Datasets:

ArXiv:
DOI:
License:
Yiran Wang commited on
Commit
aadc1f1
·
1 Parent(s): e6c6755

polish nbspecific buggy and fixed versions

Browse files
Files changed (36) hide show
  1. benchmark/NBspecific_1/NBspecific_1_fixed.ipynb +30 -68
  2. benchmark/NBspecific_1/NBspecific_1_reproduced.ipynb +17 -36
  3. benchmark/NBspecific_10/NBspecific_10_fixed.ipynb +3 -0
  4. benchmark/NBspecific_10/NBspecific_10_reproduced.ipynb +6 -6
  5. benchmark/NBspecific_11/NBspecific_11_fixed.ipynb +0 -0
  6. benchmark/NBspecific_11/NBspecific_11_reproduced.ipynb +19 -52
  7. benchmark/NBspecific_12/NBspecific_12_fixed.ipynb +11 -3
  8. benchmark/NBspecific_12/NBspecific_12_reproduced.ipynb +8 -8
  9. benchmark/NBspecific_13/NBspecific_13_fixed.ipynb +6 -153
  10. benchmark/NBspecific_13/NBspecific_13_reproduced.ipynb +5 -153
  11. benchmark/NBspecific_14/NBspecific_14_fixed.ipynb +7 -21
  12. benchmark/NBspecific_15/NBspecific_15_fixed.ipynb +0 -0
  13. benchmark/NBspecific_15/NBspecific_15_reproduced.ipynb +0 -0
  14. benchmark/NBspecific_16/NBspecific_16_fixed.ipynb +57 -102
  15. benchmark/NBspecific_17/NBspecific_17_fixed.ipynb +253 -1410
  16. benchmark/NBspecific_17/NBspecific_17_reproduced.ipynb +7 -785
  17. benchmark/NBspecific_18/NBspecific_18_fixed.ipynb +97 -636
  18. benchmark/NBspecific_18/NBspecific_18_reproduced.ipynb +93 -632
  19. benchmark/NBspecific_19/NBspecific_19_fixed.ipynb +172 -3
  20. benchmark/NBspecific_2/NBspecific_2_fixed.ipynb +16 -223
  21. benchmark/NBspecific_2/NBspecific_2_reproduced.ipynb +12 -220
  22. benchmark/NBspecific_20/NBspecific_20_fixed.ipynb +2 -1
  23. benchmark/NBspecific_3/NBspecific_3_fixed.ipynb +11 -47
  24. benchmark/NBspecific_3/NBspecific_3_reproduced.ipynb +10 -47
  25. benchmark/NBspecific_4/NBspecific_4_fixed.ipynb +11 -510
  26. benchmark/NBspecific_4/NBspecific_4_reproduced.ipynb +4 -12
  27. benchmark/NBspecific_5/NBspecific_5_fixed.ipynb +4 -66
  28. benchmark/NBspecific_5/NBspecific_5_reproduced.ipynb +5 -67
  29. benchmark/NBspecific_6/NBspecific_6_fixed.ipynb +0 -0
  30. benchmark/NBspecific_6/NBspecific_6_reproduced.ipynb +248 -752
  31. benchmark/NBspecific_6/data.weights.h5 +1 -1
  32. benchmark/NBspecific_7/NBspecific_7_fixed.ipynb +32 -542
  33. benchmark/NBspecific_7/NBspecific_7_reproduced.ipynb +29 -415
  34. benchmark/NBspecific_8/NBspecific_8_fixed.ipynb +3 -24
  35. benchmark/NBspecific_8/NBspecific_8_reproduced.ipynb +5 -26
  36. benchmark/NBspecific_9/NBspecific_9_reproduced.ipynb +2 -2
benchmark/NBspecific_1/NBspecific_1_fixed.ipynb CHANGED
@@ -70,7 +70,7 @@
70
  },
71
  {
72
  "cell_type": "code",
73
- "execution_count": 4,
74
  "metadata": {
75
  "execution": {
76
  "iopub.execute_input": "2023-02-28T09:01:40.837603Z",
@@ -145,7 +145,7 @@
145
  "4 Petter Mattei's \"Love in the Time of Money\" is... positive"
146
  ]
147
  },
148
- "execution_count": 4,
149
  "metadata": {},
150
  "output_type": "execute_result"
151
  }
@@ -194,7 +194,7 @@
194
  },
195
  {
196
  "cell_type": "code",
197
- "execution_count": 5,
198
  "metadata": {
199
  "execution": {
200
  "iopub.execute_input": "2023-02-28T09:01:46.978097Z",
@@ -221,7 +221,7 @@
221
  },
222
  {
223
  "cell_type": "code",
224
- "execution_count": 6,
225
  "metadata": {
226
  "execution": {
227
  "iopub.execute_input": "2023-02-28T09:01:49.177674Z",
@@ -250,7 +250,7 @@
250
  },
251
  {
252
  "cell_type": "code",
253
- "execution_count": 7,
254
  "metadata": {
255
  "execution": {
256
  "iopub.execute_input": "2023-02-28T09:01:52.159195Z",
@@ -279,7 +279,7 @@
279
  },
280
  {
281
  "cell_type": "code",
282
- "execution_count": 8,
283
  "metadata": {
284
  "execution": {
285
