--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: Fin-ModernBERT results: [] datasets: - clapAI/FinData-dedup language: - en pipeline_tag: fill-mask --- # Fin-ModernBERT Fin-ModernBERT is a domain-adapted pretrained language model for the **financial domain**, obtained by continual pretraining of [ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) with a **context length of 1024 tokens** on large-scale finance-related corpora. --- ## Model Description - **Base model:** ModernBERT-base (context length = 1024) - **Domain:** Finance, Stock Market, Cryptocurrency - **Objective:** Improve representation and understanding of financial text for downstream NLP tasks (sentiment analysis, NER, classification, QA, retrieval, etc.) --- ## Training Data We collected and combined multiple publicly available finance-related datasets, including: - [danidanou/Bloomberg_Financial_News](https://huggingface.co/datasets/danidanou/Bloomberg_Financial_News) - [juanberasategui/Crypto_Tweets](https://huggingface.co/datasets/juanberasategui/Crypto_Tweets) - [StephanAkkerman/crypto-stock-tweets](https://huggingface.co/datasets/StephanAkkerman/crypto-stock-tweets) - [SahandNZ/cryptonews-articles-with-price-momentum-labels](https://huggingface.co/datasets/SahandNZ/cryptonews-articles-with-price-momentum-labels) - [edaschau/financial_news](https://huggingface.co/datasets/edaschau/financial_news) - [sabareesh88/FNSPID_nasdaq](https://huggingface.co/datasets/sabareesh88/FNSPID_nasdaq) - [BAAI/IndustryCorpus_finance](https://huggingface.co/datasets/BAAI/IndustryCorpus_finance) - [mjw/stock_market_tweets](https://huggingface.co/datasets/mjw/stock_market_tweets) After aggregation, we obtained **~50M financial records**. A deduplication process reduced this to **~20M records**, available at: 👉 [clapAI/FinData-dedup](https://huggingface.co/datasets/clapAI/FinData-dedup) --- ## Training Hyperparameters The following hyperparameters were used during training: - **Learning rate:** 2e-4 - **Train batch size:** 24 - **Eval batch size:** 24 - **Seed:** 0 - **Gradient accumulation steps:** 128 - **Effective total train batch size:** 3072 - **Optimizer:** `AdamW_Torch_Fused` with betas=(0.9, 0.999), epsilon=1e-08 - **LR scheduler:** Linear - **Epochs:** 1 --- ## Evaluation Benchmarks We benchmarked **Fin-ModernBERT** against two strong baselines: - [ProsusAI/finbert](https://huggingface.co/ProsusAI/finbert) - [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) ### Fine-tuning Setup All models were fine-tuned under the same configuration: - **Optimizer:** AdamW - **Learning rate:** 5e-5 - **Batch size:** 16 - **Epochs:** 5 - **Scheduler:** Linear ### Results | Dataset | Metric | FinBERT (ProsusAI) | ModernBERT-base | Fin-ModernBERT | |---------|--------|---------------------|-----------------|----------------| | CIKM (datht/fin-cikm) | F1-score | 42.77 | 53.08 | **54.89** | | PhraseBank (soumakchak/phrasebank) | F1-score | 86.33 | 85.03 | **88.09** | > Further evaluations on additional datasets and tasks are ongoing to provide a more comprehensive view of its performance. --- ## Use Cases Fin-ModernBERT can be used for various financial NLP applications, such as: - **Financial Sentiment Analysis** (e.g., market mood detection from news/tweets) - **Event-driven Stock Prediction** - **Financial Named Entity Recognition (NER)** (companies, tickers, financial instruments) - **Document Classification & Clustering** - **Question Answering over financial reports and news** --- ## How to Use ```python from transformers import AutoTokenizer, AutoModel model_name = "clapAI/Fin-ModernBERT" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) text = "Federal Reserve hints at possible interest rate cuts." inputs = tokenizer(text, return_tensors="pt") outputs = model(**inputs) ``` ## Citation If you use this model, please cite: ```@misc{finmodernbert2025, title={Fin-ModernBERT: Continual Pretraining of ModernBERT for Financial Domain}, author={ClapAI}, year={2025}, publisher={Hugging Face}, howpublished={\url{https://huggingface.co/clapAI/Fin-ModernBERT}} }