8iv/7/br4AAAAAAAAAAKBlHr4fs5U/zksNv5JTJL8UAbc9bRUYPgAAAAAAAAAAho+wvtEFRz8tMfe9POZHvx0WWL8Tzuq+AAAAAAAAAACaows8LG+rP/3/ED7trBe/NiFavDbHDL0AAAAAAAAAAEA7/T1yv1E/PTG0O5C4Y79EP5I+eOujPAAAAAAAAAAAJZHlvvbcyT65GJm+KW9Yv+/x4b4J/Jq9AAAAAAAAAAAzk126w1SzP943krt7+Ri+c+cqvHAZ3r0AAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsIhpSMAUOUdJRSlC4="
|
| 35 |
+
},
|
| 36 |
+
"_last_episode_starts": {
|
| 37 |
+
":type:": "<class 'numpy.ndarray'>",
|
| 38 |
+
":serialized:": "gAWVhAAAAAAAAACME251bXB5Ll9jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksQhZSMAUOUdJRSlC4="
|
| 39 |
+
},
|
| 40 |
+
"_last_original_obs": null,
|
| 41 |
+
"_episode_num": 0,
|
| 42 |
+
"use_sde": false,
|
| 43 |
+
"sde_sample_freq": -1,
|
| 44 |
+
"_current_progress_remaining": -0.1468799999999999,
|
| 45 |
+
"_stats_window_size": 100,
|
| 46 |
+
"ep_info_buffer": {
|
| 47 |
+
":type:": "<class 'collections.deque'>",
|
| 48 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFS5qgh8pkSMAWyUS0OMAXSUR0Bli1Gus90SdX2UKGgGR8BboJIQOFxoaAdLcWgIR0Bli8oScslLdX2UKGgGR8BNqYp+c6NmaAdLZWgIR0BljXIEKVpsdX2UKGgGR8Beqtzjm0VraAdLTGgIR0BljtznzQNTdX2UKGgGR8BF50m+j/MoaAdLeWgIR0BlkVSGahHtdX2UKGgGR8Bc3cx9G7SRaAdLbmgIR0Blklet0V8DdX2UKGgGR8Axgu5BkZrIaAdLVmgIR0Blk/TkQwsYdX2UKGgGR8Bgyh5u63AmaAdLhWgIR0BllB7sv7FbdX2UKGgGR8Bguoaef7JoaAdLbmgIR0BllTlRxcVydX2UKGgGR8Bj+6kGiYb9aAdLeGgIR0BllbINmUW3dX2UKGgGR8BGh83uNPxhaAdLf2gIR0BllbgqEvkBdX2UKGgGR8BVUuzMRpUQaAdLaGgIR0BllgkRjBl+dX2UKGgGR8BUa9R3u/lAaAdLUmgIR0Bllf9kz41xdX2UKGgGR8BVx6N+9allaAdLVGgIR0BllrYVZcLSdX2UKGgGR8BSp8WGh24eaAdLgmgIR0Bllwdlum78dX2UKGgGR8BZzBkqc3ERaAdLe2gIR0Bll7onrpqzdX2UKGgGR8Bp9nsE7nxKaAdLemgIR0BlmBIg/1QJdX2UKGgGR8BrExOP/7zkaAdLgWgIR0BlmTEUCaJAdX2UKGgGR8Bcgx/RVp9JaAdLb2gIR0Blm6LKmsNldX2UKGgGR0AUdlz2exwAaAdLc2gIR0BlnRJAdGRWdX2UKGgGR8BXwwSBbwBpaAdLWGgIR0BlnTXnQpnZdX2UKGgGR8BhTYkTpPhyaAdLY2gIR0BlnZWgezUrdX2UKGgGR8BJpF4TsY2saAdLQmgIR0Bln5WgezUrdX2UKGgGR8Bi8/3Dej20aAdLZWgIR0BloDguRLbpdX2UKGgGR8BjA4Qrc0tRaAdLVmgIR0BloEPnSv1UdX2UKGgGR8BNgYdp7CzkaAdLVmgIR0BloDtVrAP/dX2UKGgGR8BWdBTXJ5miaAdLVmgIR0BlomO6unuRdX2UKGgGR0A0QFXJYDDCaAdLcGgIR0Blox9uxbB5dX2UKGgGR8BCXuq//NqyaAdLdGgIR0Blo7Ve8f3fdX2UKGgGR8BYUYFqzqrzaAdLd2gIR0Blo6gXdj5LdX2UKGgGR8BY3Kv7m+0xaAdLd2gIR0BlpSr92ovSdX2UKGgGR8BCaNfG+9J0aAdLTmgIR0BlpUTDfm9ydX2UKGgGR8BT+3J1aGHpaAdLRGgIR0BlpaRU3n6mdX2UKGgGR8Bifi72+PBBaAdLeWgIR0Blpb+717IDdX2UKGgGR8BdItQO4G2UaAdLa2gIR0BlpmEdvKlpdX2UKGgGR8BgzCMglnh9aAdLoGgIR0Blp6W5Yoy9dX2UKGgGR8BgcQ5BC2MLaAdLVGgIR0Blp9nyup0fdX2UKGgGR8BP0VEuxrzoaAdLQGgIR0BlqBZyMkyDdX2UKGgGR8BS5w1BMSK4aAdLXWgIR0BlqHLLZBcBdX2UKGgGR8BTrE8ifQKKaAdLXmgIR0Blq4vN/vv0dX2UKGgGR8BkhVwT/Q0GaAdLYmgIR0BlrA/TspocdX2UKGgGR8BLPupjtoi+aAdLSmgIR0Blrece8wpOdX2UKGgGR8Bu15WV/tpmaAdLV2gIR0BlriQHRkVfdX2UKGgGR8BJSpAlfJFLaAdLXWgIR0BlrukJrtVrdX2UKGgGR8BKKqn3ta6jaAdLgmgIR0Blr91KXfIkdX2UKGgGR8BaIx5TqB3BaAdLZGgIR0Blr8/6fra/dX2UKGgGR8A/galDWsijaAdLQmgIR0BlsN5OafBfdX2UKGgGR8BBNL9MsYl6aAdLSGgIR0BlsUl7dBSldX2UKGgGR8BUDssYl6Z6aAdLaWgIR0BlslOKwY+CdX2UKGgGR8BVYKbjLjgiaAdLamgIR0Bls7IHTqjadX2UKGgGR8A6E8cMmWt2aAdLeGgIR0BltKRp1zQvdX2UKGgGR8BAtK2SdOIqaAdLmWgIR0BltayhSLqEdX2UKGgGR8BIXBpYcNpeaAdLd2gIR0BltrH2h7E6dX2UKGgGR8BnczXQMQVcaAdLX2gIR0Blt+G9HtngdX2UKGgGR8BiFtCgK4QSaAdLkmgIR0Blt/lyR0U5dX2UKGgGR8BdgjWGyon8aAdLW2gIR0Blt/ZqVQhwdX2UKGgGR8AmV8YyfthNaAdLf2gIR0Blt/AmAskIdX2UKGgGR8BT5vdl/YrbaAdLUGgIR0BluKdjG1hLdX2UKGgGR8BQoCJwbVBlaAdLTGgIR0BluVRJmNBGdX2UKGgGR8BhSTqD9OynaAdLUWgIR0BlucdeY2KmdX2UKGgGR8BANbbUPQOXaAdLRmgIR0BluvUhFEy+dX2UKGgGR8BfLS+pOvdNaAdLUGgIR0Bluxl8PWhAdX2UKGgGR8BW2De9Ba9saAdLdGgIR0BlvJplBhQWdX2UKGgGR8App+rlvIfbaAdLTmgIR0BlvRW5paicdX2UKGgGR8BVOT6SDAaeaAdLgWgIR0Blvu3H7xd6dX2UKGgGR8BVTNPgvUSaaAdLUWgIR0Blv0YVIqb0dX2UKGgGR8Bgyb5IpYs/aAdLgWgIR0BlwGQQtjCpdX2UKGgGR8BQnJJCjUNKaAdLVGgIR0BlwJWBBiTddX2UKGgGR8BdYvRzBAObaAdLUmgIR0BlwX8GcFyJdX2UKGgGR8BDbFjd56dEaAdLSGgIR0BlwbgTAWSEdX2UKGgGR8BQJ8mfGuLaaAdLbmgIR0Blwbi6xxDLdX2UKGgGR8BW3gG4ZuQ7aAdLVWgIR0BlweYnfEXMdX2UKGgGR8BL6tRNyo4uaAdLW2gIR0BlwypeeFtbdX2UKGgGR8BUA2VzIV/MaAdLZWgIR0Blw73dsSCfdX2UKGgGR8BdS+MQ2/BWaAdLTmgIR0BlxD79AHE/dX2UKGgGR8BQdOHnEETyaAdLUGgIR0BlxfUlRgqmdX2UKGgGR8BPqiz1K5CoaAdLRWgIR0BlyJ8BuGbkdX2UKGgGR8BRS5rLyMDPaAdLWWgIR0BlyRIxxkupdX2UKGgGR8BeOj28IzFdaAdLhWgIR0BlyW5WilBQdX2UKGgGR8BWY2kvboKVaAdLdWgIR0BlyWI9C/oJdX2UKGgGR8BH+HuRcNYsaAdLRWgIR0BlzGkDZDiPdX2UKGgGR8BZoVtj0+TvaAdLf2gIR0BlzvT/hl19dX2UKGgGR8BhcwK+i8FqaAdLc2gIR0Bl09LcsUZfdX2UKGgGR8BRfFxbSqlxaAdLXWgIR0Bl1Dslb/wRdX2UKGgGR8