  "iopub.execute_input": "2023-02-28T09:01:54.689274Z",
@@ -489,7 +489,7 @@
489
  },
490
  {
491
  "cell_type": "code",
492
- "execution_count": 9,
493
  "metadata": {
494
  "execution": {
495
  "iopub.execute_input": "2023-02-28T09:02:12.057700Z",
@@ -499,18 +499,7 @@
499
  "shell.execute_reply.started": "2023-02-28T09:02:12.057663Z"
500
  }
501
  },
502
- "outputs": [
503
- {
504
- "data": {
505
- "text/plain": [
506
- "\"nltk.download('stopwords')\""
507
- ]
508
- },
509
- "execution_count": 9,
510
- "metadata": {},
511
- "output_type": "execute_result"
512
- }
513
- ],
514
  "source": [
515
  "# Import the library and download the stop words:\n",
516
  "from nltk.corpus import stopwords\n",
@@ -522,7 +511,7 @@
522
  },
523
  {
524
  "cell_type": "code",
525
- "execution_count": 10,
526
  "metadata": {
527
  "execution": {
528
  "iopub.execute_input": "2023-02-28T09:02:14.667306Z",
@@ -551,7 +540,7 @@
551
  },
552
  {
553
  "cell_type": "code",
554
- "execution_count": 11,
555
  "metadata": {
556
  "execution": {
557
  "iopub.execute_input": "2023-02-28T09:02:16.297289Z",
@@ -579,7 +568,7 @@
579
  },
580
  {
581
  "cell_type": "code",
582
- "execution_count": 12,
583
  "metadata": {
584
  "execution": {
585
  "iopub.execute_input": "2023-02-28T09:02:43.119351Z",
@@ -604,7 +593,7 @@
604
  },
605
  {
606
  "cell_type": "code",
607
- "execution_count": 13,
608
  "metadata": {
609
  "execution": {
610
  "iopub.execute_input": "2023-02-28T09:02:45.558806Z",
@@ -614,18 +603,7 @@
614
  "shell.execute_reply.started": "2023-02-28T09:02:45.558761Z"
615
  }
616
  },
617
- "outputs": [
618
- {
619
- "data": {
620
- "text/plain": [
621
- "'hello, world ,, '"
622
- ]
623
- },
624
- "execution_count": 13,
625
- "metadata": {},
626
- "output_type": "execute_result"
627
- }
628
- ],
629
  "source": [
630
  "emoji_text = \"hello, world 😀,😃,😄 😈 😀\"\n",
631
  "remove_emoji(emoji_text)"
@@ -756,7 +734,7 @@
756
  },
757
  {
758
  "cell_type": "code",
759
- "execution_count": 14,
760
  "metadata": {
761
  "execution": {
762
  "iopub.execute_input": "2023-02-28T09:03:36.468767Z",
@@ -784,7 +762,7 @@
784
  },
785
  {
786
  "cell_type": "code",
787
- "execution_count": 17,
788
  "metadata": {
789
  "execution": {
790
  "iopub.execute_input": "2023-02-28T09:04:35.737577Z",
@@ -802,7 +780,7 @@
802
  },
803
  {
804
  "cell_type": "code",
805
- "execution_count": 18,
806
  "metadata": {
807
  "execution": {
808
  "iopub.execute_input": "2023-02-28T09:04:46.312604Z",
@@ -812,35 +790,15 @@
812
  "shell.execute_reply.started": "2023-02-28T09:04:46.312561Z"
813
  }
814
  },
815
- "outputs": [
816
- {
817
- "data": {
818
- "text/plain": [
819
- "0 one review mention watch 1 oz episod youll hoo...\n",
820
- "1 wonder littl product film techniqu unassum old...\n",
821
- "2 thought wonder way spend time hot summer weeke...\n",
822
- "3 basic there famili littl boy jake think there ...\n",
823
- "4 petter mattei love time money visual stun film...\n",
824
- " ... \n",
825
- "49995 thought movi right good job wasnt creativ orig...\n",
826
- "49996 bad plot bad dialogu bad act idiot direct anno...\n",
827
- "49997 cathol taught parochi elementari school nun ta...\n",
828
- "49998 im go disagre previou comment side maltin one ...\n",
829
- "49999 one expect star trek movi high art fan expect ...\n",
830
- "Name: review, Length: 50000, dtype: object"
831
- ]
832
- },
833
- "execution_count": 18,
834
- "metadata": {},
835
- "output_type": "execute_result"
836
- }
837
- ],
838
  "source": [
839
  "# Function for applying stemming function\n",
840
  "def stem_words(text):\n",
841
- " return \" \".join([ps.stem(word) for word in text])\n",
 
