Mirror from https://github.com/yuvraj108c/ComfyUI-Upscaler-Tensorrt
Browse files- .gitattributes +1 -0
- .github/FUNDING.yml +2 -0
- .gitignore +1 -0
- LICENSE +437 -0
- README.md +122 -0
- __init__.py +203 -0
- assets/node_v3.png +3 -0
- assets/tensorrt_upscaling_workflow.json +184 -0
- load_upscaler_config.json +24 -0
- requirements.txt +3 -0
- scripts/export_onnx.py +79 -0
- scripts/export_trt.py +29 -0
- scripts/export_trt_from_directory.py +62 -0
- trt_utilities.py +283 -0
- utilities.py +139 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
assets/node_v3.png filter=lfs diff=lfs merge=lfs -text
|
.github/FUNDING.yml
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
github: yuvraj108c
|
| 2 |
+
custom: ["https://paypal.me/yuvraj108c", "https://buymeacoffee.com/yuvraj108cz"]
|
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
__pycache__
|
LICENSE
ADDED
|
@@ -0,0 +1,437 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Attribution-NonCommercial-ShareAlike 4.0 International
|
| 2 |
+
|
| 3 |
+
=======================================================================
|
| 4 |
+
|
| 5 |
+
Creative Commons Corporation ("Creative Commons") is not a law firm and
|
| 6 |
+
does not provide legal services or legal advice. Distribution of
|
| 7 |
+
Creative Commons public licenses does not create a lawyer-client or
|
| 8 |
+
other relationship. Creative Commons makes its licenses and related
|
| 9 |
+
information available on an "as-is" basis. Creative Commons gives no
|
| 10 |
+
warranties regarding its licenses, any material licensed under their
|
| 11 |
+
terms and conditions, or any related information. Creative Commons
|
| 12 |
+
disclaims all liability for damages resulting from their use to the
|
| 13 |
+
fullest extent possible.
|
| 14 |
+
|
| 15 |
+
Using Creative Commons Public Licenses
|
| 16 |
+
|
| 17 |
+
Creative Commons public licenses provide a standard set of terms and
|
| 18 |
+
conditions that creators and other rights holders may use to share
|
| 19 |
+
original works of authorship and other material subject to copyright
|
| 20 |
+
and certain other rights specified in the public license below. The
|
| 21 |
+
following considerations are for informational purposes only, are not
|
| 22 |
+
exhaustive, and do not form part of our licenses.
|
| 23 |
+
|
| 24 |
+
Considerations for licensors: Our public licenses are
|
| 25 |
+
intended for use by those authorized to give the public
|
| 26 |
+
permission to use material in ways otherwise restricted by
|
| 27 |
+
copyright and certain other rights. Our licenses are
|
| 28 |
+
irrevocable. Licensors should read and understand the terms
|
| 29 |
+
and conditions of the license they choose before applying it.
|
| 30 |
+
Licensors should also secure all rights necessary before
|
| 31 |
+
applying our licenses so that the public can reuse the
|
| 32 |
+
material as expected. Licensors should clearly mark any
|
| 33 |
+
material not subject to the license. This includes other CC-
|
| 34 |
+
licensed material, or material used under an exception or
|
| 35 |
+
limitation to copyright. More considerations for licensors:
|
| 36 |
+
wiki.creativecommons.org/Considerations_for_licensors
|
| 37 |
+
|
| 38 |
+
Considerations for the public: By using one of our public
|
| 39 |
+
licenses, a licensor grants the public permission to use the
|
| 40 |
+
licensed material under specified terms and conditions. If
|
| 41 |
+
the licensor's permission is not necessary for any reason--for
|
| 42 |
+
example, because of any applicable exception or limitation to
|
| 43 |
+
copyright--then that use is not regulated by the license. Our
|
| 44 |
+
licenses grant only permissions under copyright and certain
|
| 45 |
+
other rights that a licensor has authority to grant. Use of
|
| 46 |
+
the licensed material may still be restricted for other
|
| 47 |
+
reasons, including because others have copyright or other
|
| 48 |
+
rights in the material. A licensor may make special requests,
|
| 49 |
+
such as asking that all changes be marked or described.
|
| 50 |
+
Although not required by our licenses, you are encouraged to
|
| 51 |
+
respect those requests where reasonable. More considerations
|
| 52 |
+
for the public:
|
| 53 |
+
wiki.creativecommons.org/Considerations_for_licensees
|
| 54 |
+
|
| 55 |
+
=======================================================================
|
| 56 |
+
|
| 57 |
+
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International
|
| 58 |
+
Public License
|
| 59 |
+
|
| 60 |
+
By exercising the Licensed Rights (defined below), You accept and agree
|
| 61 |
+
to be bound by the terms and conditions of this Creative Commons
|
| 62 |
+
Attribution-NonCommercial-ShareAlike 4.0 International Public License
|
| 63 |
+
("Public License"). To the extent this Public License may be
|
| 64 |
+
interpreted as a contract, You are granted the Licensed Rights in
|
| 65 |
+
consideration of Your acceptance of these terms and conditions, and the
|
| 66 |
+
Licensor grants You such rights in consideration of benefits the
|
| 67 |
+
Licensor receives from making the Licensed Material available under
|
| 68 |
+
these terms and conditions.
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
Section 1 -- Definitions.
|
| 72 |
+
|
| 73 |
+
a. Adapted Material means material subject to Copyright and Similar
|
| 74 |
+
Rights that is derived from or based upon the Licensed Material
|
| 75 |
+
and in which the Licensed Material is translated, altered,
|
| 76 |
+
arranged, transformed, or otherwise modified in a manner requiring
|
| 77 |
+
permission under the Copyright and Similar Rights held by the
|
| 78 |
+
Licensor. For purposes of this Public License, where the Licensed
|
| 79 |
+
Material is a musical work, performance, or sound recording,
|
| 80 |
+
Adapted Material is always produced where the Licensed Material is
|
| 81 |
+
synched in timed relation with a moving image.
|
| 82 |
+
|
| 83 |
+
b. Adapter's License means the license You apply to Your Copyright
|
| 84 |
+
and Similar Rights in Your contributions to Adapted Material in
|
| 85 |
+
accordance with the terms and conditions of this Public License.
|
| 86 |
+
|
| 87 |
+
c. BY-NC-SA Compatible License means a license listed at
|
| 88 |
+
creativecommons.org/compatiblelicenses, approved by Creative
|
| 89 |
+
Commons as essentially the equivalent of this Public License.
|
| 90 |
+
|
| 91 |
+
d. Copyright and Similar Rights means copyright and/or similar rights
|
| 92 |
+
closely related to copyright including, without limitation,
|
| 93 |
+
performance, broadcast, sound recording, and Sui Generis Database
|
| 94 |
+
Rights, without regard to how the rights are labeled or
|
| 95 |
+
categorized. For purposes of this Public License, the rights
|
| 96 |
+
specified in Section 2(b)(1)-(2) are not Copyright and Similar
|
| 97 |
+
Rights.
|
| 98 |
+
|
| 99 |
+
e. Effective Technological Measures means those measures that, in the
|
| 100 |
+
absence of proper authority, may not be circumvented under laws
|
| 101 |
+
fulfilling obligations under Article 11 of the WIPO Copyright
|
| 102 |
+
Treaty adopted on December 20, 1996, and/or similar international
|
| 103 |
+
agreements.
|
| 104 |
+
|
| 105 |
+
f. Exceptions and Limitations means fair use, fair dealing, and/or
|
| 106 |
+
any other exception or limitation to Copyright and Similar Rights
|
| 107 |
+
that applies to Your use of the Licensed Material.
|
| 108 |
+
|
| 109 |
+
g. License Elements means the license attributes listed in the name
|
| 110 |
+
of a Creative Commons Public License. The License Elements of this
|
| 111 |
+
Public License are Attribution, NonCommercial, and ShareAlike.
|
| 112 |
+
|
| 113 |
+
h. Licensed Material means the artistic or literary work, database,
|
| 114 |
+
or other material to which the Licensor applied this Public
|
| 115 |
+
License.
|
| 116 |
+
|
| 117 |
+
i. Licensed Rights means the rights granted to You subject to the
|
| 118 |
+
terms and conditions of this Public License, which are limited to
|
| 119 |
+
all Copyright and Similar Rights that apply to Your use of the
|
| 120 |
+
Licensed Material and that the Licensor has authority to license.
|
| 121 |
+
|
| 122 |
+
j. Licensor means the individual(s) or entity(ies) granting rights
|
| 123 |
+
under this Public License.
|
| 124 |
+
|
| 125 |
+
k. NonCommercial means not primarily intended for or directed towards
|
| 126 |
+
commercial advantage or monetary compensation. For purposes of
|
| 127 |
+
this Public License, the exchange of the Licensed Material for
|
| 128 |
+
other material subject to Copyright and Similar Rights by digital
|
| 129 |
+
file-sharing or similar means is NonCommercial provided there is
|
| 130 |
+
no payment of monetary compensation in connection with the
|
| 131 |
+
exchange.
|
| 132 |
+
|
| 133 |
+
l. Share means to provide material to the public by any means or
|
| 134 |
+
process that requires permission under the Licensed Rights, such
|
| 135 |
+
as reproduction, public display, public performance, distribution,
|
| 136 |
+
dissemination, communication, or importation, and to make material
|
| 137 |
+
available to the public including in ways that members of the
|
| 138 |
+
public may access the material from a place and at a time
|
| 139 |
+
individually chosen by them.
|
| 140 |
+
|
| 141 |
+
m. Sui Generis Database Rights means rights other than copyright
|
| 142 |
+
resulting from Directive 96/9/EC of the European Parliament and of
|
| 143 |
+
the Council of 11 March 1996 on the legal protection of databases,
|
| 144 |
+
as amended and/or succeeded, as well as other essentially
|
| 145 |
+
equivalent rights anywhere in the world.
|
| 146 |
+
|
| 147 |
+
n. You means the individual or entity exercising the Licensed Rights
|
| 148 |
+
under this Public License. Your has a corresponding meaning.
