File size: 8,407 Bytes
4f46ee5
f7fa17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f46ee5
ee07678
f7fa17a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
---
license: cc-by-4.0
task_categories:
- other
tags:
- physics
- high-energy-physics
- particle-physics
- collider-physics
- tracking
- calorimetry
- machine-learning
- simulation
- particle-tracking
- jet-tagging
pretty_name: ColliderML Dataset Release 1
size_categories:
- 100K<n<1M
---

# ColliderML: Dataset Release 1

## Dataset Description

This dataset contains simulated high-energy physics collision events generated using the **Open Data Detector (ODD)** geometry within the **Key4hep** and **ACTS (A Common Tracking Software)** frameworks, representing a generic collider detector similar to those at the HL-LHC.

### Dataset Summary

- **Collision Energy**: 14 TeV (proton-proton)
- **Detector**: Open Data Detector (ODD)
- **Simulation**: DD4hep + Geant4 + ACTS
- **Format**: Apache Parquet with list columns for variable-length data
- **License**: CC-BY-4.0

### Available Configurations

The dataset is organized into multiple configurations, each representing a combination of:
- **Physics process** (e.g., ttbar, ggf, dihiggs)
- **Pileup condition** (pu0 = no pileup, pu200 = HL-LHC pileup)
- **Object type** (particles, tracker_hits, calo_hits, tracks)

### Supported Tasks

This dataset is designed for machine learning tasks in high-energy physics, including:

- **Particle tracking**: Reconstruct charged particle trajectories from detector hits
- **Track-to-particle matching**: Associate reconstructed tracks with truth particles
- **Jet tagging**: Identify jets originating from top quarks, b-quarks, or light quarks
- **Energy reconstruction**: Predict particle energies from calorimeter deposits
- **Physics analysis**: Event classification (signal vs. background discrimination)
- **Representation learning**: Study hierarchical information at different detector levels

## Quick Start

### Installation

```bash
pip install datasets pyarrow
```

### Load a Configuration

```python
from datasets import load_dataset

# Load truth particles from ttbar (no pileup)
particles = load_dataset(
    "OpenDataDetector/ColliderML-Release-1",
    "ttbar_pu0_particles",
    split="train"
)

print(f"Loaded {len(particles)} events")
print(f"Columns: {particles.column_names}")
```

### Load First 100 Events with Specific Columns

```python
from datasets import load_dataset
import numpy as np

# Load only specific columns
particles = load_dataset(
    "OpenDataDetector/ColliderML-Release-1",
    "ttbar_pu0_particles",
    split="train[:100]",
    columns=["event_id", "px", "py", "pz", "energy", "pdg_id"]
)

# Process events
for event in particles:
    px = np.array(event['px'])
    py = np.array(event['py'])
    pt = np.sqrt(px**2 + py**2)
    print(f"Event {event['event_id']}: {len(px)} particles, mean pT = {pt.mean():.2f} GeV")
```

## Dataset Structure

### Data Instances

Each row represents a single collision event. Variable-length quantities (particles, hits, tracks) are stored as Parquet list columns.

Example event structure:
```python
{
    'event_id': 42,
    'particle_id': [0, 1, 2, 3, ...],
    'pdg_id': [11, -11, 211, ...],
    'px': [1.2, -0.5, 3.4, ...],
    'py': [0.8, 1.1, -0.3, ...],
    'pz': [5.2, -2.1, 10.5, ...],
    'energy': [5.5, 2.3, 11.2, ...],
    # ... additional fields
}
```

### Data Fields by Object Type

#### 1. `particles` (Truth-level)

Truth information about generated particles before detector simulation.

| Field | Type | Description |
|-------|------|-------------|
| `event_id` | uint32 | Unique event identifier |
| `particle_id` | list\<uint64\> | Unique particle ID within event |
| `pdg_id` | list\<int64\> | PDG particle code (11=electron, 13=muon, 211=pion, etc.) |
| `mass` | list\<float32\> | Particle rest mass (GeV/c²) |
| `energy` | list\<float32\> | Particle total energy (GeV) |
| `charge` | list\<float32\> | Electric charge (units of e) |
| `px`, `py`, `pz` | list\<float32\> | Momentum components (GeV/c) |
| `vx`, `vy`, `vz` | list\<float32\> | Vertex position (mm) |
| `time` | list\<float32\> | Production time (ns) |
| `perigee_d0` | list\<float32\> | Perigee transverse impact parameter (mm) |
| `perigee_z0` | list\<float32\> | Perigee longitudinal impact parameter (mm) |
| `num_tracker_hits` | list\<uint16\> | Number of hits in tracker |
| `num_calo_hits` | list\<uint16\> | Number of hits in calorimeter |
| `primary` | list\<bool\> | Whether particle is primary |
| `vertex_primary` | list\<uint16\> | Primary vertex index (1=hard scatter) |
| `parent_id` | list\<int64\> | ID of parent particle (-1 if none) |