 
842
  "\n",
843
- "df['review'].apply(stem_words)"
844
  ]
845
  },
846
  {
@@ -875,7 +833,7 @@
875
  },
876
  {
877
  "cell_type": "code",
878
- "execution_count": 27,
879
  "metadata": {
880
  "execution": {
881
  "iopub.execute_input": "2023-02-28T09:12:39.848502Z",
@@ -887,7 +845,10 @@
887
  },
888
  "outputs": [],
889
  "source": [
890
- "df['lemma_review'] = df['review'].astype(str) #.apply(stem_words) # fix ---- already stemed previously, and need to be list of string"
 
 
 
891
  ]
892
  },
893
  {
@@ -1003,7 +964,7 @@
1003
  },
1004
  {
1005
  "cell_type": "code",
1006
- "execution_count": 28,
1007
  "metadata": {
1008
  "execution": {
1009
  "iopub.execute_input": "2023-02-28T09:17:00.313046Z",
@@ -1015,6 +976,7 @@
1015
  },
1016
  "outputs": [],
1017
  "source": [
 
1018
  "from sklearn.feature_extraction.text import TfidfVectorizer\n",
1019
  "tfidf = TfidfVectorizer()\n",
1020
  "tf_idf = tfidf.fit_transform(df['lemma_review'])"
@@ -1022,7 +984,7 @@
1022
  },
1023
  {
1024
  "cell_type": "code",
1025
- "execution_count": 29,
1026
  "metadata": {
1027
  "execution": {
1028
  "iopub.execute_input": "2023-02-28T09:16:54.789060Z",
@@ -1045,7 +1007,7 @@
1045
  " [0., 0., 0., ..., 0., 0., 0.]])"
1046
  ]
1047
  },
1048
- "execution_count": 29,
1049
  "metadata": {},
1050
  "output_type": "execute_result"
1051
  }
 
70
  },
71
  {
72
  "cell_type": "code",
73
+ "execution_count": 3,
74
  "metadata": {
75
  "execution": {
76
  "iopub.execute_input": "2023-02-28T09:01:40.837603Z",
 
145
  "4 Petter Mattei's \"Love in the Time of Money\" is... positive"
146
  ]
147
  },
148
+ "execution_count": 3,
149
  "metadata": {},
150
  "output_type": "execute_result"
151
  }
 
194
  },
195
  {
196
  "cell_type": "code",
197
+ "execution_count": 4,
198
  "metadata": {
199
  "execution": {
200
  "iopub.execute_input": "2023-02-28T09:01:46.978097Z",
 
221
  },
222
  {
223
  "cell_type": "code",
224
+ "execution_count": 5,
225
  "metadata": {
226
  "execution": {
227
  "iopub.execute_input": "2023-02-28T09:01:49.177674Z",
 
250
  },
251
  {
252
  "cell_type": "code",
253
+ "execution_count": 6,
254
  "metadata": {
255
  "execution": {
256
  "iopub.execute_input": "2023-02-28T09:01:52.159195Z",
 
279
  },
280
  {
281
  "cell_type": "code",
282
+ "execution_count": 7,
283
  "metadata": {
284
  "execution": {
285
  "iopub.execute_input": "2023-02-28T09:01:54.689274Z",
 
489
  },
490
  {
491
  "cell_type": "code",
492
+ "execution_count": null,
493
  "metadata": {
494
  "execution": {
495
  "iopub.execute_input": "2023-02-28T09:02:12.057700Z",
 
499
  "shell.execute_reply.started": "2023-02-28T09:02:12.057663Z"
500
  }
501
  },
502
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
503
  "source": [
504
  "# Import the library and download the stop words:\n",
505
  "from nltk.corpus import stopwords\n",
 
511
  },
512
  {
513
  "cell_type": "code",
514
+ "execution_count": null,
515
  "metadata": {
516
  "execution": {
517
  "iopub.execute_input": "2023-02-28T09:02:14.667306Z",
 
540
  },
541
  {
542
  "cell_type": "code",
543
+ "execution_count": null,
544
  "metadata": {
545
  "execution": {
546
  "iopub.execute_input": "2023-02-28T09:02:16.297289Z",
 
568
  },
569
  {
570
  "cell_type": "code",
571
+ "execution_count": null,
572
  "metadata": {
573
  "execution": {
574
  "iopub.execute_input": "2023-02-28T09:02:43.119351Z",
 
593
  },
594
  {
595
  "cell_type": "code",
596
+ "execution_count": null,
597
  "metadata": {
598
  "execution": {
599
  "iopub.execute_input": "2023-02-28T09:02:45.558806Z",
 
603
  "shell.execute_reply.started": "2023-02-28T09:02:45.558761Z"
604
  }
605
  },
606
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
607
  "source": [
608
  "emoji_text = \"hello, world 😀,😃,😄 😈 😀\"\n",
609
  "remove_emoji(emoji_text)"
 
734
  },
735
  {
736
  "cell_type": "code",
737
+ "execution_count": null,
738
  "metadata": {
739
  "execution": {
740
  "iopub.execute_input": "2023-02-28T09:03:36.468767Z",
 
762
  },
763
  {
764
  "cell_type": "code",
765
+ "execution_count": 8,
766
  "metadata": {
767
  "execution": {
768
  "iopub.execute_input": "2023-02-28T09:04:35.737577Z",
 