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
Section 2 -- Scope.
|
| 152 |
+
|
| 153 |
+
a. License grant.
|
| 154 |
+
|
| 155 |
+
1. Subject to the terms and conditions of this Public License,
|
| 156 |
+
the Licensor hereby grants You a worldwide, royalty-free,
|
| 157 |
+
non-sublicensable, non-exclusive, irrevocable license to
|
| 158 |
+
exercise the Licensed Rights in the Licensed Material to:
|
| 159 |
+
|
| 160 |
+
a. reproduce and Share the Licensed Material, in whole or
|
| 161 |
+
in part, for NonCommercial purposes only; and
|
| 162 |
+
|
| 163 |
+
b. produce, reproduce, and Share Adapted Material for
|
| 164 |
+
NonCommercial purposes only.
|
| 165 |
+
|
| 166 |
+
2. Exceptions and Limitations. For the avoidance of doubt, where
|
| 167 |
+
Exceptions and Limitations apply to Your use, this Public
|
| 168 |
+
License does not apply, and You do not need to comply with
|
| 169 |
+
its terms and conditions.
|
| 170 |
+
|
| 171 |
+
3. Term. The term of this Public License is specified in Section
|
| 172 |
+
6(a).
|
| 173 |
+
|
| 174 |
+
4. Media and formats; technical modifications allowed. The
|
| 175 |
+
Licensor authorizes You to exercise the Licensed Rights in
|
| 176 |
+
all media and formats whether now known or hereafter created,
|
| 177 |
+
and to make technical modifications necessary to do so. The
|
| 178 |
+
Licensor waives and/or agrees not to assert any right or
|
| 179 |
+
authority to forbid You from making technical modifications
|
| 180 |
+
necessary to exercise the Licensed Rights, including
|
| 181 |
+
technical modifications necessary to circumvent Effective
|
| 182 |
+
Technological Measures. For purposes of this Public License,
|
| 183 |
+
simply making modifications authorized by this Section 2(a)
|
| 184 |
+
(4) never produces Adapted Material.
|
| 185 |
+
|
| 186 |
+
5. Downstream recipients.
|
| 187 |
+
|
| 188 |
+
a. Offer from the Licensor -- Licensed Material. Every
|
| 189 |
+
recipient of the Licensed Material automatically
|
| 190 |
+
receives an offer from the Licensor to exercise the
|
| 191 |
+
Licensed Rights under the terms and conditions of this
|
| 192 |
+
Public License.
|
| 193 |
+
|
| 194 |
+
b. Additional offer from the Licensor -- Adapted Material.
|
| 195 |
+
Every recipient of Adapted Material from You
|
| 196 |
+
automatically receives an offer from the Licensor to
|
| 197 |
+
exercise the Licensed Rights in the Adapted Material
|
| 198 |
+
under the conditions of the Adapter's License You apply.
|
| 199 |
+
|
| 200 |
+
c. No downstream restrictions. You may not offer or impose
|
| 201 |
+
any additional or different terms or conditions on, or
|
| 202 |
+
apply any Effective Technological Measures to, the
|
| 203 |
+
Licensed Material if doing so restricts exercise of the
|
| 204 |
+
Licensed Rights by any recipient of the Licensed
|
| 205 |
+
Material.
|
| 206 |
+
|
| 207 |
+
6. No endorsement. Nothing in this Public License constitutes or
|
| 208 |
+
may be construed as permission to assert or imply that You
|
| 209 |
+
are, or that Your use of the Licensed Material is, connected
|
| 210 |
+
with, or sponsored, endorsed, or granted official status by,
|
| 211 |
+
the Licensor or others designated to receive attribution as
|
| 212 |
+
provided in Section 3(a)(1)(A)(i).
|
| 213 |
+
|
| 214 |
+
b. Other rights.
|
| 215 |
+
|
| 216 |
+
1. Moral rights, such as the right of integrity, are not
|
| 217 |
+
licensed under this Public License, nor are publicity,
|
| 218 |
+
privacy, and/or other similar personality rights; however, to
|
| 219 |
+
the extent possible, the Licensor waives and/or agrees not to
|
| 220 |
+
assert any such rights held by the Licensor to the limited
|
| 221 |
+
extent necessary to allow You to exercise the Licensed
|
| 222 |
+
Rights, but not otherwise.
|
| 223 |
+
|
| 224 |
+
2. Patent and trademark rights are not licensed under this
|
| 225 |
+
Public License.
|
| 226 |
+
|
| 227 |
+
3. To the extent possible, the Licensor waives any right to
|
| 228 |
+
collect royalties from You for the exercise of the Licensed
|
| 229 |
+
Rights, whether directly or through a collecting society
|
| 230 |
+
under any voluntary or waivable statutory or compulsory
|
| 231 |
+
licensing scheme. In all other cases the Licensor expressly
|
| 232 |
+
reserves any right to collect such royalties, including when
|
| 233 |
+
the Licensed Material is used other than for NonCommercial
|
| 234 |
+
purposes.
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
Section 3 -- License Conditions.
|
| 238 |
+
|
| 239 |
+
Your exercise of the Licensed Rights is expressly made subject to the
|
| 240 |
+
following conditions.
|
| 241 |
+
|
| 242 |
+
a. Attribution.
|
| 243 |
+
|
| 244 |
+
1. If You Share the Licensed Material (including in modified
|
| 245 |
+
form), You must:
|
| 246 |
+
|
| 247 |
+
a. retain the following if it is supplied by the Licensor
|
| 248 |
+
with the Licensed Material:
|
| 249 |
+
|
| 250 |
+
i. identification of the creator(s) of the Licensed
|
| 251 |
+
Material and any others designated to receive
|
| 252 |
+
attribution, in any reasonable manner requested by
|
| 253 |
+
the Licensor (including by pseudonym if
|
| 254 |
+
designated);
|
| 255 |
+
|
| 256 |
+
ii. a copyright notice;
|
| 257 |
+
|
| 258 |
+
iii. a notice that refers to this Public License;
|
| 259 |
+
|
| 260 |
+
iv. a notice that refers to the disclaimer of
|
| 261 |
+
warranties;
|
| 262 |
+
|
| 263 |
+
v. a URI or hyperlink to the Licensed Material to the
|
| 264 |
+
extent reasonably practicable;
|
| 265 |
+
|
| 266 |
+
b. indicate if You modified the Licensed Material and
|
| 267 |
+
retain an indication of any previous modifications; and
|
| 268 |
+
|
| 269 |
+
c. indicate the Licensed Material is licensed under this
|
| 270 |
+
Public License, and include the text of, or the URI or
|
| 271 |
+
hyperlink to, this Public License.
|
| 272 |
+
|
| 273 |
+
2. You may satisfy the conditions in Section 3(a)(1) in any
|
| 274 |
+
reasonable manner based on the medium, means, and context in
|
| 275 |
+
which You Share the Licensed Material. For example, it may be
|
| 276 |
+
reasonable to satisfy the conditions by providing a URI or
|
| 277 |
+
hyperlink to a resource that includes the required
|
| 278 |
+
information.
|
| 279 |
+
3. If requested by the Licensor, You must remove any of the
|
| 280 |
+
information required by Section 3(a)(1)(A) to the extent
|
| 281 |
+
reasonably practicable.
|
| 282 |
+
|
| 283 |
+
b. ShareAlike.
|
| 284 |
+
|
| 285 |
+
In addition to the conditions in Section 3(a), if You Share
|
| 286 |
+
Adapted Material You produce, the following conditions also apply.
|
| 287 |
+
|
| 288 |
+
1. The Adapter's License You apply must be a Creative Commons
|
| 289 |
+
license with the same License Elements, this version or
|
| 290 |
+
later, or a BY-NC-SA Compatible License.
|
| 291 |
+
|
| 292 |
+
2. You must include the text of, or the URI or hyperlink to, the
|
| 293 |
+
Adapter's License You apply. You may satisfy this condition
|
| 294 |
+
in any reasonable manner based on the medium, means, and
|
| 295 |
+
context in which You Share Adapted Material.
|
| 296 |
+
|
| 297 |
+
3. You may not offer or impose any additional or different terms
|
| 298 |
+
or conditions on, or apply any Effective Technological
|
| 299 |
+
Measures to, Adapted Material that restrict exercise of the
|
| 300 |
+
rights granted under the Adapter's License You apply.
|
| 301 |
+
|
| 302 |
+
|
| 303 |
+
Section 4 -- Sui Generis Database Rights.
|
| 304 |
+
|
| 305 |
+
Where the Licensed Rights include Sui Generis Database Rights that
|
| 306 |
+
apply to Your use of the Licensed Material:
|
| 307 |
+
|
| 308 |
+
a. for the avoidance of doubt, Section 2(a)(1) grants You the right
|
| 309 |
+
to extract, reuse, reproduce, and Share all or a substantial
|
| 310 |
+
portion of the contents of the database for NonCommercial purposes
|
| 311 |
+
only;
|
| 312 |
+
|
| 313 |
+
b. if You include all or a substantial portion of the database
|
| 314 |
+
contents in a database in which You have Sui Generis Database
|
| 315 |
+
Rights, then the database in which You have Sui Generis Database
|
| 316 |
+
Rights (but not its individual contents) is Adapted Material,
|
| 317 |
+
including for purposes of Section 3(b); and
|
| 318 |
+
|
| 319 |
+
c. You must comply with the conditions in Section 3(a) if You Share
|
| 320 |
+
all or a substantial portion of the contents of the database.
|
| 321 |
+
|
| 322 |
+
For the avoidance of doubt, this Section 4 supplements and does not
|
| 323 |
+
replace Your obligations under this Public License where the Licensed
|
| 324 |
+
Rights include other Copyright and Similar Rights.
|
| 325 |
+
|
| 326 |
+
|
| 327 |
+
Section 5 -- Disclaimer of Warranties and Limitation of Liability.
|
| 328 |
+
|
| 329 |
+
a. UNLESS OTHERWISE SEPARATELY UNDERTAKEN BY THE LICENSOR, TO THE
|
| 330 |
+
EXTENT POSSIBLE, THE LICENSOR OFFERS THE LICENSED MATERIAL AS-IS
|
| 331 |
+
AND AS-AVAILABLE, AND MAKES NO REPRESENTATIONS OR WARRANTIES OF
|
| 332 |
+
ANY KIND CONCERNING THE LICENSED MATERIAL, WHETHER EXPRESS,
|
| 333 |
+
IMPLIED, STATUTORY, OR OTHER. THIS INCLUDES, WITHOUT LIMITATION,
|
| 334 |
+
WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR
|
| 335 |
+
PURPOSE, NON-INFRINGEMENT, ABSENCE OF LATENT OR OTHER DEFECTS,
|
| 336 |
+
ACCURACY, OR THE PRESENCE OR ABSENCE OF ERRORS, WHETHER OR NOT
|
| 337 |
+
KNOWN OR DISCOVERABLE. WHERE DISCLAIMERS OF WARRANTIES ARE NOT
|
| 338 |
+
ALLOWED IN FULL OR IN PART, THIS DISCLAIMER MAY NOT APPLY TO YOU.
|
| 339 |
+
|
| 340 |
+
b. TO THE EXTENT POSSIBLE, IN NO EVENT WILL THE LICENSOR BE LIABLE
|
| 341 |
+
TO YOU ON ANY LEGAL THEORY (INCLUDING, WITHOUT LIMITATION,
|
| 342 |
+
NEGLIGENCE) OR OTHERWISE FOR ANY DIRECT, SPECIAL, INDIRECT,
|
| 343 |
+
INCIDENTAL, CONSEQUENTIAL, PUNITIVE, EXEMPLARY, OR OTHER LOSSES,
|
| 344 |
+
COSTS, EXPENSES, OR DAMAGES ARISING OUT OF THIS PUBLIC LICENSE OR
|
| 345 |
+
USE OF THE LICENSED MATERIAL, EVEN IF THE LICENSOR HAS BEEN
|
| 346 |
+
ADVISED OF THE POSSIBILITY OF SUCH LOSSES, COSTS, EXPENSES, OR
|
| 347 |
+
DAMAGES. WHERE A LIMITATION OF LIABILITY IS NOT ALLOWED IN FULL OR
|
| 348 |
+
IN PART, THIS LIMITATION MAY NOT APPLY TO YOU.
|
| 349 |
+
|
| 350 |
+
c. The disclaimer of warranties and limitation of liability provided
|
| 351 |
+
above shall be interpreted in a manner that, to the extent
|
| 352 |
+
possible, most closely approximates an absolute disclaimer and
|
| 353 |
+
waiver of all liability.
