File size: 5,814 Bytes
e24cc15 d047d36 e24cc15 d047d36 41416f4 d047d36 e24cc15 11bc212 85efa0e 11bc212 bc021d0 85efa0e bc021d0 85efa0e e24cc15 329f315 1798182 3477949 63155fd 3477949 5f3679c 3477949 5f3679c 3477949 5f3679c 3477949 5f3679c 3477949 5f3679c 3477949 5f3679c 3477949 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
---
dataset_info:
features:
- name: question
dtype: string
- name: options
sequence: string
- name: rationale
dtype: string
- name: label
dtype: string
- name: label_idx
dtype: int64
- name: dataset
dtype: string
splits:
- name: train
num_bytes: 203046319
num_examples: 200000
- name: validation
num_bytes: 264310
num_examples: 519
download_size: 122985245
dataset_size: 203310629
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
license: apache-2.0
task_categories:
- multiple-choice
language:
- en
size_categories:
- 100K<n<1M
---
# MNLP M2 MCQA Dataset
A unified multiple-choice question answering (MCQA) benchmark on STEM subjects combining samples from OpenBookQA, SciQ, MMLU-auxiliary, AQUA-Rat, and MedMCQA.
## Dataset Summary
This dataset merges five existing science and knowledge-based MCQA datasets into one standardized format:
| Source | Train samples |
| ---------- | ------------: |
| OpenBookQA | 4 900 |
| SciQ | 10 000 |
| MMLU-aux | 85 100 |
| AQUA-Rat | 50 000 |
| MedMCQA | 50 000 |
| **Total** | **200 000** |
## Supported Tasks and Leaderboards
* **Task:** Multiple-Choice Question Answering (`multiple-choice-question-answering`)
* **Metrics:** Accuracy
## Languages
* English
## Dataset Structure
Each example has the following fields:
| Name | Type | Description |
| ----------- | -------------- | ------------------------------------------------ |
| `question` | `string` | The question stem. |
| `options` | `list[string]` | List of 4-5 answer choices. |
| `label` | `string` | The correct answer letter, e.g. `"A"`, or `"a"`. |
| `label_idx` | `int` | Zero-based index of the correct answer (0–4). |
| `rationale` | `string` | (Optional) Supporting fact or rationale text. |
| `dataset` | `string` | Source dataset name (`openbookqa`, `sciq`, etc.) |
### Splits
```
DatasetDict({
train: Dataset(num_rows=200000),
validation: Dataset(num_rows=519),
})
```
## Dataset Creation
1. **Source Datasets**
* OpenBookQA (`allenai/openbookqa`)
* SciQ (`allenai/sciq`)
* MMLU-auxiliary (`cais/mmlu`, config=`all`)
* AQUA-Rat (`deepmind/aqua_rat`)
* MedMCQA (`openlifescienceai/medmcqa`)
2. **Sampling**
We sample each training split down to a fixed size (4 900–85 100 examples). Validation examples are sampled per source by first computing each dataset’s original validation-to-train ratio (len(validation)/len(train)), taking the minimum of these ratios and 5 %, and then holding out that fraction from each source.
3. **Unification**
All examples are mapped to a common schema (`question`, `options`, `label`, …) with minimal preprocessing.
4. **Push to Hub**
```python
from datasets import DatasetDict, load_dataset, concatenate_datasets
# after loading, sampling, mapping…
ds = DatasetDict({"train": combined, "validation": val_combined})
ds.push_to_hub("NicoHelemon/MNLP_M2_mcqa_dataset", private=False)
```
## Usage
```python
from datasets import load_dataset
ds = load_dataset("NicoHelemon/MNLP_M2_mcqa_dataset")
print(ds["train"][0])
# {
# "question": "What can genes do?",
# "options": ["Give a young goat hair that looks like its mother's hair", ...],
# "label": "A",
# "label_idx": 0,
# "rationale": "Key fact: genes are a vehicle for passing inherited…",
# "dataset": "openbookqa"
# }
```
## Licensing
This collection is released under the **Apache-2.0** license.
Original source datasets may carry their own licenses—please cite appropriately.
## Citation
If you use this dataset, please cite:
```bibtex
@misc
{helemon2025m2mcqa,
title = {MNLP M2 MCQA Dataset},
author = {Nicolas Gonzalez},
year = 2025,
howpublished = {\url{https://huggingface.co/datasets/NicoHelemon/MNLP_M2_mcqa_dataset}},
}
```
And please also cite the original datasets:
```bibtex
@misc{mihaylov2018suitarmorconductelectricity,
title={Can a Suit of Armor Conduct Electricity? A New Dataset for Open Book Question Answering},
author={Todor Mihaylov and Peter Clark and Tushar Khot and Ashish Sabharwal},
year={2018},
eprint={1809.02789},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/1809.02789},
}
@misc{welbl2017crowdsourcingmultiplechoicescience,
title={Crowdsourcing Multiple Choice Science Questions},
author={Johannes Welbl and Nelson F. Liu and Matt Gardner},
year={2017},
eprint={1707.06209},
archivePrefix={arXiv},
primaryClass={cs.HC},
url={https://arxiv.org/abs/1707.06209},
}
@misc{hendrycks2021measuringmassivemultitasklanguage,
title={Measuring Massive Multitask Language Understanding},
author={Dan Hendrycks and Collin Burns and Steven Basart and Andy Zou and Mantas Mazeika and Dawn Song and Jacob Steinhardt},
year={2021},
eprint={2009.03300},
archivePrefix={arXiv},
primaryClass={cs.CY},
url={https://arxiv.org/abs/2009.03300},
}
@misc{ling2017programinductionrationalegeneration,
title={Program Induction by Rationale Generation : Learning to Solve and Explain Algebraic Word Problems},
author={Wang Ling and Dani Yogatama and Chris Dyer and Phil Blunsom},
year={2017},
eprint={1705.04146},
archivePrefix={arXiv},
primaryClass={cs.AI},
url={https://arxiv.org/abs/1705.04146},
}
@misc{pal2022medmcqalargescalemultisubject,
title={MedMCQA : A Large-scale Multi-Subject Multi-Choice Dataset for Medical domain Question Answering},
author={Ankit Pal and Logesh Kumar Umapathi and Malaikannan Sankarasubbu},
year={2022},
eprint={2203.14371},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2203.14371},
}
``` |