780
  },
781
  {
782
  "cell_type": "code",
783
+ "execution_count": 9,
784
  "metadata": {
785
  "execution": {
786
  "iopub.execute_input": "2023-02-28T09:04:46.312604Z",
 
790
  "shell.execute_reply.started": "2023-02-28T09:04:46.312561Z"
791
  }
792
  },
793
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
794
  "source": [
795
  "# Function for applying stemming function\n",
796
  "def stem_words(text):\n",
797
+ " # fix 1 --- split the string into words before stemming, rather than looping characters\n",
798
+ "# return \" \".join([ps.stem(word) for word in text])\n",
799
+ " return \" \".join([ps.stem(word) for word in text.split()])\n",
800
  "\n",
801
+ "# df['review'].apply(stem_words)"
802
  ]
803
  },
804
  {
 
833
  },
834
  {
835
  "cell_type": "code",
836
+ "execution_count": 11,
837
  "metadata": {
838
  "execution": {
839
  "iopub.execute_input": "2023-02-28T09:12:39.848502Z",
 
845
  },
846
  "outputs": [],
847
  "source": [
848
+ "# fix for faster reproducing and fixing process, use a random 10% of the data:\n",
849
+ "df = df.sample(frac=0.1, random_state=42).copy()\n",
850
+ "\n",
851
+ "df['lemma_review'] = df['review'].apply(stem_words)"
852
  ]
853
  },
854
  {
 
964
  },
965
  {
966
  "cell_type": "code",
967
+ "execution_count": 12,
968
  "metadata": {
969
  "execution": {
970
  "iopub.execute_input": "2023-02-28T09:17:00.313046Z",
 
976
  },
977
  "outputs": [],
978
  "source": [
979
+ "# fix 2 --- execute this cell\n",
980
  "from sklearn.feature_extraction.text import TfidfVectorizer\n",
981
  "tfidf = TfidfVectorizer()\n",
982
  "tf_idf = tfidf.fit_transform(df['lemma_review'])"
 
984
  },
985
  {
986
  "cell_type": "code",
987
+ "execution_count": 13,
988
  "metadata": {
989
  "execution": {
990
  "iopub.execute_input": "2023-02-28T09:16:54.789060Z",
 
1007
  " [0., 0., 0., ..., 0., 0., 0.]])"
1008
  ]
1009
  },
1010
+ "execution_count": 13,
1011
  "metadata": {},
1012
  "output_type": "execute_result"
1013
  }
benchmark/NBspecific_1/NBspecific_1_reproduced.ipynb CHANGED
@@ -489,7 +489,7 @@
489
  },
490
  {
491
  "cell_type": "code",
492
- "execution_count": 8,
493
  "metadata": {
494
  "execution": {
495
  "iopub.execute_input": "2023-02-28T09:02:12.057700Z",
@@ -499,18 +499,7 @@
499
  "shell.execute_reply.started": "2023-02-28T09:02:12.057663Z"
500
  }
501
  },
502
- "outputs": [
503
- {
504
- "data": {
505
- "text/plain": [
506
- "\"nltk.download('stopwords')\""
507
- ]
508
- },
509
- "execution_count": 8,
510
- "metadata": {},
511
- "output_type": "execute_result"
512
- }
513
- ],
514
  "source": [
515
  "# Import the library and download the stop words:\n",
516
  "from nltk.corpus import stopwords\n",
@@ -522,7 +511,7 @@
522
  },
523
  {
524
  "cell_type": "code",
525
- "execution_count": 9,
526
  "metadata": {
527
  "execution": {
528
  "iopub.execute_input": "2023-02-28T09:02:14.667306Z",
@@ -551,7 +540,7 @@
551
  },
552
  {
553
  "cell_type": "code",
554
- "execution_count": 10,
555
  "metadata": {
556
  "execution": {
557
  "iopub.execute_input": "2023-02-28T09:02:16.297289Z",
@@ -579,7 +568,7 @@
579
  },
580
  {
581
  "cell_type": "code",
582
- "execution_count": 11,
583
  "metadata": {
584
  "execution": {
585
  "iopub.execute_input": "2023-02-28T09:02:43.119351Z",
@@ -604,7 +593,7 @@
604
  },
605
  {
606
  "cell_type": "code",
607
- "execution_count": 12,
608
  "metadata": {
609
  "execution": {
610
  "iopub.execute_input": "2023-02-28T09:02:45.558806Z",
@@ -614,18 +603,7 @@
614
  "shell.execute_reply.started": "2023-02-28T09:02:45.558761Z"
615
  }
616
  },
617
- "outputs": [
618
- {
619
- "data": {
620
- "text/plain": [
621
- "'hello, world ,, '"
622
- ]
623
- },
624
- "execution_count": 12,
625
- "metadata": {},
626
- "output_type": "execute_result"
627
- }
628
- ],
629
  "source": [
630
  "emoji_text = \"hello, world 😀,😃,😄 😈 😀\"\n",
631
  "remove_emoji(emoji_text)"
@@ -756,7 +734,7 @@
756
  },
757
  {
758
  "cell_type": "code",
759
- "execution_count": 13,
760
  "metadata": {
761
  "execution": {
762
  "iopub.execute_input": "2023-02-28T09:03:36.468767Z",
@@ -784,7 +762,7 @@
784
  },
785
  {
786
  "cell_type": "code",
787
- "execution_count": null,
788
  "metadata": {
789
  "execution": {
790
  "iopub.execute_input": "2023-02-28T09:04:35.737577Z",
@@ -802,7 +780,7 @@
802
  },
803
  {
804
  "cell_type": "code",
805
- "execution_count": null,
806
  "metadata": {
807
  "execution": {
808
  "iopub.execute_input": "2023-02-28T09:04:46.312604Z",
@@ -818,7 +796,7 @@
818
  "def stem_words(text):\n",
819
  " return \" \".join([ps.stem(word) for word in text])\n",
820
  "\n",
821
- "df['review'].apply(stem_words)"
822
  ]
823
  },
824
  {
@@ -853,7 +831,7 @@
853
  },
854
  {
855
  "cell_type": "code",
856
- "execution_count": null,
857
  "metadata": {
858
  "execution": {
859
  "iopub.execute_input": "2023-02-28T09:12:39.848502Z",
@@ -865,6 +843,9 @@
865
  },
866
  "outputs": [],
867
  "source": [
 