|
| 354 |
+
|
| 355 |
+
|
| 356 |
+
Section 6 -- Term and Termination.
|
| 357 |
+
|
| 358 |
+
a. This Public License applies for the term of the Copyright and
|
| 359 |
+
Similar Rights licensed here. However, if You fail to comply with
|
| 360 |
+
this Public License, then Your rights under this Public License
|
| 361 |
+
terminate automatically.
|
| 362 |
+
|
| 363 |
+
b. Where Your right to use the Licensed Material has terminated under
|
| 364 |
+
Section 6(a), it reinstates:
|
| 365 |
+
|
| 366 |
+
1. automatically as of the date the violation is cured, provided
|
| 367 |
+
it is cured within 30 days of Your discovery of the
|
| 368 |
+
violation; or
|
| 369 |
+
|
| 370 |
+
2. upon express reinstatement by the Licensor.
|
| 371 |
+
|
| 372 |
+
For the avoidance of doubt, this Section 6(b) does not affect any
|
| 373 |
+
right the Licensor may have to seek remedies for Your violations
|
| 374 |
+
of this Public License.
|
| 375 |
+
|
| 376 |
+
c. For the avoidance of doubt, the Licensor may also offer the
|
| 377 |
+
Licensed Material under separate terms or conditions or stop
|
| 378 |
+
distributing the Licensed Material at any time; however, doing so
|
| 379 |
+
will not terminate this Public License.
|
| 380 |
+
|
| 381 |
+
d. Sections 1, 5, 6, 7, and 8 survive termination of this Public
|
| 382 |
+
License.
|
| 383 |
+
|
| 384 |
+
|
| 385 |
+
Section 7 -- Other Terms and Conditions.
|
| 386 |
+
|
| 387 |
+
a. The Licensor shall not be bound by any additional or different
|
| 388 |
+
terms or conditions communicated by You unless expressly agreed.
|
| 389 |
+
|
| 390 |
+
b. Any arrangements, understandings, or agreements regarding the
|
| 391 |
+
Licensed Material not stated herein are separate from and
|
| 392 |
+
independent of the terms and conditions of this Public License.
|
| 393 |
+
|
| 394 |
+
|
| 395 |
+
Section 8 -- Interpretation.
|
| 396 |
+
|
| 397 |
+
a. For the avoidance of doubt, this Public License does not, and
|
| 398 |
+
shall not be interpreted to, reduce, limit, restrict, or impose
|
| 399 |
+
conditions on any use of the Licensed Material that could lawfully
|
| 400 |
+
be made without permission under this Public License.
|
| 401 |
+
|
| 402 |
+
b. To the extent possible, if any provision of this Public License is
|
| 403 |
+
deemed unenforceable, it shall be automatically reformed to the
|
| 404 |
+
minimum extent necessary to make it enforceable. If the provision
|
| 405 |
+
cannot be reformed, it shall be severed from this Public License
|
| 406 |
+
without affecting the enforceability of the remaining terms and
|
| 407 |
+
conditions.
|
| 408 |
+
|
| 409 |
+
c. No term or condition of this Public License will be waived and no
|
| 410 |
+
failure to comply consented to unless expressly agreed to by the
|
| 411 |
+
Licensor.
|
| 412 |
+
|
| 413 |
+
d. Nothing in this Public License constitutes or may be interpreted
|
| 414 |
+
as a limitation upon, or waiver of, any privileges and immunities
|
| 415 |
+
that apply to the Licensor or You, including from the legal
|
| 416 |
+
processes of any jurisdiction or authority.
|
| 417 |
+
|
| 418 |
+
=======================================================================
|
| 419 |
+
|
| 420 |
+
Creative Commons is not a party to its public
|
| 421 |
+
licenses. Notwithstanding, Creative Commons may elect to apply one of
|
| 422 |
+
its public licenses to material it publishes and in those instances
|
| 423 |
+
will be considered the “Licensor.” The text of the Creative Commons
|
| 424 |
+
public licenses is dedicated to the public domain under the CC0 Public
|
| 425 |
+
Domain Dedication. Except for the limited purpose of indicating that
|
| 426 |
+
material is shared under a Creative Commons public license or as
|
| 427 |
+
otherwise permitted by the Creative Commons policies published at
|
| 428 |
+
creativecommons.org/policies, Creative Commons does not authorize the
|
| 429 |
+
use of the trademark "Creative Commons" or any other trademark or logo
|
| 430 |
+
of Creative Commons without its prior written consent including,
|
| 431 |
+
without limitation, in connection with any unauthorized modifications
|
| 432 |
+
to any of its public licenses or any other arrangements,
|
| 433 |
+
understandings, or agreements concerning use of licensed material. For
|
| 434 |
+
the avoidance of doubt, this paragraph does not form part of the
|
| 435 |
+
public licenses.
|
| 436 |
+
|
| 437 |
+
Creative Commons may be contacted at creativecommons.org.
|
README.md
ADDED
|
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<div align="center">
|
| 2 |
+
|
| 3 |
+
# ComfyUI Upscaler TensorRT ⚡
|
| 4 |
+
|
| 5 |
+
[](https://www.python.org/downloads/release/python-31012/)
|
| 6 |
+
[](https://developer.nvidia.com/cuda-downloads)
|
| 7 |
+
[](https://developer.nvidia.com/tensorrt)
|
| 8 |
+
[](https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en)
|
| 9 |
+
|
| 10 |
+
</div>
|
| 11 |
+
|
| 12 |
+
This project provides a [Tensorrt](https://github.com/NVIDIA/TensorRT) implementation for fast image upscaling using models inside ComfyUI (2-4x faster)
|
| 13 |
+
|
| 14 |
+
<p align="center">
|
| 15 |
+
<img src="assets/node_v3.png" style="height: 400px" />
|
| 16 |
+
</p>
|
| 17 |
+
|
| 18 |
+
## ⭐ Support
|
| 19 |
+
If you like my projects and wish to see updates and new features, please consider supporting me. It helps a lot!
|
| 20 |
+
|
| 21 |
+
[](https://github.com/yuvraj108c/ComfyUI-Depth-Anything-Tensorrt)
|
| 22 |
+
[](https://github.com/yuvraj108c/ComfyUI-Upscaler-Tensorrt)
|
| 23 |
+
[](https://github.com/yuvraj108c/ComfyUI-Dwpose-Tensorrt)
|
| 24 |
+
[](https://github.com/yuvraj108c/ComfyUI-Rife-Tensorrt)
|
| 25 |
+
|
| 26 |
+
[](https://github.com/yuvraj108c/ComfyUI-Whisper)
|
| 27 |
+
[](https://github.com/yuvraj108c/ComfyUI_InvSR)
|
| 28 |
+
[](https://github.com/yuvraj108c/ComfyUI-Thera)
|
| 29 |
+
[](https://github.com/yuvraj108c/ComfyUI-Video-Depth-Anything)
|
| 30 |
+
[](https://github.com/yuvraj108c/ComfyUI-PiperTTS)
|
| 31 |
+
|
| 32 |
+
[](https://www.buymeacoffee.com/yuvraj108cZ)
|
| 33 |
+
[](https://paypal.me/yuvraj108c)
|
| 34 |
+
---
|
| 35 |
+
|
| 36 |
+
## ⏱️ Performance
|
| 37 |
+
|
| 38 |
+
_Note: The following results were benchmarked on FP16 engines inside ComfyUI, using 100 identical frames_
|
| 39 |
+
|
| 40 |
+
| Device | Model | Input Resolution (WxH) | Output Resolution (WxH) | FPS |
|
| 41 |
+
| :----: | :-----------: | :--------------------: | :---------------------: | :-: |
|
| 42 |
+
| RTX5090 | 4x-UltraSharp | 512 x 512 | 2048 x 2048 | 12.7 |
|
| 43 |
+
| RTX5090 | 4x-UltraSharp | 1280 x 1280 | 5120 x 5120 | 2.0 |
|
| 44 |
+
| RTX4090 | 4x-UltraSharp | 512 x 512 | 2048 x 2048 | 6.7 |
|
| 45 |
+
| RTX4090 | 4x-UltraSharp | 1280 x 1280 | 5120 x 5120 | 1.1 |
|
| 46 |
+
| RTX3060 | 4x-UltraSharp | 512 x 512 | 2048 x 2048 | 2.2 |
|
| 47 |
+
| RTX3060 | 4x-UltraSharp | 1280 x 1280 | 5120 x 5120 | 0.35 |
|
| 48 |
+
|
| 49 |
+
## 🚀 Installation
|
| 50 |
+
- Install via the manager
|
| 51 |
+
- Or, navigate to the `/ComfyUI/custom_nodes` directory
|
| 52 |
+
|
| 53 |
+
```bash
|
| 54 |
+
git clone https://github.com/yuvraj108c/ComfyUI-Upscaler-Tensorrt.git
|
| 55 |
+
cd ./ComfyUI-Upscaler-Tensorrt
|
| 56 |
+
pip install -r requirements.txt
|
| 57 |
+
```
|
| 58 |
+
|
| 59 |
+
## 🛠️ Supported Models
|
| 60 |
+
|
| 61 |
+
- These upscaler models have been tested to work with Tensorrt. Onnx are available [here](https://huggingface.co/yuvraj108c/ComfyUI-Upscaler-Onnx/tree/main)
|
| 62 |
+
- The exported tensorrt models support dynamic image resolutions from 256x256 to 1280x1280 px (e.g 960x540, 512x512, 1280x720 etc).
