Datasets:
File size: 8,407 Bytes
4f46ee5 f7fa17a 4f46ee5 ee07678 f7fa17a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
---
license: cc-by-4.0
task_categories:
- other
tags:
- physics
- high-energy-physics
- particle-physics
- collider-physics
- tracking
- calorimetry
- machine-learning
- simulation
- particle-tracking
- jet-tagging
pretty_name: ColliderML Dataset Release 1
size_categories:
- 100K<n<1M
---
# ColliderML: Dataset Release 1
## Dataset Description
This dataset contains simulated high-energy physics collision events generated using the **Open Data Detector (ODD)** geometry within the **Key4hep** and **ACTS (A Common Tracking Software)** frameworks, representing a generic collider detector similar to those at the HL-LHC.
### Dataset Summary
- **Collision Energy**: 14 TeV (proton-proton)
- **Detector**: Open Data Detector (ODD)
- **Simulation**: DD4hep + Geant4 + ACTS
- **Format**: Apache Parquet with list columns for variable-length data
- **License**: CC-BY-4.0
### Available Configurations
The dataset is organized into multiple configurations, each representing a combination of:
- **Physics process** (e.g., ttbar, ggf, dihiggs)
- **Pileup condition** (pu0 = no pileup, pu200 = HL-LHC pileup)
- **Object type** (particles, tracker_hits, calo_hits, tracks)
### Supported Tasks
This dataset is designed for machine learning tasks in high-energy physics, including:
- **Particle tracking**: Reconstruct charged particle trajectories from detector hits
- **Track-to-particle matching**: Associate reconstructed tracks with truth particles
- **Jet tagging**: Identify jets originating from top quarks, b-quarks, or light quarks
- **Energy reconstruction**: Predict particle energies from calorimeter deposits
- **Physics analysis**: Event classification (signal vs. background discrimination)
- **Representation learning**: Study hierarchical information at different detector levels
## Quick Start
### Installation
```bash
pip install datasets pyarrow
```
### Load a Configuration
```python
from datasets import load_dataset
# Load truth particles from ttbar (no pileup)
particles = load_dataset(
"OpenDataDetector/ColliderML-Release-1",
"ttbar_pu0_particles",
split="train"
)
print(f"Loaded {len(particles)} events")
print(f"Columns: {particles.column_names}")
```
### Load First 100 Events with Specific Columns
```python
from datasets import load_dataset
import numpy as np
# Load only specific columns
particles = load_dataset(
"OpenDataDetector/ColliderML-Release-1",
"ttbar_pu0_particles",
split="train[:100]",
columns=["event_id", "px", "py", "pz", "energy", "pdg_id"]
)
# Process events
for event in particles:
px = np.array(event['px'])
py = np.array(event['py'])
pt = np.sqrt(px**2 + py**2)
print(f"Event {event['event_id']}: {len(px)} particles, mean pT = {pt.mean():.2f} GeV")
```
## Dataset Structure
### Data Instances
Each row represents a single collision event. Variable-length quantities (particles, hits, tracks) are stored as Parquet list columns.
Example event structure:
```python
{
'event_id': 42,
'particle_id': [0, 1, 2, 3, ...],
'pdg_id': [11, -11, 211, ...],
'px': [1.2, -0.5, 3.4, ...],
'py': [0.8, 1.1, -0.3, ...],
'pz': [5.2, -2.1, 10.5, ...],
'energy': [5.5, 2.3, 11.2, ...],
# ... additional fields
}
```
### Data Fields by Object Type
#### 1. `particles` (Truth-level)
Truth information about generated particles before detector simulation.
| Field | Type | Description |
|-------|------|-------------|
| `event_id` | uint32 | Unique event identifier |
| `particle_id` | list\<uint64\> | Unique particle ID within event |
| `pdg_id` | list\<int64\> | PDG particle code (11=electron, 13=muon, 211=pion, etc.) |
| `mass` | list\<float32\> | Particle rest mass (GeV/c²) |
| `energy` | list\<float32\> | Particle total energy (GeV) |
| `charge` | list\<float32\> | Electric charge (units of e) |
| `px`, `py`, `pz` | list\<float32\> | Momentum components (GeV/c) |
| `vx`, `vy`, `vz` | list\<float32\> | Vertex position (mm) |
| `time` | list\<float32\> | Production time (ns) |
| `perigee_d0` | list\<float32\> | Perigee transverse impact parameter (mm) |
| `perigee_z0` | list\<float32\> | Perigee longitudinal impact parameter (mm) |
| `num_tracker_hits` | list\<uint16\> | Number of hits in tracker |
| `num_calo_hits` | list\<uint16\> | Number of hits in calorimeter |
| `primary` | list\<bool\> | Whether particle is primary |
| `vertex_primary` | list\<uint16\> | Primary vertex index (1=hard scatter) |
| `parent_id` | list\<int64\> | ID of parent particle (-1 if none) |
#### 2. `tracker_hits` (Detector-level)
Digitized spatial measurements from the tracking detector (silicon sensors).