 
 
868
  "df['lemma_review'] = df['review'].apply(stem_words)"
869
  ]
870
  },
@@ -1000,7 +981,7 @@
1000
  },
1001
  {
1002
  "cell_type": "code",
1003
- "execution_count": 14,
1004
  "metadata": {
1005
  "execution": {
1006
  "iopub.execute_input": "2023-02-28T09:16:54.789060Z",
@@ -1018,7 +999,7 @@
1018
  "traceback": [
1019
  "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
1020
  "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
1021
- "\u001b[0;32m<ipython-input-14-3425eba7af87>\u001b[0m in \u001b[0;36m<cell line: 1>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mtf_idf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtoarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
1022
  "\u001b[0;31mNameError\u001b[0m: name 'tf_idf' is not defined"
1023
  ]
1024
  }
 
489
  },
490
  {
491
  "cell_type": "code",
492
+ "execution_count": null,
493
  "metadata": {
494
  "execution": {
495
  "iopub.execute_input": "2023-02-28T09:02:12.057700Z",
 
499
  "shell.execute_reply.started": "2023-02-28T09:02:12.057663Z"
500
  }
501
  },
502
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
503
  "source": [
504
  "# Import the library and download the stop words:\n",
505
  "from nltk.corpus import stopwords\n",
 
511
  },
512
  {
513
  "cell_type": "code",
514
+ "execution_count": null,
515
  "metadata": {
516
  "execution": {
517
  "iopub.execute_input": "2023-02-28T09:02:14.667306Z",
 
540
  },
541
  {
542
  "cell_type": "code",
543
+ "execution_count": null,
544
  "metadata": {
545
  "execution": {
546
  "iopub.execute_input": "2023-02-28T09:02:16.297289Z",
 
568
  },
569
  {
570
  "cell_type": "code",
571
+ "execution_count": null,
572
  "metadata": {
573
  "execution": {
574
  "iopub.execute_input": "2023-02-28T09:02:43.119351Z",
 
593
  },
594
  {
595
  "cell_type": "code",
596
+ "execution_count": null,
597
  "metadata": {
598
  "execution": {
599
  "iopub.execute_input": "2023-02-28T09:02:45.558806Z",
 
603
  "shell.execute_reply.started": "2023-02-28T09:02:45.558761Z"
604
  }
605
  },
606
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
607
  "source": [
608
  "emoji_text = \"hello, world 😀,😃,😄 😈 😀\"\n",
609
  "remove_emoji(emoji_text)"
 
734
  },
735
  {
736
  "cell_type": "code",
737
+ "execution_count": null,
738
  "metadata": {
739
  "execution": {
740
  "iopub.execute_input": "2023-02-28T09:03:36.468767Z",
 
762
  },
763
  {
764
  "cell_type": "code",
765
+ "execution_count": 8,
766
  "metadata": {
767
  "execution": {
768
  "iopub.execute_input": "2023-02-28T09:04:35.737577Z",
 
780
  },
781
  {
782
  "cell_type": "code",
783
+ "execution_count": 9,
784
  "metadata": {
785
  "execution": {
786
  "iopub.execute_input": "2023-02-28T09:04:46.312604Z",
 
796
  "def stem_words(text):\n",
797
  " return \" \".join([ps.stem(word) for word in text])\n",
798
  "\n",
799
+ "# df['review'].apply(stem_words)"
800
  ]
801
  },
802
  {
 
831
  },
832
  {
833
  "cell_type": "code",
834
+ "execution_count": 10,
835
  "metadata": {
836
  "execution": {
837
  "iopub.execute_input": "2023-02-28T09:12:39.848502Z",
 