|
| 63 |
+
|
| 64 |
+
- [4x-AnimeSharp](https://openmodeldb.info/models/4x-AnimeSharp)
|
| 65 |
+
- [4x-UltraSharp](https://openmodeldb.info/models/4x-UltraSharp)
|
| 66 |
+
- [4x-WTP-UDS-Esrgan](https://openmodeldb.info/models/4x-WTP-UDS-Esrgan)
|
| 67 |
+
- [4x_NMKD-Siax_200k](https://openmodeldb.info/models/4x-NMKD-Siax-CX)
|
| 68 |
+
- [4x_RealisticRescaler_100000_G](https://openmodeldb.info/models/4x-RealisticRescaler)
|
| 69 |
+
- [4x_foolhardy_Remacri](https://openmodeldb.info/models/4x-Remacri)
|
| 70 |
+
- [RealESRGAN_x4](https://openmodeldb.info/models/4x-realesrgan-x4plus)
|
| 71 |
+
- [4xNomos2_otf_esrgan](https://openmodeldb.info/models/4x-Nomos2-otf-esrgan)
|
| 72 |
+
- [4x-ClearRealityV1](https://openmodeldb.info/models/4x-ClearRealityV1)
|
| 73 |
+
- [4x_UniversalUpscalerV2-Neutral_115000_swaG](https://openmodeldb.info/models/4x-UniversalUpscalerV2-Neutral)
|
| 74 |
+
- [4x-UltraSharpV2_Lite](https://huggingface.co/Kim2091/UltraSharpV2)
|
| 75 |
+
|
| 76 |
+
## ☀️ Usage
|
| 77 |
+
|
| 78 |
+
- Load [example workflow](assets/tensorrt_upscaling_workflow.json)
|
| 79 |
+
- Choose the appropriate model from the dropdown
|
| 80 |
+
- The tensorrt engine will be built automatically
|
| 81 |
+
- Load an image of resolution between 256-1280px
|
| 82 |
+
- Set `resize_to` to resize the upscaled images to fixed resolutions
|
| 83 |
+
|
| 84 |
+
## 🔧 Custom Models
|
| 85 |
+
- To export other ESRGAN models, you'll have to build the onnx model first, using [export_onnx.py](scripts/export_onnx.py)
|
| 86 |
+
- Place the onnx model in `/ComfyUI/models/onnx/YOUR_MODEL.onnx`
|
| 87 |
+
- Then, add your model to this list [load_upscaler_config.json](load_upscaler_config.json)
|
| 88 |
+
- Finally, run the same workflow and choose your model
|
| 89 |
+
- If you've tested another working tensorrt model, let me know to add it officially to this node
|
| 90 |
+
|
| 91 |
+
## 🚨 Updates
|
| 92 |
+
### 27 Auguest 2025
|
| 93 |
+
- Support 4x-UltraSharpV2_Lite, 4x_UniversalUpscalerV2-Neutral_115000_swaG, 4x-ClearRealityV1
|
| 94 |
+
- Load models from config [PR#57](https://github.com/yuvraj108c/ComfyUI-Upscaler-Tensorrt/pull/57)
|
| 95 |
+
|
| 96 |
+
### 30 April 2025
|
| 97 |
+
- Merge https://github.com/yuvraj108c/ComfyUI-Upscaler-Tensorrt/pull/48 by @BiiirdPrograms to fix soft-lock by raising an error when input image dimensions unsupported
|
| 98 |
+
### 4 March 2025 (breaking)
|
| 99 |
+
- Automatic tensorrt engines are built from the workflow itself, to simplify the process for non-technical people
|
| 100 |
+
- Separate model loading and tensorrt processing into different nodes
|
| 101 |
+
- Optimise post processing
|
| 102 |
+
- Update onnx export script
|
| 103 |
+
|
| 104 |
+
## ⚠️ Known issues
|
| 105 |
+
|
| 106 |
+
- If you upgrade tensorrt version, you'll have to rebuild the engines
|
| 107 |
+
- Only models with ESRGAN architecture are currently working
|
| 108 |
+
- High ram usage when exporting `.pth` to `.onnx`
|
| 109 |
+
|
| 110 |
+
## 🤖 Environment tested
|
| 111 |
+
|
| 112 |
+
- Ubuntu 22.04 LTS, Cuda 12.4, Tensorrt 10.8, Python 3.10, H100 GPU
|
| 113 |
+
- Windows 11
|
| 114 |
+
|
| 115 |
+
## 👏 Credits
|
| 116 |
+
|
| 117 |
+
- [NVIDIA/Stable-Diffusion-WebUI-TensorRT](https://github.com/NVIDIA/Stable-Diffusion-WebUI-TensorRT)
|
| 118 |
+
- [comfyanonymous/ComfyUI](https://github.com/comfyanonymous/ComfyUI)
|
| 119 |
+
|
| 120 |
+
## License
|
| 121 |
+
|
| 122 |
+
[Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)](https://creativecommons.org/licenses/by-nc-sa/4.0/)
|
__init__.py
ADDED
|
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import folder_paths
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
from comfy.utils import ProgressBar
|
| 6 |
+
from .trt_utilities import Engine
|
| 7 |
+
from .utilities import download_file, ColoredLogger, get_final_resolutions
|
| 8 |
+
import comfy.model_management as mm
|
| 9 |
+
import time
|
| 10 |
+
import tensorrt
|
| 11 |
+
import json # <--- Import json module
|
| 12 |
+
|
| 13 |
+
logger = ColoredLogger("ComfyUI-Upscaler-Tensorrt")
|
| 14 |
+
|
| 15 |
+
IMAGE_DIM_MIN = 256
|
| 16 |
+
IMAGE_DIM_OPT = 512
|
| 17 |
+
IMAGE_DIM_MAX = 1280
|
| 18 |
+
|
| 19 |
+
# --- Function to load configuration ---
|
| 20 |
+
def load_node_config(config_filename="load_upscaler_config.json"):
|
| 21 |
+
"""Loads node configuration from a JSON file."""
|
| 22 |
+
current_dir = os.path.dirname(__file__)
|
| 23 |
+
config_path = os.path.join(current_dir, config_filename)
|
| 24 |
+
|
| 25 |
+
default_config = { # Fallback in case file is missing or corrupt
|
| 26 |
+
"model": {
|
| 27 |
+
"options": ["4x-UltraSharp"],
|
| 28 |
+
"default": "4x-UltraSharp",
|
| 29 |
+
"tooltip": "Default model (fallback from code)"
|
| 30 |
+
},
|
| 31 |
+
"precision": {
|
| 32 |
+
"options": ["fp16", "fp32"],
|
| 33 |
+
"default": "fp16",
|
| 34 |
+
"tooltip": "Default precision (fallback from code)"
|
| 35 |
+
}
|
| 36 |
+
}
|
| 37 |
+
|
| 38 |
+
try:
|
| 39 |
+
with open(config_path, 'r') as f:
|
| 40 |
+
config = json.load(f)
|
| 41 |
+
logger.info(f"Successfully loaded configuration from {config_filename}")
|
| 42 |
+
return config
|
| 43 |
+
except FileNotFoundError:
|
| 44 |
+
logger.warning(f"Configuration file '{config_path}' not found. Using default fallback configuration.")
|
| 45 |
+
return default_config
|
| 46 |
+
except json.JSONDecodeError:
|
| 47 |
+
logger.error(f"Error decoding JSON from '{config_path}'. Using default fallback configuration.")
|
| 48 |
+
return default_config
|
| 49 |
+
except Exception as e:
|
| 50 |
+
logger.error(f"An unexpected error occurred while loading '{config_path}': {e}. Using default fallback.")
|
| 51 |
+
return default_config
|
| 52 |
+
|
| 53 |
+
# --- Load the configuration once when the module is imported ---
|
| 54 |
+
LOAD_UPSCALER_NODE_CONFIG = load_node_config()
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
class UpscalerTensorrt:
|
| 58 |
+
@classmethod
|
| 59 |
+
def INPUT_TYPES(s):
|
| 60 |
+
return {
|
| 61 |
+
"required": {
|
| 62 |
+
"images": ("IMAGE", {"tooltip": f"Images to be upscaled. Resolution must be between {IMAGE_DIM_MIN} and {IMAGE_DIM_MAX} px"}),
|
| 63 |
+
"upscaler_trt_model": ("UPSCALER_TRT_MODEL", {"tooltip": "Tensorrt model built and loaded"}),
|
| 64 |
+
"resize_to": (["none", "HD", "FHD", "2k", "4k", "2x", "3x"],{"tooltip": "Resize the upscaled image to fixed resolutions, optional"}),
|
| 65 |
+
}
|
| 66 |
+
}
|
| 67 |
+
RETURN_NAMES = ("IMAGE",)
|
| 68 |
+
RETURN_TYPES = ("IMAGE",)
|
| 69 |
+
FUNCTION = "upscaler_tensorrt"
|
| 70 |
+
CATEGORY = "tensorrt"
|
| 71 |
+
DESCRIPTION = "Upscale images with tensorrt"
|
| 72 |
+
|
| 73 |
+
def upscaler_tensorrt(self, images, upscaler_trt_model, resize_to):
|
| 74 |
+
images_bchw = images.permute(0, 3, 1, 2)
|
| 75 |
+
B, C, H, W = images_bchw.shape
|
| 76 |
+
|
| 77 |
+
for dim in (H, W):
|
| 78 |
+
if dim > IMAGE_DIM_MAX or dim < IMAGE_DIM_MIN:
|
| 79 |
+
raise ValueError(f"Input image dimensions fall outside of the supported range: {IMAGE_DIM_MIN} to {IMAGE_DIM_MAX} px!\nImage dimensions: {W}px by {H}px")
|
| 80 |
+
|
| 81 |
+
final_width, final_height = get_final_resolutions(W, H, resize_to)
|
| 82 |
+
logger.info(f"Upscaling {B} images from H:{H}, W:{W} to H:{H*4}, W:{W*4} | Final resolution: H:{final_height}, W:{final_width} | resize_to: {resize_to}")
|
| 83 |
+
|
| 84 |
+
shape_dict = {
|
| 85 |
+
"input": {"shape": (1, 3, H, W)},
|
| 86 |
+
"output": {"shape": (1, 3, H*4, W*4)},
|
| 87 |
+
}
|
| 88 |
+
upscaler_trt_model.activate()
|
| 89 |
+
upscaler_trt_model.allocate_buffers(shape_dict=shape_dict)
|
| 90 |
+
|
| 91 |
+
cudaStream = torch.cuda.current_stream().cuda_stream
|
| 92 |
+
pbar = ProgressBar(B)
|
| 93 |
+
images_list = list(torch.split(images_bchw, split_size_or_sections=1))
|
| 94 |
+
|
| 95 |
+
upscaled_frames = torch.empty((B, C, final_height, final_width), dtype=torch.float32, device=mm.intermediate_device())
|
| 96 |
+
must_resize = W*4 != final_width or H*4 != final_height
|
| 97 |
+
|
| 98 |
+
for i, img in enumerate(images_list):
|
| 99 |
+
result = upscaler_trt_model.infer({"input": img}, cudaStream)
|
| 100 |
+
result = result["output"]
|
| 101 |
+
|
| 102 |
+
if must_resize:
|
| 103 |
+
result = torch.nn.functional.interpolate(
|
| 104 |
+
result,
|
| 105 |
+
size=(final_height, final_width),
|
| 106 |
+
mode='bicubic',
|
| 107 |
+
antialias=True
|
| 108 |
+
)
|
| 109 |
+
upscaled_frames[i] = result.to(mm.intermediate_device())
|
| 110 |
+
pbar.update(1)
|
| 111 |
+
|
| 112 |
+
output = upscaled_frames.permute(0, 2, 3, 1)
|
| 113 |
+
upscaler_trt_model.reset()
|
| 114 |
+
mm.soft_empty_cache()
|
| 115 |
+
|
| 116 |
+
logger.info(f"Output shape: {output.shape}")
|
| 117 |
+
return (output,)
|
| 118 |
+
|
| 119 |
+
class LoadUpscalerTensorrtModel:
|
| 120 |
+
@classmethod
|
| 121 |
+
def INPUT_TYPES(cls): # Changed 's' to 'cls' for convention
|
| 122 |
+
# Use the pre-loaded configuration
|
| 123 |
+
model_config = LOAD_UPSCALER_NODE_CONFIG.get("model", {})
|
| 124 |
+
precision_config = LOAD_UPSCALER_NODE_CONFIG.get("precision", {})
|
| 125 |
+
|
| 126 |
+
# Provide sensible defaults if keys are missing in the config (though load_node_config handles this broadly)
|
| 127 |
+
model_options = model_config.get("options", ["4x-UltraSharp"])
|
| 128 |
+
model_default = model_config.get("default", "4x-UltraSharp")
|
| 129 |
+
model_tooltip = model_config.get("tooltip", "Select a model.")
|
| 130 |
+
|
| 131 |
+
precision_options = precision_config.get("options", ["fp16", "fp32"])
|
| 132 |
+
precision_default = precision_config.get("default", "fp16")
|
| 133 |
+
precision_tooltip = precision_config.get("tooltip", "Select precision.")