BhlSXBxgiNaAdLa2gIR0Bl1GiL2pQ2dX2UKGgGR8BcZThP0qYraAdLO2gIR0Bl1eoFV1fWdX2UKGgGR8BbSDcuanaWaAdLWGgIR0Bl1hAlfJFLdX2UKGgGR8BavVFx4ptraAdLb2gIR0Bl1lBBzFMqdX2UKGgGR8BW/+LR8c+8aAdLXWgIR0Bl1jdN34bkdX2UKGgGR8BRE/PgNwzdaAdLdWgIR0Bl1wp+c6NmdX2UKGgGR8BaP5emelKsaAdLbWgIR0Bl15pBX0XhdX2UKGgGR8Bl/vgzguRLaAdLYmgIR0Bl2PseGO+7dX2UKGgGR8BRu2oFV1fWaAdLWmgIR0Bl2ZJsfq5cdX2UKGgGR8BVaN1U2kzoaAdLk2gIR0Bl2jr9l2/0dX2UKGgGR8Bb5njdYW+HaAdLaGgIR0Bl2w5aNdZ8dX2UKGgGR8BHhNlRP421aAdLb2gIR0Bl3R5cC5mRdX2UKGgGR8BXlHJYDDCQaAdLeGgIR0Bl3Q6Oo5xSdX2UKGgGR8BJ4GHHmzSkaAdLUGgIR0Bl3T+T/yXldX2UKGgGR8BVV/kBCD28aAdLVGgIR0Bl39k8RtgsdX2UKGgGR8BYra7dznzQaAdLf2gIR0Bl4BZdOZb7dWUu"
|
| 49 |
+
},
|
| 50 |
+
"ep_success_buffer": {
|
| 51 |
+
":type:": "<class 'collections.deque'>",
|
| 52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
| 53 |
+
},
|
| 54 |
+
"_n_updates": 28,
|
| 55 |
+
"observation_space": {
|
| 56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
| 57 |
+
":serialized:": "gAWVdwIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBNudW1weS5fY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolggAAAAAAAAAAQEBAQEBAQGUaBVLCIWUaBl0lFKUjAZfc2hhcGWUSwiFlIwDbG93lGgRKJYgAAAAAAAAAAAAtMIAALTCAACgwAAAoMDbD0nAAACgwAAAAIAAAACAlGgLSwiFlGgZdJRSlIwEaGlnaJRoESiWIAAAAAAAAAAAALRCAAC0QgAAoEAAAKBA2w9JQAAAoEAAAIA/AACAP5RoC0sIhZRoGXSUUpSMCGxvd19yZXBylIxbWy05MC4gICAgICAgIC05MC4gICAgICAgICAtNS4gICAgICAgICAtNS4gICAgICAgICAtMy4xNDE1OTI3ICAtNS4KICAtMC4gICAgICAgICAtMC4gICAgICAgXZSMCWhpZ2hfcmVwcpSMU1s5MC4gICAgICAgIDkwLiAgICAgICAgIDUuICAgICAgICAgNS4gICAgICAgICAzLjE0MTU5MjcgIDUuCiAgMS4gICAgICAgICAxLiAgICAgICBdlIwKX25wX3JhbmRvbZROdWIu",
|
| 58 |
+
"dtype": "float32",
|
| 59 |
+
"bounded_below": "[ True True True True True True True True]",
|
| 60 |
+
"bounded_above": "[ True True True True True True True True]",
|
| 61 |
+
"_shape": [
|
| 62 |
+
8
|
| 63 |
+
],
|
| 64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
| 65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
| 66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
| 67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
| 68 |
+
"_np_random": null
|
| 69 |
+
},
|
| 70 |
+
"action_space": {
|