843
  },
844
  "outputs": [],
845
  "source": [
846
+ "# fix for faster reproducing and fixing process, use a random 10% of the data:\n",
847
+ "df = df.sample(frac=0.1, random_state=42).copy()\n",
848
+ "\n",
849
  "df['lemma_review'] = df['review'].apply(stem_words)"
850
  ]
851
  },
 
981
  },
982
  {
983
  "cell_type": "code",
984
+ "execution_count": 11,
985
  "metadata": {
986
  "execution": {
987
  "iopub.execute_input": "2023-02-28T09:16:54.789060Z",
 
999
  "traceback": [
1000
  "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
1001
  "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
1002
+ "\u001b[0;32m<ipython-input-11-3425eba7af87>\u001b[0m in \u001b[0;36m<cell line: 1>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mtf_idf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtoarray\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
1003
  "\u001b[0;31mNameError\u001b[0m: name 'tf_idf' is not defined"
1004
  ]
1005
  }
benchmark/NBspecific_10/NBspecific_10_fixed.ipynb CHANGED
@@ -3461,6 +3461,7 @@
3461
  },
3462
  "outputs": [],
3463
  "source": [
 
3464
  "Uni=Final.ActivePower"
3465
  ]
3466
  },
@@ -3526,6 +3527,7 @@
3526
  }
3527
  ],
3528
  "source": [
 
3529
  "# train is from 0 to 44582 test is from 44582 to 49536\n",
3530
  " \n",
3531
  "train, test = Uni[0:44582], Uni[44582:]\n",
@@ -3547,6 +3549,7 @@
3547
  },
3548
  "outputs": [],
3549
  "source": [
 
3550
  "from sklearn.preprocessing import MinMaxScaler\n",
3551
  "\n",
3552
  "scaler = MinMaxScaler(feature_range=(0,1))\n",
 
3461
  },
3462
  "outputs": [],
3463
  "source": [
3464
+ "# fix -- not execute this cell beforehand\n",
3465
  "Uni=Final.ActivePower"
3466
  ]
3467
  },
 
3527
  }
3528
  ],
3529
  "source": [
3530
+ "# fix -- not execute this cell beforehand\n",
3531
  "# train is from 0 to 44582 test is from 44582 to 49536\n",
3532
  " \n",
3533
  "train, test = Uni[0:44582], Uni[44582:]\n",
 
3549
  },
3550
  "outputs": [],
3551
  "source": [
3552
+ "# fix -- not execute this cell beforehand\n",
3553
  "from sklearn.preprocessing import MinMaxScaler\n",
3554
  "\n",
3555
  "scaler = MinMaxScaler(feature_range=(0,1))\n",
benchmark/NBspecific_10/NBspecific_10_reproduced.ipynb CHANGED
@@ -2271,7 +2271,7 @@
2271
  },
2272
  {
2273
  "cell_type": "code",
2274
- "execution_count": 31,
2275
  "metadata": {
2276
  "colab": {
2277
  "base_uri": "https://localhost:8080/",
@@ -2295,7 +2295,7 @@
2295
  "traceback": [
2296
  "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
2297
  "\u001b[0;31mIndexError\u001b[0m Traceback (most recent call last)",
2298
- "\u001b[0;32m<ipython-input-31-25e1234a523b>\u001b[0m in \u001b[0;36m<cell line: 4>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mstatsmodels\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtsa\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstattools\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0madfuller\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mcheck_stationarity\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrain\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'ActivePower'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
2299
  "\u001b[0;31mIndexError\u001b[0m: only integers, slices (`:`), ellipsis (`...`), numpy.newaxis (`None`) and integer or boolean arrays are valid indices"
2300
  ]
2301
  }
@@ -3431,7 +3431,7 @@
3431
  },
3432
  {
3433
  "cell_type": "code",
3434
- "execution_count": 28,
3435
  "metadata": {
3436
  "execution": {
3437
  "iopub.execute_input": "2023-02-01T08:55:10.327344Z",
@@ -3485,7 +3485,7 @@
3485
  },
3486
  {
3487
  "cell_type": "code",
3488
- "execution_count": 29,
3489
  "metadata": {
3490
  "execution": {
3491
  "iopub.execute_input": "2023-02-01T09:19:10.143687Z",
@@ -3503,7 +3503,7 @@
3503
  "((44582,), (4958,))"
3504
  ]
3505
  },
3506
- "execution_count": 29,
3507
  "metadata": {},
3508
  "output_type": "execute_result"
3509
  }
@@ -3517,7 +3517,7 @@
3517
  },
3518
  {
3519
  "cell_type": "code",
3520
- "execution_count": 30,
3521
  "metadata": {
3522
  "execution": {
3523
  "iopub.execute_input": "2023-02-01T09:19:15.961670Z",
 
2271
  },
2272
  {
2273
  "cell_type": "code",
2274
+ "execution_count": 26,
2275
  "metadata": {
2276
  "colab": {
2277
  "base_uri": "https://localhost:8080/",
 