|
| 134 |
+
|
| 135 |
+
return {
|
| 136 |
+
"required": {
|
| 137 |
+
"model": (model_options, {"default": model_default, "tooltip": model_tooltip}),
|
| 138 |
+
"precision": (precision_options, {"default": precision_default, "tooltip": precision_tooltip}),
|
| 139 |
+
}
|
| 140 |
+
}
|
| 141 |
+
|
| 142 |
+
RETURN_NAMES = ("upscaler_trt_model",)
|
| 143 |
+
RETURN_TYPES = ("UPSCALER_TRT_MODEL",)
|
| 144 |
+
# FUNCTION = "main" # This was duplicated, removing
|
| 145 |
+
CATEGORY = "tensorrt"
|
| 146 |
+
DESCRIPTION = "Load tensorrt models, they will be built automatically if not found."
|
| 147 |
+
FUNCTION = "load_upscaler_tensorrt_model" # This is the correct one
|
| 148 |
+
|
| 149 |
+
def load_upscaler_tensorrt_model(self, model, precision):
|
| 150 |
+
tensorrt_models_dir = os.path.join(folder_paths.models_dir, "tensorrt", "upscaler")
|
| 151 |
+
onnx_models_dir = os.path.join(folder_paths.models_dir, "onnx")
|
| 152 |
+
|
| 153 |
+
os.makedirs(tensorrt_models_dir, exist_ok=True)
|
| 154 |
+
os.makedirs(onnx_models_dir, exist_ok=True)
|
| 155 |
+
|
| 156 |
+
onnx_model_path = os.path.join(onnx_models_dir, f"{model}.onnx")
|
| 157 |
+
|
| 158 |
+
engine_channel = 3
|
| 159 |
+
engine_min_batch, engine_opt_batch, engine_max_batch = 1, 1, 1
|
| 160 |
+
engine_min_h, engine_opt_h, engine_max_h = IMAGE_DIM_MIN, IMAGE_DIM_OPT, IMAGE_DIM_MAX
|
| 161 |
+
engine_min_w, engine_opt_w, engine_max_w = IMAGE_DIM_MIN, IMAGE_DIM_OPT, IMAGE_DIM_MAX
|
| 162 |
+
tensorrt_model_path = os.path.join(tensorrt_models_dir, f"{model}_{precision}_{engine_min_batch}x{engine_channel}x{engine_min_h}x{engine_min_w}_{engine_opt_batch}x{engine_channel}x{engine_opt_h}x{engine_opt_w}_{engine_max_batch}x{engine_channel}x{engine_max_h}x{engine_max_w}_{tensorrt.__version__}.trt")
|
| 163 |
+
|
| 164 |
+
if not os.path.exists(tensorrt_model_path):
|
| 165 |
+
if not os.path.exists(onnx_model_path):
|
| 166 |
+
onnx_model_download_url = f"https://huggingface.co/yuvraj108c/ComfyUI-Upscaler-Onnx/resolve/main/{model}.onnx"
|
| 167 |
+
logger.info(f"Downloading {onnx_model_download_url}")
|
| 168 |
+
download_file(url=onnx_model_download_url, save_path=onnx_model_path)
|
| 169 |
+
else:
|
| 170 |
+
logger.info(f"Onnx model found at: {onnx_model_path}")
|
| 171 |
+
|
| 172 |
+
logger.info(f"Building TensorRT engine for {onnx_model_path}: {tensorrt_model_path}")
|
| 173 |
+
mm.soft_empty_cache()
|
| 174 |
+
s = time.time()
|
| 175 |
+
engine = Engine(tensorrt_model_path)
|
| 176 |
+
engine.build(
|
| 177 |
+
onnx_path=onnx_model_path,
|
| 178 |
+
fp16= True if precision == "fp16" else False,
|
| 179 |
+
input_profile=[
|
| 180 |
+
{"input": [(engine_min_batch,engine_channel,engine_min_h,engine_min_w), (engine_opt_batch,engine_channel,engine_opt_h,engine_min_w), (engine_max_batch,engine_channel,engine_max_h,engine_max_w)]},
|
| 181 |
+
],
|
| 182 |
+
)
|
| 183 |
+
e = time.time()
|
| 184 |
+
logger.info(f"Time taken to build: {(e-s)} seconds")
|
| 185 |
+
|
| 186 |
+
logger.info(f"Loading TensorRT engine: {tensorrt_model_path}")
|
| 187 |
+
mm.soft_empty_cache()
|
| 188 |
+
engine = Engine(tensorrt_model_path)
|
| 189 |
+
engine.load()
|
| 190 |
+
|
| 191 |
+
return (engine,)
|
| 192 |
+
|
| 193 |
+
NODE_CLASS_MAPPINGS = {
|
| 194 |
+
"UpscalerTensorrt": UpscalerTensorrt,
|
| 195 |
+
"LoadUpscalerTensorrtModel": LoadUpscalerTensorrtModel,
|
| 196 |
+
}
|
| 197 |
+
|
| 198 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
| 199 |
+
"UpscalerTensorrt": "Upscaler Tensorrt ⚡",
|
| 200 |
+
"LoadUpscalerTensorrtModel": "Load Upscale Tensorrt Model",
|
| 201 |
+
}
|
| 202 |
+
|
| 203 |
+
__all__ = ['NODE_CLASS_MAPPINGS', 'NODE_DISPLAY_NAME_MAPPINGS']
|
assets/node_v3.png
ADDED
|
Git LFS Details
|
assets/tensorrt_upscaling_workflow.json
ADDED
|
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"last_node_id": 13,
|
| 3 |
+
"last_link_id": 16,
|
| 4 |
+
"nodes": [
|
| 5 |
+
{
|
| 6 |
+
"id": 5,
|
| 7 |
+
"type": "LoadImage",
|
| 8 |
+
"pos": [
|
| 9 |
+
-301.260986328125,
|
| 10 |
+
16.96155548095703
|
| 11 |
+
],
|
| 12 |
+
"size": [
|
| 13 |
+
315,
|
| 14 |
+
314
|
| 15 |
+
],
|
| 16 |
+
"flags": {},
|
| 17 |
+
"order": 0,
|
| 18 |
+
"mode": 0,
|
| 19 |
+
"inputs": [],
|
| 20 |
+
"outputs": [
|
| 21 |
+
{
|
| 22 |
+
"name": "IMAGE",
|
| 23 |
+
"type": "IMAGE",
|
| 24 |
+
"links": [
|
| 25 |
+
16
|
| 26 |
+
]
|
| 27 |
+
},
|
| 28 |
+
{
|
| 29 |
+
"name": "MASK",
|
| 30 |
+
"type": "MASK",
|
| 31 |
+
"links": null
|
| 32 |
+
}
|
| 33 |
+
],
|
| 34 |
+
"properties": {
|
| 35 |
+
"Node name for S&R": "LoadImage"
|
| 36 |
+
},
|
| 37 |
+
"widgets_values": [
|
| 38 |
+
"example.png",
|
| 39 |
+
"image"
|
| 40 |
+
]
|
| 41 |
+
},
|
| 42 |
+
{
|
| 43 |
+
"id": 2,
|
| 44 |
+
"type": "LoadUpscalerTensorrtModel",
|
| 45 |
+
"pos": [
|
| 46 |
+
-297.7986755371094,
|
| 47 |
+
450.532958984375
|
| 48 |
+
],
|
| 49 |
+
"size": [
|
| 50 |
+
315,
|
| 51 |
+
82
|
| 52 |
+
],
|
| 53 |
+
"flags": {},
|
| 54 |
+
"order": 1,
|
| 55 |
+
"mode": 0,
|
| 56 |
+
"inputs": [],
|
| 57 |
+
"outputs": [
|
| 58 |
+
{
|
| 59 |
+
"name": "upscaler_trt_model",
|
| 60 |
+
"type": "UPSCALER_TRT_MODEL",
|
| 61 |
+
"links": [
|
| 62 |
+
1
|
| 63 |
+
],
|
| 64 |
+
"slot_index": 0
|
| 65 |
+
}
|
| 66 |
+
],
|
| 67 |
+
"properties": {
|
| 68 |
+
"Node name for S&R": "LoadUpscalerTensorrtModel"
|
| 69 |
+
},
|
| 70 |
+
"widgets_values": [
|
| 71 |
+
"4x-UltraSharp",
|
| 72 |
+
"fp16"
|
| 73 |
+
]
|
| 74 |
+
},
|
| 75 |
+
{
|
| 76 |
+
"id": 13,
|
| 77 |
+
"type": "PreviewImage",
|
| 78 |
+
"pos": [
|
| 79 |
+
519.0885009765625,
|
| 80 |
+
-51.63800048828125
|
| 81 |
+
],
|
| 82 |
+
"size": [
|
| 83 |
+
706.2752075195312,
|
| 84 |
+
756.0552978515625
|
| 85 |
+
],
|
| 86 |
+
"flags": {},
|
| 87 |
+
"order": 3,
|
| 88 |
+
"mode": 0,
|
| 89 |
+
"inputs": [
|
| 90 |
+
{
|
| 91 |
+
"name": "images",
|
| 92 |
+
"type": "IMAGE",
|
| 93 |
+
"link": 14
|
| 94 |
+
}
|
| 95 |
+
],
|
| 96 |
+
"outputs": [],
|
| 97 |
+
"properties": {
|
| 98 |
+
"Node name for S&R": "PreviewImage"
|
| 99 |
+
},
|
| 100 |
+
"widgets_values": []
|
| 101 |
+
},
|
| 102 |
+
{
|
| 103 |
+
"id": 3,
|
| 104 |
+
"type": "UpscalerTensorrt",
|
| 105 |
+
"pos": [
|
| 106 |
+
111.23614501953125,
|
| 107 |
+
352.1241760253906
|
| 108 |
+
],
|
| 109 |
+
"size": [
|
| 110 |
+
315,
|
| 111 |
+
78
|
| 112 |
+
],
|
| 113 |
+
"flags": {},
|
| 114 |
+
"order": 2,
|
| 115 |
+
"mode": 0,
|
| 116 |
+
"inputs": [
|
| 117 |
+
{
|
| 118 |
+
"name": "images",
|
| 119 |
+
"type": "IMAGE",
|
| 120 |
+
"link": 16
|
| 121 |
+
},
|
| 122 |
+
{
|
| 123 |
+
"name": "upscaler_trt_model",
|
| 124 |
+
"type": "UPSCALER_TRT_MODEL",
|
| 125 |
+
"link": 1
|
| 126 |
+
}
|
| 127 |
+
],
|
| 128 |
+
"outputs": [
|
| 129 |
+
{
|
| 130 |
+
"name": "IMAGE",
|
| 131 |
+
"type": "IMAGE",
|
| 132 |
+
"links": [
|
| 133 |
+
14
|
| 134 |
+
],
|
| 135 |
+
"slot_index": 0
|
| 136 |
+
}
|
| 137 |
+
],
|
| 138 |
+
"properties": {
|
| 139 |
+
"Node name for S&R": "UpscalerTensorrt"
|
| 140 |
+
},
|
| 141 |
+
"widgets_values": [
|
| 142 |
+
"none"
|
| 143 |
+
]
|
| 144 |
+
}
|
| 145 |
+
],
|
| 146 |
+
"links": [
|
| 147 |
+
[
|
| 148 |
+
1,
|
| 149 |
+
2,
|
| 150 |
+
0,
|
| 151 |
+
3,
|
| 152 |
+
1,
|
| 153 |
+
"UPSCALER_TRT_MODEL"
|
| 154 |
+
],
|
| 155 |
+
[
|
| 156 |
+
14,
|
| 157 |
+
3,
|
| 158 |
+
0,
|
| 159 |
+
13,
|
| 160 |
+
0,
|
| 161 |
+
"IMAGE"
|
| 162 |
+
],
|
| 163 |
+
[
|
| 164 |
+
16,
|
| 165 |
+
5,
|
| 166 |
+
0,
|
| 167 |
+
3,
|
| 168 |
+
0,
|
| 169 |
+
"IMAGE"
|
| 170 |
+
]
|
| 171 |
+
],
|
| 172 |
+
"groups": [],
|
| 173 |
+
"config": {},
|
| 174 |
+
"extra": {
|
| 175 |
+
"ds": {
|
| 176 |
+
"scale": 1,
|
| 177 |
+
"offset": [
|
| 178 |
+
500.6130318234485,
|
| 179 |
+
102.83383472565859
|
| 180 |
+
]
|
| 181 |
+
}
|
| 182 |
+
},
|
| 183 |
+
"version": 0.4
|
| 184 |
+
}
|
load_upscaler_config.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model": {
|
| 3 |
+
"options": [
|
| 4 |
+
"4x-AnimeSharp",
|
| 5 |
+
"4x-UltraSharp",
|
| 6 |
+
"4x-WTP-UDS-Esrgan",
|
| 7 |
+
"4x_NMKD-Siax_200k",
|
| 8 |
+
"4x_RealisticRescaler_100000_G",
|
| 9 |
+
"4x_foolhardy_Remacri",
|
| 10 |
+
"RealESRGAN_x4",
|
| 11 |
+
"4xNomos2_otf_esrgan",
|
| 12 |
+
"4x_UniversalUpscalerV2-Neutral_115000_swaG",
|
| 13 |
+
"4x-ClearRealityV1",
|
| 14 |
+
"4x-UltraSharpV2_Lite"
|
| 15 |
+
],
|
| 16 |
+
"default": "4x-UltraSharp",
|
| 17 |
+
"tooltip": "These models have been tested with tensorrt. Loaded from config."