#### 2. `tracker_hits` (Detector-level)

Digitized spatial measurements from the tracking detector (silicon sensors).

| Field | Type | Description |
|-------|------|-------------|
| `event_id` | uint32 | Unique event identifier |
| `x`, `y`, `z` | list\<float32\> | Measured hit position (mm) |
| `true_x`, `true_y`, `true_z` | list\<float32\> | True hit position before digitization (mm) |
| `time` | list\<float32\> | Hit time (ns) |
| `particle_id` | list\<uint64\> | Truth particle that created this hit |
| `volume_id` | list\<uint8\> | Detector volume identifier |
| `layer_id` | list\<uint16\> | Detector layer number |
| `surface_id` | list\<uint32\> | Sensor surface identifier |
| `detector` | list\<uint8\> | Detector subsystem code |

#### 3. `calo_hits` (Calorimeter-level)

Energy deposits in the calorimeter system (electromagnetic + hadronic).

| Field | Type | Description |
|-------|------|-------------|
| `event_id` | uint32 | Unique event identifier |
| `detector` | list\<uint8\> | Calorimeter subsystem code |
| `total_energy` | list\<float32\> | Total energy deposited in cell (GeV) |
| `x`, `y`, `z` | list\<float32\> | Cell center position (mm) |
| `contrib_particle_ids` | list\<list\<uint64\>\> | IDs of particles contributing to this cell |
| `contrib_energies` | list\<list\<float32\>\> | Energy contribution from each particle (GeV) |
| `contrib_times` | list\<list\<float32\>\> | Time of each contribution (ns) |

#### 4. `tracks` (Reconstruction-level)

Reconstructed particle tracks from ACTS pattern recognition and track fitting.

| Field | Type | Description |
|-------|------|-------------|
| `event_id` | uint32 | Unique event identifier |
| `track_id` | list\<uint16\> | Unique track identifier within event |
| `majority_particle_id` | list\<uint64\> | Truth particle with most hits on this track |
| `d0` | list\<float32\> | Transverse impact parameter (mm) |
| `z0` | list\<float32\> | Longitudinal impact parameter (mm) |
| `phi` | list\<float32\> | Azimuthal angle (radians) |
| `theta` | list\<float32\> | Polar angle (radians) |
| `qop` | list\<float32\> | Charge divided by momentum (e/GeV) |
| `hit_ids` | list\<list\<uint32\>\> | List of tracker hit IDs on this track |

**Derived quantities for tracks:**
- Transverse momentum: `pt = abs(1/qop) * sin(theta)`
- Pseudorapidity: `eta = -ln(tan(theta/2))`
- Total momentum: `p = abs(1/qop)`

## Dataset Creation

### Simulation Chain

1. **Event Generation**: MadGraph5 + Pythia8 for hard scatter and parton shower
2. **Detector Simulation**: Geant4 via DD4hep with the Open Data Detector geometry
3. **Digitization**: Realistic detector response simulation
4. **Reconstruction**: ACTS track finding and fitting algorithms
5. **Format Conversion**: EDM4HEP → Parquet using the ColliderML pipeline

### Software Stack

- **ACTS**: A Common Tracking Software - https://acts.readthedocs.io/
- **Open Data Detector**: https://github.com/acts-project/odd
- **Key4hep**: https://key4hep.github.io/
- **EDM4HEP**: https://edm4hep.web.cern.ch/

## Citation

If you use this dataset in your research, please cite:

```bibtex
@dataset{colliderml_release1_2025,
  title={{ColliderML Dataset Release 1}},
  author={{ColliderML Collaboration}},
  year={2025},
  publisher={Hugging Face},
  howpublished={\url{https://huggingface.co/datasets/OpenDataDetector/ColliderML-Release-1}},
  note={Simulation performed using ACTS and the Open Data Detector}
}
```

## Support

For questions, issues, or feature requests:
- **Email**: [email protected]
- **GitHub**: https://github.com/OpenDataDetector/ColliderML

## Acknowledgments

This work was supported by:
- NERSC computing resources (National Energy Research Scientific Computing Center)
- U.S. Department of Energy, Office of Science
- Danish Data Science Academy (DDSA)

---

**Release Version**: 1.0  
**Last Updated**: November 2025