test-ragp / scripts /hybrid_rag.py
awinml's picture
Upload 11 files
6c5ce7a verified
import argparse
from langchain_core.prompts import ChatPromptTemplate
from rag_pipelines.embeddings.dense import DenseEmbeddings
from rag_pipelines.embeddings.sparse import SparseEmbeddings
from rag_pipelines.llms.groq import ChatGroqGenerator
from rag_pipelines.pipelines.rag import RAGPipeline
from rag_pipelines.prompts.rag_prompt import RAG_PROMPT
from rag_pipelines.vectordb.pinecone_hybrid_index import PineconeHybridVectorDB
from rag_pipelines.vectordb.pinecone_hybrid_retriever import PineconeHybridRetriever
def main():
parser = argparse.ArgumentParser(description="Run the Hybrid RAG pipeline.")
# Dense embeddings arguments
parser.add_argument(
"--dense_model_name",
type=str,
default="sentence-transformers/all-MiniLM-L6-v2",
help="Dense embedding model name.",
)
parser.add_argument(
"--device",
type=str,
default="cpu",
help="Device to run the dense embedding model.",
)
# Sparse embeddings arguments
parser.add_argument(
"--sparse_max_seq_length",
type=int,
default=512,
help="Maximum sequence length for sparse embeddings.",
)
# Pinecone arguments
parser.add_argument("--pinecone_api_key", type=str, required=True, help="Pinecone API key.")
parser.add_argument("--index_name", type=str, default="edgar", help="Pinecone index name.")
parser.add_argument("--dimension", type=int, default=384, help="Dimension of embeddings.")
parser.add_argument("--metric", type=str, default="dotproduct", help="Metric for similarity search.")
parser.add_argument("--region", type=str, default="us-east-1", help="Pinecone region.")
parser.add_argument("--cloud", type=str, default="aws", help="Pinecone cloud provider.")
parser.add_argument(
"--namespace",
type=str,
default="edgar-all",
help="Namespace for Pinecone retriever.",
)
# Retriever arguments
parser.add_argument("--alpha", type=float, default=0.5, help="Alpha parameter for hybrid retriever.")
parser.add_argument("--top_k", type=int, default=5, help="Number of top documents to retrieve.")
# LLM arguments
parser.add_argument(
"--llm_model",
type=str,
default="llama-3.2-90b-vision-preview",
help="Language model name.",
)
parser.add_argument(
"--temperature",
type=float,
default=0,
help="Temperature for the language model.",
)
parser.add_argument("--llm_api_key", type=str, required=True, help="API key for the language model.")
# Query
parser.add_argument(
"--query",
type=str,
required=True,
help="Query to run through the Hybrid RAG pipeline.",
)
args = parser.parse_args()
# Initialize embeddings
dense_embeddings = DenseEmbeddings(
model_name=args.dense_model_name,
model_kwargs={"device": args.device},
encode_kwargs={"normalize_embeddings": True},
show_progress=True,
)
sparse_embeddings = SparseEmbeddings(model_kwargs={"max_seq_length": args.sparse_max_seq_length})
dense_embedding_model = dense_embeddings.embedding_model
sparse_embedding_model = sparse_embeddings.sparse_embedding_model
# Initialize Pinecone vector DB
pinecone_vector_db = PineconeHybridVectorDB(
api_key=args.pinecone_api_key,
index_name=args.index_name,
dimension=args.dimension,
metric=args.metric,
region=args.region,
cloud=args.cloud,
)
# Initialize Pinecone retriever
pinecone_retriever = PineconeHybridRetriever(
index=pinecone_vector_db.index,
dense_embedding_model=dense_embedding_model,
sparse_embedding_model=sparse_embedding_model,
alpha=args.alpha,
top_k=args.top_k,
namespace=args.namespace,
)
# Load the prompt
prompt = ChatPromptTemplate.from_messages(
[
("human", RAG_PROMPT),
]
)
# Initialize the LLM
generator = ChatGroqGenerator(
model=args.llm_model,
api_key=args.llm_api_key,
llm_params={"temperature": args.temperature},
)
llm = generator.llm
# Initialize the Hybrid RAG pipeline
hybrid_rag = RAGPipeline(
retriever=pinecone_retriever.hybrid_retriever,
prompt=prompt,
llm=llm,
tracing_project_name="sec_hybrid_rag",
)
# Run the pipeline
output = hybrid_rag.predict(args.query)
print(output)
if __name__ == "__main__":
main()