|
| 18 |
+
},
|
| 19 |
+
"precision": {
|
| 20 |
+
"options": ["fp16", "fp32"],
|
| 21 |
+
"default": "fp16",
|
| 22 |
+
"tooltip": "Precision to build the tensorrt engines. Loaded from config."
|
| 23 |
+
}
|
| 24 |
+
}
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
tensorrt<=10.12.0.36
|
| 2 |
+
polygraphy
|
| 3 |
+
requests
|
scripts/export_onnx.py
ADDED
|
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# download the upscale models & place inside models/upscaler_models
|
| 2 |
+
# edit model paths accordingly
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import folder_paths
|
| 6 |
+
from spandrel import ModelLoader, ImageModelDescriptor
|
| 7 |
+
|
| 8 |
+
model_name = "4xNomos2_otf_esrgan.pth"
|
| 9 |
+
onnx_save_path = "./4xNomos2_otf_esrgan.onnx"
|
| 10 |
+
|
| 11 |
+
model_path = folder_paths.get_full_path_or_raise("upscale_models", model_name)
|
| 12 |
+
model = ModelLoader().load_from_file(model_path).model.eval().cuda()
|
| 13 |
+
|
| 14 |
+
# Check dynamic shapes for esrgan 4x model
|
| 15 |
+
def supports_dynamic_shapes_esrgan(model, scale=4):
|
| 16 |
+
|
| 17 |
+
input_shapes = [
|
| 18 |
+
(1, 3, 64, 64),
|
| 19 |
+
(1, 3, 128, 128),
|
| 20 |
+
(1, 3, 256, 192),
|
| 21 |
+
(1, 3, 512, 256),
|
| 22 |
+
(1, 3, 512, 512)
|
| 23 |
+
]
|
| 24 |
+
|
| 25 |
+
all_passed = True
|
| 26 |
+
|
| 27 |
+
with torch.no_grad():
|
| 28 |
+
for shape in input_shapes:
|
| 29 |
+
try:
|
| 30 |
+
dummy_input = torch.randn(*shape).cuda()
|
| 31 |
+
output = model(dummy_input)
|
| 32 |
+
|
| 33 |
+
expected_h = shape[2] * scale
|
| 34 |
+
expected_w = shape[3] * scale
|
| 35 |
+
|
| 36 |
+
assert output.shape[0] == shape[0], "Batch size mismatch"
|
| 37 |
+
assert output.shape[1] == shape[1], "Channel mismatch"
|
| 38 |
+
assert output.shape[2] == expected_h, f"Height mismatch: expected {expected_h}, got {output.shape[2]}"
|
| 39 |
+
assert output.shape[3] == expected_w, f"Width mismatch: expected {expected_w}, got {output.shape[3]}"
|
| 40 |
+
|
| 41 |
+
print(f"Success: input {shape} → output {output.shape}")
|
| 42 |
+
except Exception as e:
|
| 43 |
+
all_passed = False
|
| 44 |
+
print(f"Failure: input {shape} → error: {e}")
|
| 45 |
+
torch.cuda.empty_cache()
|
| 46 |
+
|
| 47 |
+
if all_passed: print(f"Success: Dynamic shapes supported.")
|
| 48 |
+
if not all_passed: print(f"Failure: Dynamic shapes NOT supported.")
|
| 49 |
+
return all_passed
|
| 50 |
+
|
| 51 |
+
# Use smaller dummy input if model supports
|
| 52 |
+
if supports_dynamic_shapes_esrgan(model):
|
| 53 |
+
shape = (1, 3, 64, 64)
|
| 54 |
+
print(f"Using {shape} input (less VRAM usage)")
|
| 55 |
+
else:
|
| 56 |
+
shape = (1, 3, 512, 512)
|
| 57 |
+
print(f"Using {shape} input (large VRAM usage)")
|
| 58 |
+
|
| 59 |
+
x = torch.rand(*shape).cuda()
|
| 60 |
+
|
| 61 |
+
dynamic_axes = {
|
| 62 |
+
"input": {0: "batch_size", 2: "width", 3: "height"},
|
| 63 |
+
"output": {0: "batch_size", 2: "width", 3: "height"},
|
| 64 |
+
}
|
| 65 |
+
|
| 66 |
+
with torch.no_grad():
|
| 67 |
+
torch.onnx.export(
|
| 68 |
+
model,
|
| 69 |
+
x,
|
| 70 |
+
onnx_save_path,
|
| 71 |
+
verbose=True,
|
| 72 |
+
input_names=['input'],
|
| 73 |
+
output_names=['output'],
|
| 74 |
+
opset_version=17,
|
| 75 |
+
export_params=True,
|
| 76 |
+
dynamic_axes=dynamic_axes,
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
print("Saved onnx to:", onnx_save_path)
|
scripts/export_trt.py
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import time
|
| 3 |
+
from utilities import Engine
|
| 4 |
+
|
| 5 |
+
def export_trt(trt_path=None, onnx_path=None, use_fp16=True):
|
| 6 |
+
if trt_path is None:
|
| 7 |
+
trt_path = input("Enter the path to save the TensorRT engine (e.g ./realesrgan.engine): ")
|
| 8 |
+
if onnx_path is None:
|
| 9 |
+
onnx_path = input("Enter the path to the ONNX model (e.g ./realesrgan.onnx): ")
|
| 10 |
+
|
| 11 |
+
engine = Engine(trt_path)
|
| 12 |
+
|
| 13 |
+
torch.cuda.empty_cache()
|
| 14 |
+
|
| 15 |
+
s = time.time()
|
| 16 |
+
ret = engine.build(
|
| 17 |
+
onnx_path,
|
| 18 |
+
use_fp16,
|
| 19 |
+
enable_preview=True,
|
| 20 |
+
input_profile=[
|
| 21 |
+
{"input": [(1,3,256,256), (1,3,512,512), (1,3,1280,1280)]}, # any sizes from 256x256 to 1280x1280
|
| 22 |
+
],
|
| 23 |
+
)
|
| 24 |
+
e = time.time()
|
| 25 |
+
print(f"Time taken to build: {(e-s)} seconds")
|
| 26 |
+
|
| 27 |
+
return ret
|
| 28 |
+
|
| 29 |
+
export_trt()
|
scripts/export_trt_from_directory.py
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import time
|
| 4 |
+
from utilities import Engine
|
| 5 |
+
|
| 6 |
+
def export_trt(trt_path=None, onnx_path=None, use_fp16=True):
|
| 7 |
+
option = input("Choose an option:\n1. Convert a single ONNX file\n2. Convert all ONNX files in a directory\nEnter your choice (1 or 2): ")
|
| 8 |
+
|
| 9 |
+
if option == '1':
|
| 10 |
+
onnx_path = input("Enter the path to the ONNX model (e.g ./realesrgan.onnx): ")
|
| 11 |
+
onnx_files = [onnx_path]
|
| 12 |
+
trt_dir = input("Enter the path to save the TensorRT engine (e.g ./trt_engine/): ")
|
| 13 |
+
elif option == '2':
|
| 14 |
+
onnx_dir = input("Enter the directory path containing ONNX models (e.g ./onnx_models/): ")
|
| 15 |
+
onnx_files = [os.path.join(onnx_dir, file) for file in os.listdir(onnx_dir) if file.endswith('.onnx')]
|
| 16 |
+
if not onnx_files:
|
| 17 |
+
raise ValueError(f"No .onnx files found in directory: {onnx_dir}")
|
| 18 |
+
trt_dir = input("Enter the directory path to save the TensorRT engines (e.g ./trt_engine/): ")
|
| 19 |
+
else:
|
| 20 |
+
raise ValueError("Invalid option. Please choose either 1 or 2.")
|
| 21 |
+
|
| 22 |
+
# Check if trt_dir already exists as a directory
|
| 23 |
+
if not os.path.exists(trt_dir):
|
| 24 |
+
os.makedirs(trt_dir)
|
| 25 |
+
|
| 26 |
+
#os.makedirs(trt_dir, exist_ok=True)
|
| 27 |
+
total_files = len(onnx_files)
|
| 28 |
+
for index, onnx_path in enumerate(onnx_files):
|
| 29 |
+
engine = Engine(trt_path)
|
| 30 |
+
|
| 31 |
+
torch.cuda.empty_cache()
|
| 32 |
+
base_name = os.path.splitext(os.path.basename(onnx_path))[0]
|
| 33 |
+
trt_path = os.path.join(trt_dir, f"{base_name}.engine")
|
| 34 |
+
|
| 35 |
+
print(f"Converting {onnx_path} to {trt_path}")
|
| 36 |
+
|
| 37 |
+
s = time.time()
|
| 38 |
+
|
| 39 |
+
# Initialize Engine with trt_path and clear CUDA cache
|
| 40 |
+
engine = Engine(trt_path)
|
| 41 |
+
torch.cuda.empty_cache()
|
| 42 |
+
|
| 43 |
+
ret = engine.build(
|
| 44 |
+
onnx_path,
|
| 45 |
+
use_fp16,
|
| 46 |
+
enable_preview=True,
|
| 47 |
+
input_profile=[
|
| 48 |
+
{"input": [(1,3,256,256), (1,3,512,512), (1,3,1280,1280)]}, # any sizes from 256x256 to 1280x1280
|
| 49 |
+
],
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
e = time.time()
|
| 53 |
+
print(f"Time taken to build: {(e-s)} seconds")
|
| 54 |
+
if index < total_files - 1:
|
| 55 |
+
# Delay for 10 seconds
|
| 56 |
+
print("Delaying for 10 seconds...")
