File size: 4,312 Bytes
6c5ce7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import argparse

from langchain_community.retrievers import PineconeHybridSearchRetriever
from langchain_core.prompts.chat import ChatPromptTemplate
from langchain_groq import ChatGroq

from rag_pipelines.pipelines.self_rag import SelfRAGPipeline
from rag_pipelines.query_transformer.query_transformer import QueryTransformer
from rag_pipelines.retrieval_evaluator.document_grader import DocumentGrader
from rag_pipelines.retrieval_evaluator.retrieval_evaluator import RetrievalEvaluator
from rag_pipelines.websearch.web_search import WebSearch


def main():
    parser = argparse.ArgumentParser(description="Run the Self-RAG pipeline.")

    # Pinecone retriever arguments
    parser.add_argument("--pinecone_api_key", type=str, required=True, help="Pinecone API key.")
    parser.add_argument("--index_name", type=str, default="edgar", help="Pinecone index name.")
    parser.add_argument("--dimension", type=int, default=384, help="Dimension of embeddings.")
    parser.add_argument("--metric", type=str, default="dotproduct", help="Metric for similarity search.")
    parser.add_argument("--region", type=str, default="us-east-1", help="Pinecone region.")
    parser.add_argument(
        "--namespace",
        type=str,
        default="edgar-all",
        help="Namespace for Pinecone retriever.",
    )

    # Query Transformer arguments
    parser.add_argument(
        "--query_transformer_model",
        type=str,
        default="t5-small",
        help="Model used for query transformation.",
    )

    # Retrieval Evaluator arguments
    parser.add_argument(
        "--llm_model",
        type=str,
        default="llama-3.2-90b-vision-preview",
        help="Language model name for retrieval evaluator.",
    )
    parser.add_argument("--llm_api_key", type=str, required=True, help="API key for the language model.")
    parser.add_argument(
        "--temperature",
        type=float,
        default=0.7,
        help="Temperature for the language model.",
    )
    parser.add_argument(
        "--relevance_threshold",
        type=float,
        default=0.7,
        help="Relevance threshold for document grading.",
    )

    # Web Search arguments
    parser.add_argument("--web_search_api_key", type=str, required=True, help="API key for web search.")

    # Prompt arguments
    parser.add_argument(
        "--prompt_template_path",
        type=str,
        required=True,
        help="Path to the prompt template for LLM.",
    )

    # Query
    parser.add_argument(
        "--query",
        type=str,
        required=True,
        help="Query to run through the Self-RAG pipeline.",
    )

    args = parser.parse_args()

    # Initialize Pinecone retriever
    retriever = PineconeHybridSearchRetriever(
        api_key=args.pinecone_api_key,
        index_name=args.index_name,
        dimension=args.dimension,
        metric=args.metric,
        region=args.region,
        namespace=args.namespace,
    )

    # Initialize Query Transformer
    query_transformer = QueryTransformer(model_name=args.query_transformer_model)

    # Initialize Retrieval Evaluator and Document Grader
    retrieval_evaluator = RetrievalEvaluator(
        llm_model=args.llm_model,
        llm_api_key=args.llm_api_key,
        temperature=args.temperature,
    )
    document_grader = DocumentGrader(
        evaluator=retrieval_evaluator,
        threshold=args.relevance_threshold,
    )

    # Initialize Web Search
    web_search = WebSearch(api_key=args.web_search_api_key)

    # Load the prompt template
    with open(args.prompt_template_path) as file:
        prompt_template_str = file.read()
    prompt = ChatPromptTemplate.from_template(prompt_template_str)

    # Initialize the LLM
    llm = ChatGroq(
        model=args.llm_model,
        api_key=args.llm_api_key,
        llm_params={"temperature": args.temperature},
    )

    # Initialize Self-RAG Pipeline
    self_rag_pipeline = SelfRAGPipeline(
        retriever=retriever,
        query_transformer=query_transformer,
        retrieval_evaluator=retrieval_evaluator,
        document_grader=document_grader,
        web_search=web_search,
        prompt=prompt,
        llm=llm,
    )

    # Run the pipeline
    output = self_rag_pipeline.run(args.query)
    print(output)


if __name__ == "__main__":
    main()