2295
  "traceback": [
2296
  "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
2297
  "\u001b[0;31mIndexError\u001b[0m Traceback (most recent call last)",
2298
+ "\u001b[0;32m<ipython-input-26-25e1234a523b>\u001b[0m in \u001b[0;36m<cell line: 4>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mstatsmodels\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtsa\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstattools\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0madfuller\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 4\u001b[0;31m \u001b[0mcheck_stationarity\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtrain\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'ActivePower'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
2299
  "\u001b[0;31mIndexError\u001b[0m: only integers, slices (`:`), ellipsis (`...`), numpy.newaxis (`None`) and integer or boolean arrays are valid indices"
2300
  ]
2301
  }
 
3431
  },
3432
  {
3433
  "cell_type": "code",
3434
+ "execution_count": 23,
3435
  "metadata": {
3436
  "execution": {
3437
  "iopub.execute_input": "2023-02-01T08:55:10.327344Z",
 
3485
  },
3486
  {
3487
  "cell_type": "code",
3488
+ "execution_count": 24,
3489
  "metadata": {
3490
  "execution": {
3491
  "iopub.execute_input": "2023-02-01T09:19:10.143687Z",
 
3503
  "((44582,), (4958,))"
3504
  ]
3505
  },
3506
+ "execution_count": 24,
3507
  "metadata": {},
3508
  "output_type": "execute_result"
3509
  }
 
3517
  },
3518
  {
3519
  "cell_type": "code",
3520
+ "execution_count": 25,
3521
  "metadata": {
3522
  "execution": {
3523
  "iopub.execute_input": "2023-02-01T09:19:15.961670Z",
benchmark/NBspecific_11/NBspecific_11_fixed.ipynb CHANGED
The diff for this file is too large to render. See raw diff
 