|
| 57 |
+
time.sleep(10)
|
| 58 |
+
print("Resuming operations after delay...")
|
| 59 |
+
|
| 60 |
+
return
|
| 61 |
+
|
| 62 |
+
export_trt()
|
trt_utilities.py
ADDED
|
@@ -0,0 +1,283 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#
|
| 2 |
+
# Copyright 2022 The HuggingFace Inc. team.
|
| 3 |
+
# SPDX-FileCopyrightText: Copyright (c) 1993-2023 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
#
|
| 6 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 7 |
+
# you may not use this file except in compliance with the License.
|
| 8 |
+
# You may obtain a copy of the License at
|
| 9 |
+
#
|
| 10 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 11 |
+
#
|
| 12 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 13 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 14 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 15 |
+
# See the License for the specific language governing permissions and
|
| 16 |
+
# limitations under the License.
|
| 17 |
+
#
|
| 18 |
+
import torch
|
| 19 |
+
from torch.cuda import nvtx
|
| 20 |
+
from collections import OrderedDict
|
| 21 |
+
import numpy as np
|
| 22 |
+
from polygraphy.backend.common import bytes_from_path
|
| 23 |
+
from polygraphy import util
|
| 24 |
+
from polygraphy.backend.trt import ModifyNetworkOutputs, Profile
|
| 25 |
+
from polygraphy.backend.trt import (
|
| 26 |
+
engine_from_bytes,
|
| 27 |
+
engine_from_network,
|
| 28 |
+
network_from_onnx_path,
|
| 29 |
+
save_engine,
|
| 30 |
+
)
|
| 31 |
+
from polygraphy.logger import G_LOGGER
|
| 32 |
+
import tensorrt as trt
|
| 33 |
+
from logging import error, warning
|
| 34 |
+
from tqdm import tqdm
|
| 35 |
+
import copy
|
| 36 |
+
|
| 37 |
+
TRT_LOGGER = trt.Logger(trt.Logger.ERROR)
|
| 38 |
+
G_LOGGER.module_severity = G_LOGGER.ERROR
|
| 39 |
+
|
| 40 |
+
# Map of numpy dtype -> torch dtype
|
| 41 |
+
numpy_to_torch_dtype_dict = {
|
| 42 |
+
np.uint8: torch.uint8,
|
| 43 |
+
np.int8: torch.int8,
|
| 44 |
+
np.int16: torch.int16,
|
| 45 |
+
np.int32: torch.int32,
|
| 46 |
+
np.int64: torch.int64,
|
| 47 |
+
np.float16: torch.float16,
|
| 48 |
+
np.float32: torch.float32,
|
| 49 |
+
np.float64: torch.float64,
|
| 50 |
+
np.complex64: torch.complex64,
|
| 51 |
+
np.complex128: torch.complex128,
|
| 52 |
+
}
|
| 53 |
+
if np.version.full_version >= "1.24.0":
|
| 54 |
+
numpy_to_torch_dtype_dict[np.bool_] = torch.bool
|
| 55 |
+
else:
|
| 56 |
+
numpy_to_torch_dtype_dict[np.bool] = torch.bool
|
| 57 |
+
|
| 58 |
+
# Map of torch dtype -> numpy dtype
|
| 59 |
+
torch_to_numpy_dtype_dict = {
|
| 60 |
+
value: key for (key, value) in numpy_to_torch_dtype_dict.items()
|
| 61 |
+
}
|
| 62 |
+
|
| 63 |
+
class TQDMProgressMonitor(trt.IProgressMonitor):
|
| 64 |
+
def __init__(self):
|
| 65 |
+
trt.IProgressMonitor.__init__(self)
|
| 66 |
+
self._active_phases = {}
|
| 67 |
+
self._step_result = True
|
| 68 |
+
self.max_indent = 5
|
| 69 |
+
|
| 70 |
+
def phase_start(self, phase_name, parent_phase, num_steps):
|
| 71 |
+
leave = False
|
| 72 |
+
try:
|
| 73 |
+
if parent_phase is not None:
|
| 74 |
+
nbIndents = (
|
| 75 |
+
self._active_phases.get(parent_phase, {}).get(
|
| 76 |
+
"nbIndents", self.max_indent
|
| 77 |
+
)
|
| 78 |
+
+ 1
|
| 79 |
+
)
|
| 80 |
+
if nbIndents >= self.max_indent:
|
| 81 |
+
return
|
| 82 |
+
else:
|
| 83 |
+
nbIndents = 0
|
| 84 |
+
leave = True
|
| 85 |
+
self._active_phases[phase_name] = {
|
| 86 |
+
"tq": tqdm(
|
| 87 |
+
total=num_steps, desc=phase_name, leave=leave, position=nbIndents
|
| 88 |
+
),
|
| 89 |
+
"nbIndents": nbIndents,
|
| 90 |
+
"parent_phase": parent_phase,
|
| 91 |
+
}
|
| 92 |
+
except KeyboardInterrupt:
|
| 93 |
+
# The phase_start callback cannot directly cancel the build, so request the cancellation from within step_complete.
|
| 94 |
+
_step_result = False
|
| 95 |
+
|
| 96 |
+
def phase_finish(self, phase_name):
|
| 97 |
+
try:
|
| 98 |
+
if phase_name in self._active_phases.keys():
|
| 99 |
+
self._active_phases[phase_name]["tq"].update(
|
| 100 |
+
self._active_phases[phase_name]["tq"].total
|
| 101 |
+
- self._active_phases[phase_name]["tq"].n
|
| 102 |
+
)
|
| 103 |
+
|
| 104 |
+
parent_phase = self._active_phases[phase_name].get("parent_phase", None)
|
| 105 |
+
while parent_phase is not None:
|
| 106 |
+
self._active_phases[parent_phase]["tq"].refresh()
|
| 107 |
+
parent_phase = self._active_phases[parent_phase].get(
|
| 108 |
+
"parent_phase", None
|
| 109 |
+
)
|
| 110 |
+
if (
|
| 111 |
+
self._active_phases[phase_name]["parent_phase"]
|
| 112 |
+
in self._active_phases.keys()
|
| 113 |
+
):
|
| 114 |
+
self._active_phases[
|
| 115 |
+
self._active_phases[phase_name]["parent_phase"]
|
| 116 |
+
]["tq"].refresh()
|
| 117 |
+
del self._active_phases[phase_name]
|
| 118 |
+
pass
|
| 119 |
+
except KeyboardInterrupt:
|
| 120 |
+
_step_result = False
|
| 121 |
+
|
| 122 |
+
def step_complete(self, phase_name, step):
|
| 123 |
+
try:
|
| 124 |
+
if phase_name in self._active_phases.keys():
|
| 125 |
+
self._active_phases[phase_name]["tq"].update(
|
| 126 |
+
step - self._active_phases[phase_name]["tq"].n
|
| 127 |
+
)
|
| 128 |
+
return self._step_result
|
| 129 |
+
except KeyboardInterrupt:
|
| 130 |
+
# There is no need to propagate this exception to TensorRT. We can simply cancel the build.
|
| 131 |
+
return False
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
class Engine:
|
| 135 |
+
def __init__(
|
| 136 |
+
self,
|
| 137 |
+
engine_path,
|
| 138 |
+
):
|
| 139 |
+
self.engine_path = engine_path
|
| 140 |
+
self.engine = None
|
| 141 |
+
self.context = None
|
| 142 |
+
self.buffers = OrderedDict()
|
| 143 |
+
self.tensors = OrderedDict()
|
| 144 |
+
self.cuda_graph_instance = None # cuda graph
|
| 145 |
+
|
| 146 |
+
def __del__(self):
|
| 147 |
+
del self.engine
|
| 148 |
+
del self.context
|
| 149 |
+
del self.buffers
|
| 150 |
+
del self.tensors
|
| 151 |
+
|
| 152 |
+
def reset(self, engine_path=None):
|
| 153 |
+
# del self.engine
|
| 154 |
+
del self.context
|
| 155 |
+
del self.buffers
|
| 156 |
+
del self.tensors
|
| 157 |
+
# self.engine_path = engine_path
|
| 158 |
+
|
| 159 |
+
self.context = None
|
| 160 |
+
self.buffers = OrderedDict()
|
| 161 |
+
self.tensors = OrderedDict()
|
| 162 |
+
self.inputs = {}
|
| 163 |
+
self.outputs = {}
|
| 164 |
+
|
| 165 |
+
def build(
|
| 166 |
+
self,
|
| 167 |
+
onnx_path,
|
| 168 |
+
fp16,
|
| 169 |
+
input_profile=None,
|
| 170 |
+
enable_refit=False,
|
| 171 |
+
enable_preview=False,
|
| 172 |
+
enable_all_tactics=False,
|
| 173 |
+
timing_cache=None,
|
| 174 |
+
update_output_names=None,
|
| 175 |
+
):
|
| 176 |
+
p = [Profile()]
|
| 177 |
+
if input_profile:
|
| 178 |
+
p = [Profile() for i in range(len(input_profile))]
|
| 179 |
+
for _p, i_profile in zip(p, input_profile):
|
| 180 |
+
for name, dims in i_profile.items():
|
| 181 |
+
assert len(dims) == 3
|
| 182 |
+
_p.add(name, min=dims[0], opt=dims[1], max=dims[2])
|
| 183 |
+
|
| 184 |
+
config_kwargs = {}
|
| 185 |
+
if not enable_all_tactics:
|
| 186 |
+
config_kwargs["tactic_sources"] = []
|
| 187 |
+
|
| 188 |
+
network = network_from_onnx_path(
|
| 189 |
+
onnx_path, flags=[trt.OnnxParserFlag.NATIVE_INSTANCENORM]
|
| 190 |
+
)
|
| 191 |
+
if update_output_names:
|
| 192 |
+
print(f"Updating network outputs to {update_output_names}")
|
| 193 |
+
network = ModifyNetworkOutputs(network, update_output_names)
|
| 194 |
+
|
| 195 |
+
builder = network[0]
|
| 196 |
+
config = builder.create_builder_config()
|
| 197 |
+
config.progress_monitor = TQDMProgressMonitor()
|
| 198 |
+
|
| 199 |
+
config.set_flag(trt.BuilderFlag.FP16) if fp16 else None
|
| 200 |
+
config.set_flag(trt.BuilderFlag.REFIT) if enable_refit else None
|
| 201 |
+
|
| 202 |
+
profiles = copy.deepcopy(p)
|
| 203 |
+
for profile in profiles:
