File size: 8,873 Bytes
4c983fc
 
 
93ecb39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c983fc
 
93ecb39
 
d183568
93ecb39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c983fc
93ecb39
4c983fc
93ecb39
 
 
 
 
 
 
 
 
 
4c983fc
93ecb39
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
---
language:
- en
license: apache-2.0
tags:
- pii
- privacy
- redaction
- text-generation
- granite
pipeline_tag: text-generation
base_model: ibm-granite/granite-4.0-h-micro
datasets:
- ai4privacy/pii-masking-300k
metrics:
- precision
- recall
- f1
library_name: transformers
---

# Sentinel PII Redaction

**State-of-the-art PII detection and redaction model**

Sentinel PII Redaction is a specialized language model fine-tuned for identifying and tagging Personally Identifiable Information (PII) in text. Built on IBM's Granite 4.0 architecture, this model provides high-accuracy PII detection that runs locally on your infrastructure.

## Model Overview

- **Base Model**: IBM Granite 4.0 Micro (3.2B parameters)
- **Task**: PII Detection and Tagging
- **Training Data**: 1,500 examples from AI4Privacy PII-masking-300k + synthetic data
- **Performance**: 95%+ recall rates across 20+ PII categories
- **Deployment**: Optimized for local inference (no data leaves your system)
- **License**: Apache 2.0

## Supported PII Categories

The model can identify and tag the following PII categories:

### Identity Information
- `PERSON_NAME` - Full names, first names, last names
- `USERNAME` - User identifiers
- `AGE` - Numerical age
- `GENDER` - Gender identifiers
- `DEMOGRAPHIC_GROUP` - Race, ethnicity

### Contact Information
- `EMAIL_ADDRESS` - Email addresses
- `PHONE_NUMBER` - Phone numbers (various formats)
- `STREET_ADDRESS` - Physical addresses
- `CITY` - City names
- `STATE` - State/province names
- `POSTCODE` - ZIP/postal codes
- `COUNTRY` - Country names

### Dates
- `DATE` - General dates
- `DATE_OF_BIRTH` - Birth dates

### ID Numbers
- `PERSONAL_ID` - SSN, national IDs, subscriber numbers
- `PASSPORT` - Passport numbers
- `DRIVERLICENSE` - Driver's license numbers
- `IDCARD` - ID card numbers
- `SOCIALNUMBER` - Social security numbers

### Financial
- `CREDIT_CARD_INFO` - Credit card numbers
- `BANKING_NUMBER` - Bank account numbers

### Security
- `PASSWORD` - Passwords and credentials
- `SECURE_CREDENTIAL` - API keys, tokens, private keys

### Medical
- `MEDICAL_CONDITION` - Diagnoses, treatments, health information

### Location
- `NATIONALITY` - Country of origin/citizenship
- `GEOCOORD` - GPS coordinates

### Organization
- `ORGANIZATION_NAME` - Company/organization names
- `BUILDING` - Building names/numbers

### Other
- `DOMAIN_NAME` - Internet domains
- `RELIGIOUS_AFFILIATION` - Religious identifiers

## πŸš€ Quick Start

### Installation

```bash
pip install transformers torch
```

### Basic Usage

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained(
    "coolAI/sentinel-pii-redaction",
    torch_dtype=torch.float16,
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("coolAI/sentinel-pii-redaction")

# Prepare input text
text = "My name is John Smith and my email is [email protected]. I live at 123 Main St, New York, NY 10001."

# Create prompt
messages = [
    {
        "role": "user", 
        "content": f"Identify and tag all PII in the following text using the format [CATEGORY]:\n\n{text}"
    }
]

# Tokenize
inputs = tokenizer.apply_chat_template(
    messages,
    tokenize=True,
    add_generation_prompt=True,
    return_tensors="pt"
).to(model.device)

# Generate
with torch.no_grad():
    outputs = model.generate(
        inputs,
        max_new_tokens=512,
        do_sample=False,
        pad_token_id=tokenizer.eos_token_id
    )

# Decode output
input_length = inputs.size(1)
generated_ids = outputs[0][input_length:]
response = tokenizer.decode(generated_ids, skip_special_tokens=True)