| 71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
| 72 |
+
":serialized:": "gAWV3AAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFm51bXB5Ll9jb3JlLm11bHRpYXJyYXmUjAZzY2FsYXKUk5SMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJDCAQAAAAAAAAAlIaUUpSMBXN0YXJ0lGgIaA5DCAAAAAAAAAAAlIaUUpSMBl9zaGFwZZQpjAVkdHlwZZRoDowKX25wX3JhbmRvbZROdWIu",
|
| 73 |
+
"n": "4",
|
| 74 |
+
"start": "0",
|
| 75 |
+
"_shape": [],
|
| 76 |
+
"dtype": "int64",
|
| 77 |
+
"_np_random": null
|
| 78 |
+
},
|
| 79 |
+
"n_envs": 16,
|
| 80 |
+
"n_steps": 1024,
|
| 81 |
+
"gamma": 0.999,
|
| 82 |
+
"gae_lambda": 0.98,
|
| 83 |
+
"ent_coef": 0.01,
|
| 84 |
+
"vf_coef": 0.5,
|
| 85 |
+
"max_grad_norm": 0.5,
|
| 86 |
+
"batch_size": 64,
|
| 87 |
+
"n_epochs": 4,
|
| 88 |
+
"clip_range": {
|
| 89 |
+
":type:": "<class 'function'>",
|
| 90 |
+
":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
| 91 |
+
},
|
| 92 |
+
"clip_range_vf": null,
|
| 93 |
+
"normalize_advantage": true,
|
| 94 |
+
"target_kl": null,
|
| 95 |
+
"lr_schedule": {
|
| 96 |
+
":type:": "<class 'function'>",
|
| 97 |
+
":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
| 98 |
+
}
|
| 99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:35816b64d125da37574a2eefa203f19d805b6e1f1ff29bd2d64ce32fcaca3e9e
|
| 3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8f432399dbd283b33a7d669485ffdc22cebc8f67c67307a002706892a235c755
|
| 3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
| 3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
- OS: Linux-6.1.123+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Mar 30 16:01:29 UTC 2025
|
| 2 |
+
- Python: 3.11.12
|
| 3 |
+
- Stable-Baselines3: 2.0.0a5
|
| 4 |
+
- PyTorch: 2.6.0+cu124
|
| 5 |
+
- GPU Enabled: True
|
| 6 |
+
- Numpy: 2.0.2
|
| 7 |
+
- Cloudpickle: 3.1.1
|
| 8 |
+
- Gymnasium: 0.28.1
|
| 9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d0abfcda9939d42f3780b98b4f2ff5a4bd108d13773260cac64c80d17018d1c1
|
| 3 |
+
size 164585
|
results.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"mean_reward": -169.0661777, "std_reward": 112.83637960624316, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-05-17T02:53:54.337676"}
|