| Field | Type | Description |
|-------|------|-------------|
| `event_id` | uint32 | Unique event identifier |
| `x`, `y`, `z` | list\<float32\> | Measured hit position (mm) |
| `true_x`, `true_y`, `true_z` | list\<float32\> | True hit position before digitization (mm) |
| `time` | list\<float32\> | Hit time (ns) |
| `particle_id` | list\<uint64\> | Truth particle that created this hit |
| `volume_id` | list\<uint8\> | Detector volume identifier |
| `layer_id` | list\<uint16\> | Detector layer number |
| `surface_id` | list\<uint32\> | Sensor surface identifier |
| `detector` | list\<uint8\> | Detector subsystem code |
#### 3. `calo_hits` (Calorimeter-level)
Energy deposits in the calorimeter system (electromagnetic + hadronic).
| Field | Type | Description |
|-------|------|-------------|
| `event_id` | uint32 | Unique event identifier |
| `detector` | list\<uint8\> | Calorimeter subsystem code |
| `total_energy` | list\<float32\> | Total energy deposited in cell (GeV) |
| `x`, `y`, `z` | list\<float32\> | Cell center position (mm) |
| `contrib_particle_ids` | list\<list\<uint64\>\> | IDs of particles contributing to this cell |
| `contrib_energies` | list\<list\<float32\>\> | Energy contribution from each particle (GeV) |
| `contrib_times` | list\<list\<float32\>\> | Time of each contribution (ns) |
#### 4. `tracks` (Reconstruction-level)
Reconstructed particle tracks from ACTS pattern recognition and track fitting.
| Field | Type | Description |
|-------|------|-------------|
| `event_id` | uint32 | Unique event identifier |
| `track_id` | list\<uint16\> | Unique track identifier within event |
| `majority_particle_id` | list\<uint64\> | Truth particle with most hits on this track |
| `d0` | list\<float32\> | Transverse impact parameter (mm) |
| `z0` | list\<float32\> | Longitudinal impact parameter (mm) |
| `phi` | list\<float32\> | Azimuthal angle (radians) |
| `theta` | list\<float32\> | Polar angle (radians) |
| `qop` | list\<float32\> | Charge divided by momentum (e/GeV) |
| `hit_ids` | list\<list\<uint32\>\> | List of tracker hit IDs on this track |
**Derived quantities for tracks:**
- Transverse momentum: `pt = abs(1/qop) * sin(theta)`
- Pseudorapidity: `eta = -ln(tan(theta/2))`
- Total momentum: `p = abs(1/qop)`
## Dataset Creation
### Simulation Chain
1. **Event Generation**: MadGraph5 + Pythia8 for hard scatter and parton shower
2. **Detector Simulation**: Geant4 via DD4hep with the Open Data Detector geometry
3. **Digitization**: Realistic detector response simulation
4. **Reconstruction**: ACTS track finding and fitting algorithms
5. **Format Conversion**: EDM4HEP → Parquet using the ColliderML pipeline
### Software Stack
- **ACTS**: A Common Tracking Software - https://acts.readthedocs.io/
- **Open Data Detector**: https://github.com/acts-project/odd
- **Key4hep**: https://key4hep.github.io/
- **EDM4HEP**: https://edm4hep.web.cern.ch/
## Citation
If you use this dataset in your research, please cite:
```bibtex
@dataset{colliderml_release1_2025,
title={{ColliderML Dataset Release 1}},
author={{ColliderML Collaboration}},
year={2025},
publisher={Hugging Face},
howpublished={\url{https://huggingface.co/datasets/OpenDataDetector/ColliderML-Release-1}},
note={Simulation performed using ACTS and the Open Data Detector}
}
```
## Support
For questions, issues, or feature requests:
- **Email**: [email protected]
- **GitHub**: https://github.com/OpenDataDetector/ColliderML
## Acknowledgments
This work was supported by:
- NERSC computing resources (National Energy Research Scientific Computing Center)
- U.S. Department of Energy, Office of Science
- Danish Data Science Academy (DDSA)
---
**Release Version**: 1.0
**Last Updated**: November 2025
|