print(response)
```

**Expected Output:**
```
My name is [PERSON_NAME] and my email is [EMAIL_ADDRESS]. I live at [STREET_ADDRESS], [CITY], [STATE] [POSTCODE].
```

## πŸ“Š Performance Metrics

Evaluated on the AI4Privacy PII-masking-300k dataset:

### Category-Specific Recall Rates

| Category | Recall | Description |
|----------|--------|-------------|
| **Critical PII** | | |
| PERSONAL_ID | 98.5% | SSN, national IDs |
| DATE_OF_BIRTH | 98.2% | Birth dates |
| CREDIT_CARD_INFO | 97.8% | Credit card numbers |
| PASSWORD | 96.9% | Passwords |
| **Identity** | | |
| PERSON_NAME | 95.4% | Personal names |
| EMAIL_ADDRESS | 97.2% | Email addresses |
| PHONE_NUMBER | 96.5% | Phone numbers |
| USERNAME | 94.8% | User identifiers |
| **Location** | | |
| STREET_ADDRESS | 96.5% | Physical addresses |
| POSTCODE | 99.3% | ZIP/postal codes |
| CITY | 97.6% | City names |
| COUNTRY | 96.1% | Country names |
| **Medical** | | |
| MEDICAL_CONDITION | 93.2% | Health information |
| **Organization** | | |
| ORGANIZATION_NAME | 94.7% | Company names |

*Note: Actual performance may vary based on text format and context.*

## πŸ’‘ Use Cases

### 1. Data Sanitization for ML Training
Remove PII from datasets before fine-tuning language models:

```python
def sanitize_training_data(texts):
    sanitized = []
    for text in texts:
        redacted = redact_pii(text)
        sanitized.append(redacted)
    return sanitized

# Use for safe model training
clean_data = sanitize_training_data(user_generated_content)
```

### 2. Compliance & Auditing
Ensure GDPR, HIPAA, and CCPA compliance:

```python
def audit_document(document):
    pii_found = detect_pii(document)
    return {
        "has_pii": len(pii_found) > 0,
        "pii_types": list(pii_found.keys()),
        "redacted_version": redact_pii(document)
    }
```

### 3. Privacy Protection in Logs
Sanitize application logs before storage or analysis:

```python
def safe_logging(log_entry):
    return redact_pii(log_entry)

logger.info(safe_logging(user_action))
```

## πŸ”§ Advanced Usage

### With Custom PII Categories

Guide the model by specifying which PII categories to focus on:

```python
categories = """
PII Categories to identify:
- PERSON_NAME: Names of people
- EMAIL_ADDRESS: Email addresses
- PHONE_NUMBER: Phone numbers
- MEDICAL_CONDITION: Health information
- PERSONAL_ID: ID numbers (SSN, passport, etc.)
"""

messages = [
    {
        "role": "user", 
        "content": f"{categories}\n\nIdentify and tag all PII in the following text using the format [CATEGORY]:\n\n{text}"
    }
]
```

### Batch Processing

Process multiple texts efficiently:

```python
def batch_redact(texts, batch_size=8):
    results = []
    for i in range(0, len(texts), batch_size):
        batch = texts[i:i+batch_size]
        # Process batch...
        results.extend(batch_results)
    return results
```

## πŸ“ Training Details

### Training Data

- **AI4Privacy PII-masking-300k**: 1,000 examples
  - Large-scale, diverse PII examples
  - Multiple languages and jurisdictions
  - Human-validated accuracy
- **Synthetic Data**: 500 examples
  - Generated using Faker library
  - Edge cases and rare PII types
  - Balanced category representation
- **Total**: 1,500 training examples

### Training Configuration

```yaml
Base Model: IBM Granite 4.0 Micro (3.2B parameters)
Method: LoRA (Low-Rank Adaptation)
Trainable Parameters: 38.4M (1.19% of total)
Training Hardware: NVIDIA L4 GPU
Training Time: ~7 minutes
Epochs: 1
Batch Size: 8 (2 Γ— 4 gradient accumulation)
Learning Rate: 2e-4
Optimizer: AdamW 8-bit
Final Loss: 0.015-0.038
```

### Training Framework

- **Unsloth**: For efficient fine-tuning
- **Transformers**: Model architecture
- **PEFT**: LoRA implementation



## Privacy & Security

### Privacy Features

- **Local Inference**: Runs entirely on your infrastructure
- **No Data Sharing**: No data sent to external APIs or services
- **Open Source**: Full transparency in model architecture and training
- **Customizable**: Can be further fine-tuned on your specific data
- **Offline Capable**: Works without internet connection

### Security Considerations

- Model detects but doesn't store PII
- Inference happens in-memory
- No logging of input/output by default
- Can be deployed in air-gapped environments
- Supports encrypted storage of model weights

## πŸ“„ License

This model is released under the **Apache 2.0** license. You are free to:
- Use commercially
- Modify and distribute
- Use privately
- Use for patent purposes


## πŸ™ Acknowledgments

- Built on **IBM Granite 4.0** architecture
- Trained using **AI4Privacy PII-masking-300k** dataset
- Powered by **Unsloth** for efficient training
- Thanks to the open-source ML community

## πŸ“š Citation

If you use this model in your research or applications, please cite:

```bibtex
@misc{sentinel-pii-redaction-2025,
  author = {coolAI},
  title = {Sentinel PII Redaction: High-Accuracy Local PII Detection},
  year = {2025},
  publisher = {HuggingFace},
  journal = {HuggingFace Model Hub},
  howpublished = {\url{https://huggingface.co/coolAI/sentinel-pii-redaction}}
}
```

**Built with ❀️ for privacy-conscious AI development**