|
| 204 |
+
# Last profile is used for set_calibration_profile.
|
| 205 |
+
calib_profile = profile.fill_defaults(network[1]).to_trt(
|
| 206 |
+
builder, network[1]
|
| 207 |
+
)
|
| 208 |
+
config.add_optimization_profile(calib_profile)
|
| 209 |
+
|
| 210 |
+
try:
|
| 211 |
+
engine = engine_from_network(
|
| 212 |
+
network,
|
| 213 |
+
config,
|
| 214 |
+
)
|
| 215 |
+
except Exception as e:
|
| 216 |
+
error(f"Failed to build engine: {e}")
|
| 217 |
+
return 1
|
| 218 |
+
try:
|
| 219 |
+
save_engine(engine, path=self.engine_path)
|
| 220 |
+
except Exception as e:
|
| 221 |
+
error(f"Failed to save engine: {e}")
|
| 222 |
+
return 1
|
| 223 |
+
return 0
|
| 224 |
+
|
| 225 |
+
def load(self):
|
| 226 |
+
self.engine = engine_from_bytes(bytes_from_path(self.engine_path))
|
| 227 |
+
|
| 228 |
+
def activate(self, reuse_device_memory=None):
|
| 229 |
+
if reuse_device_memory:
|
| 230 |
+
self.context = self.engine.create_execution_context_without_device_memory()
|
| 231 |
+
# self.context.device_memory = reuse_device_memory
|
| 232 |
+
else:
|
| 233 |
+
self.context = self.engine.create_execution_context()
|
| 234 |
+
|
| 235 |
+
def allocate_buffers(self, shape_dict=None, device="cuda"):
|
| 236 |
+
nvtx.range_push("allocate_buffers")
|
| 237 |
+
for idx in range(self.engine.num_io_tensors):
|
| 238 |
+
name = self.engine.get_tensor_name(idx)
|
| 239 |
+
binding = self.engine[idx]
|
| 240 |
+
if shape_dict and binding in shape_dict:
|
| 241 |
+
shape = shape_dict[binding]["shape"]
|
| 242 |
+
else:
|
| 243 |
+
shape = self.context.get_tensor_shape(name)
|
| 244 |
+
|
| 245 |
+
dtype = trt.nptype(self.engine.get_tensor_dtype(name))
|
| 246 |
+
if self.engine.get_tensor_mode(name) == trt.TensorIOMode.INPUT:
|
| 247 |
+
self.context.set_input_shape(name, shape)
|
| 248 |
+
tensor = torch.empty(
|
| 249 |
+
tuple(shape), dtype=numpy_to_torch_dtype_dict[dtype]
|
| 250 |
+
).to(device=device)
|
| 251 |
+
self.tensors[binding] = tensor
|
| 252 |
+
nvtx.range_pop()
|
| 253 |
+
|
| 254 |
+
def infer(self, feed_dict, stream, use_cuda_graph=False):
|
| 255 |
+
nvtx.range_push("set_tensors")
|
| 256 |
+
for name, buf in feed_dict.items():
|
| 257 |
+
self.tensors[name].copy_(buf)
|
| 258 |
+
|
| 259 |
+
for name, tensor in self.tensors.items():
|
| 260 |
+
self.context.set_tensor_address(name, tensor.data_ptr())
|
| 261 |
+
nvtx.range_pop()
|
| 262 |
+
nvtx.range_push("execute")
|
| 263 |
+
noerror = self.context.execute_async_v3(stream)
|
| 264 |
+
if not noerror:
|
| 265 |
+
raise ValueError("ERROR: inference failed.")
|
| 266 |
+
nvtx.range_pop()
|
| 267 |
+
return self.tensors
|
| 268 |
+
|
| 269 |
+
def __str__(self):
|
| 270 |
+
out = ""
|
| 271 |
+
|
| 272 |
+
# When raising errors in the upscaler, this str() called by comfy's execution.py,
|
| 273 |
+
# but the engine won't have the attributes required for stringification
|
| 274 |
+
# If str() also raises an error, comfy gets soft-locked, not running prompts until restarted
|
| 275 |
+
if not hasattr(self.engine, "num_optimization_profiles") or not hasattr(self.engine, "num_bindings"):
|
| 276 |
+
return out
|
| 277 |
+
|
| 278 |
+
for opt_profile in range(self.engine.num_optimization_profiles):
|
| 279 |
+
for binding_idx in range(self.engine.num_bindings):
|
| 280 |
+
name = self.engine.get_binding_name(binding_idx)
|
| 281 |
+
shape = self.engine.get_profile_shape(opt_profile, name)
|
| 282 |
+
out += f"\t{name} = {shape}\n"
|
| 283 |
+
return out
|
utilities.py
ADDED
|
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import requests
|
| 2 |
+
from tqdm import tqdm
|
| 3 |
+
import logging
|
| 4 |
+
import sys
|
| 5 |
+
|
| 6 |
+
class ColoredLogger:
|
| 7 |
+
COLORS = {
|
| 8 |
+
'RED': '\033[91m',
|
| 9 |
+
'GREEN': '\033[92m',
|
| 10 |
+
'YELLOW': '\033[93m',
|
| 11 |
+
'BLUE': '\033[94m',
|
| 12 |
+
'MAGENTA': '\033[95m',
|
| 13 |
+
'RESET': '\033[0m'
|
| 14 |
+
}
|
| 15 |
+
|
| 16 |
+
LEVEL_COLORS = {
|
| 17 |
+
'DEBUG': COLORS['BLUE'],
|
| 18 |
+
'INFO': COLORS['GREEN'],
|
| 19 |
+
'WARNING': COLORS['YELLOW'],
|
| 20 |
+
'ERROR': COLORS['RED'],
|
| 21 |
+
'CRITICAL': COLORS['MAGENTA']
|
| 22 |
+
}
|
| 23 |
+
|
| 24 |
+
def __init__(self, name="MY-APP"):
|
| 25 |
+
self.logger = logging.getLogger(name)
|
| 26 |
+
self.logger.setLevel(logging.DEBUG)
|
| 27 |
+
self.app_name = name
|
| 28 |
+
|
| 29 |
+
# Prevent message propagation to parent loggers
|
| 30 |
+
self.logger.propagate = False
|
| 31 |
+
|
| 32 |
+
# Clear existing handlers
|
| 33 |
+
self.logger.handlers = []
|
| 34 |
+
|
| 35 |
+
# Create console handler
|
| 36 |
+
handler = logging.StreamHandler(sys.stdout)
|
| 37 |
+
handler.setLevel(logging.DEBUG)
|
| 38 |
+
|
| 39 |
+
# Custom formatter class to handle colored components
|
| 40 |
+
class ColoredFormatter(logging.Formatter):
|
| 41 |
+
def format(self, record):
|
| 42 |
+
# Color the level name according to severity
|
| 43 |
+
level_color = ColoredLogger.LEVEL_COLORS.get(record.levelname, '')
|
| 44 |
+
colored_levelname = f"{level_color}{record.levelname}{ColoredLogger.COLORS['RESET']}"
|
| 45 |
+
|
| 46 |
+
# Color the logger name in blue
|
| 47 |
+
colored_name = f"{ColoredLogger.COLORS['BLUE']}{record.name}{ColoredLogger.COLORS['RESET']}"
|
| 48 |
+
|
| 49 |
+
# Set the colored components
|
| 50 |
+
record.levelname = colored_levelname
|
| 51 |
+
record.name = colored_name
|
| 52 |
+
|
| 53 |
+
return super().format(record)
|
| 54 |
+
|
| 55 |
+
# Create formatter with the new format
|
| 56 |
+
formatter = ColoredFormatter('[%(name)s|%(levelname)s] - %(message)s')
|
| 57 |
+
handler.setFormatter(formatter)
|
| 58 |
+
|
| 59 |
+
self.logger.addHandler(handler)
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def debug(self, message):
|
| 63 |
+
self.logger.debug(f"{self.COLORS['BLUE']}{message}{self.COLORS['RESET']}")
|
| 64 |
+
|
| 65 |
+
def info(self, message):
|
| 66 |
+
self.logger.info(f"{self.COLORS['GREEN']}{message}{self.COLORS['RESET']}")
|
| 67 |
+
|
| 68 |
+
def warning(self, message):
|
| 69 |
+
self.logger.warning(f"{self.COLORS['YELLOW']}{message}{self.COLORS['RESET']}")
|
| 70 |
+
|
| 71 |
+
def error(self, message):
|
| 72 |
+
self.logger.error(f"{self.COLORS['RED']}{message}{self.COLORS['RESET']}")
|
| 73 |
+
|
| 74 |
+
def critical(self, message):
|
| 75 |
+
self.logger.critical(f"{self.COLORS['MAGENTA']}{message}{self.COLORS['RESET']}")
|
| 76 |
+
|
| 77 |
+
def download_file(url, save_path):
|
| 78 |
+
"""
|
| 79 |
+
Download a file from URL with progress bar
|
| 80 |
+
|
| 81 |
+
Args:
|
| 82 |
+
url (str): URL of the file to download
|
| 83 |
+
save_path (str): Path to save the file as
|
| 84 |
+
"""
|
| 85 |
+
GREEN = '\033[92m'
|
| 86 |
+
RESET = '\033[0m'
|
| 87 |
+
response = requests.get(url, stream=True)
|
| 88 |
+
total_size = int(response.headers.get('content-length', 0))
|
| 89 |
+
|
| 90 |
+
with open(save_path, 'wb') as file, tqdm(
|
| 91 |
+
desc=save_path,
|
| 92 |
+
total=total_size,
|
| 93 |
+
unit='iB',
|
| 94 |
+
unit_scale=True,
|
| 95 |
+
unit_divisor=1024,
|
| 96 |
+
colour='green',
|
| 97 |
+
bar_format=f'{GREEN}{{l_bar}}{{bar}}{RESET}{GREEN}{{r_bar}}{RESET}'
|
| 98 |
+
) as progress_bar:
|
| 99 |
+
for data in response.iter_content(chunk_size=1024):
|
| 100 |
+
size = file.write(data)
|
| 101 |
+
progress_bar.update(size)
|
| 102 |
+
|
| 103 |
+
def get_final_resolutions(width, height, resize_to):
|
| 104 |
+
final_width = None
|
| 105 |
+
final_height = None
|
| 106 |
+
aspect_ratio = float(width/height)
|
| 107 |
+
|
| 108 |
+
match resize_to:
|
| 109 |
+
case "HD":
|
| 110 |
+
final_width = 1280
|
| 111 |
+
final_height = 720
|
| 112 |
+
case "FHD":
|
| 113 |
+
final_width = 1920
|
| 114 |
+
final_height = 1080
|
| 115 |
+
case "2k":
|
| 116 |
+
final_width = 2560
|
| 117 |
+
final_height = 1440
|
| 118 |
+
case "4k":
|
| 119 |
+
final_width = 3840
|
| 120 |
+
final_height = 2160
|
| 121 |
+
case "none":
|
| 122 |
+
final_width = width*4
|
| 123 |
+
final_height = height*4
|
| 124 |
+
case "2x":
|
| 125 |
+
final_width = width*2
|
| 126 |
+
final_height = height*2
|
| 127 |
+
case "3x":
|
| 128 |
+
final_width = width*3
|
| 129 |
+
final_height = height*3
|
| 130 |
+
|
| 131 |
+
if aspect_ratio == 1.0:
|
| 132 |
+
final_width = final_height
|
| 133 |
+
|
| 134 |
+
if aspect_ratio < 1.0 and resize_to not in ("none", "2x", "3x"):
|
| 135 |
+
temp = final_width
|
| 136 |
+
final_width = final_height
|
| 137 |
+
final_height = temp
|
| 138 |
+
|
| 139 |
+
return (final_width, final_height)
|