benchmark/NBspecific_11/NBspecific_11_reproduced.ipynb CHANGED
@@ -98,7 +98,7 @@
98
  },
99
  {
100
  "cell_type": "code",
101
- "execution_count": 3,
102
  "metadata": {
103
  "execution": {
104
  "iopub.execute_input": "2023-06-09T02:08:48.236386Z",
@@ -116,7 +116,7 @@
116
  },
117
  {
118
  "cell_type": "code",
119
- "execution_count": 4,
120
  "metadata": {
121
  "execution": {
122
  "iopub.execute_input": "2023-06-09T02:10:11.562488Z",
@@ -153,7 +153,7 @@
153
  },
154
  {
155
  "cell_type": "code",
156
- "execution_count": 5,
157
  "metadata": {
158
  "execution": {
159
  "iopub.execute_input": "2023-06-09T02:11:40.531442Z",
@@ -171,9 +171,7 @@
171
  "/usr/local/lib/python3.10/dist-packages/torchvision/models/_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead.\n",
172
  " warnings.warn(\n",
173
  "/usr/local/lib/python3.10/dist-packages/torchvision/models/_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights=AlexNet_Weights.IMAGENET1K_V1`. You can also use `weights=AlexNet_Weights.DEFAULT` to get the most up-to-date weights.\n",
174
- " warnings.warn(msg)\n",
175
- "Downloading: \"https://download.pytorch.org/models/alexnet-owt-7be5be79.pth\" to /root/.cache/torch/hub/checkpoints/alexnet-owt-7be5be79.pth\n",
176
- "100%|██████████| 233M/233M [00:06<00:00, 40.0MB/s] \n"
177
  ]
178
  }
179
  ],
@@ -184,7 +182,7 @@
184
  },
185
  {
186
  "cell_type": "code",
187
- "execution_count": 43,
188
  "metadata": {
189
  "execution": {
190
  "iopub.execute_input": "2023-06-09T02:12:39.020940Z",
@@ -219,7 +217,7 @@
219
  },
220
  {
221
  "cell_type": "code",
222
- "execution_count": 44,
223
  "metadata": {
224
  "execution": {
225
  "iopub.execute_input": "2023-06-09T02:14:18.682336Z",
@@ -238,7 +236,7 @@
238
  },
239
  {
240
  "cell_type": "code",
241
- "execution_count": 45,
242
  "metadata": {
243
  "execution": {
244
  "iopub.execute_input": "2023-06-09T02:15:33.227206Z",
@@ -248,18 +246,7 @@
248
  "shell.execute_reply.started": "2023-06-09T02:15:33.227171Z"
249
  }
250
  },
251
- "outputs": [
252
- {
253
- "data": {
254
- "text/plain": [
255
- "(1000,)"
256
- ]
257
- },
258
- "execution_count": 45,
259
- "metadata": {},
260
- "output_type": "execute_result"
261
- }
262
- ],
263
  "source": [
264
  "# 下面是调试内容\n",
265
  "np.eye(num_labels)[target_label].shape"
@@ -267,7 +254,7 @@
267
  },
268
  {
269
  "cell_type": "code",
270
- "execution_count": 46,
271
  "metadata": {
272
  "execution": {
273
  "iopub.execute_input": "2023-06-09T02:16:32.401599Z",
@@ -277,18 +264,7 @@
277
  "shell.execute_reply.started": "2023-06-09T02:16:32.401569Z"
278
  }
279
  },
280
- "outputs": [
281
- {
282
- "data": {
283
- "text/plain": [
284
- "torch.Size([1000])"
285
- ]
286
- },
287
- "execution_count": 46,
288
- "metadata": {},
289
- "output_type": "execute_result"
290
- }
291
- ],
292
  "source": [
293
  "# print(tlab)\n",
294
  "tlab.shape"
@@ -296,7 +272,7 @@
296
  },
297
  {
298
  "cell_type": "code",
299
- "execution_count": 47,
300
  "metadata": {
301
  "execution": {
302
  "iopub.execute_input": "2023-06-09T02:34:21.875455Z",
@@ -313,7 +289,7 @@
313
  },
314
  {
315
  "cell_type": "code",
316
- "execution_count": 48,
317
  "metadata": {
318
  "execution": {
319
  "iopub.execute_input": "2023-06-09T02:34:24.649587Z",
@@ -338,7 +314,7 @@
338
  },
339
  {
340
  "cell_type": "code",
341
- "execution_count": 49,
342
  "metadata": {
343
  "execution": {
344
  "iopub.execute_input": "2023-06-09T02:48:29.739149Z",
@@ -470,7 +446,7 @@
470
  },
471
  {
472
  "cell_type": "code",
473
- "execution_count": 50,
474
  "metadata": {
475
  "execution": {
476
  "iopub.execute_input": "2023-06-09T02:56:04.716191Z",
@@ -480,16 +456,7 @@
480
  "shell.execute_reply.started": "2023-06-09T02:56:04.716162Z"
481
  }
482
  },
483
- "outputs": [
484
- {
485
- "name": "stdout",
486
- "output_type": "stream",
487
- "text": [
488
- "(1, 3, 224, 224)\n",
489
- "(1, 3, 224, 224)\n"
490
- ]
491
- }
492
- ],
493
  "source": [
494
  "print(o_bestattack.shape)\n",
495
  "print(img.shape)"
@@ -497,7 +464,7 @@
497
  },
498
  {
499
  "cell_type": "code",
500
- "execution_count": 51,
501
  "metadata": {
502
  "execution": {
503
  "iopub.execute_input": "2023-06-09T02:59:51.731662Z",
@@ -543,7 +510,7 @@
543
  },
544
  {
545
  "cell_type": "code",
546
- "execution_count": 56,
547
  "metadata": {
548
  "execution": {
549
  "iopub.execute_input": "2023-06-09T03:05:08.845633Z",
@@ -608,7 +575,7 @@
608
  },
609
  {
610
  "cell_type": "code",
611
- "execution_count": 57,
612
  "metadata": {
613
  "execution": {
614
  "iopub.execute_input": "2023-06-09T03:05:11.739431Z",
@@ -626,7 +593,7 @@
626
  "traceback": [
627
  "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
628
  "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
629
- "\u001b[0;32m<ipython-input-57-5bc605183c9d>\u001b[0m in \u001b[0;36m<cell line: 1>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mimshow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0madv\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
630
  "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/matplotlib/pyplot.py\u001b[0m in \u001b[0;36mimshow\u001b[0;34m(X, cmap, norm, aspect, interpolation, alpha, vmin, vmax, origin, extent, interpolation_stage, filternorm, filterrad, resample, url, data, **kwargs)\u001b[0m\n\u001b[1;32m 2693\u001b[0m \u001b[0minterpolation_stage\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfilternorm\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfilterrad\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m4.0\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2694\u001b[0m resample=None, url=None, data=None, **kwargs):\n\u001b[0;32m-> 2695\u001b[0;31m __ret = gca().imshow(\n\u001b[0m\u001b[1;32m 2696\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcmap\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcmap\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnorm\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mnorm\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maspect\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0maspect\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2697\u001b[0m \u001b[0minterpolation\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0minterpolation\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0malpha\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0malpha\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvmin\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mvmin\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
631
  "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/matplotlib/__init__.py\u001b[0m in \u001b[0;36minner\u001b[0;34m(ax, data, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1440\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0minner\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0max\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1441\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mdata\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1442\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0max\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0mmap\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msanitize_sequence\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1443\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1444\u001b[0m \u001b[0mbound\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnew_sig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbind\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0max\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
632
  "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/matplotlib/axes/_axes.py\u001b[0m in \u001b[0;36mimshow\u001b[0;34m(self, X, cmap, norm, aspect, interpolation, alpha, vmin, vmax, origin, extent, interpolation_stage, filternorm, filterrad, resample, url, **kwargs)\u001b[0m\n\u001b[1;32m 5663\u001b[0m **kwargs)\n\u001b[1;32m 5664\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 5665\u001b[0;31m \u001b[0mim\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5666\u001b[0m \u001b[0mim\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_alpha\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0malpha\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5667\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mim\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_clip_path\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
 
98
  },
99
  {
100
  "cell_type": "code",
101
+ "execution_count": 2,
102
  "metadata": {
103
  "execution": {
104
  "iopub.execute_input": "2023-06-09T02:08:48.236386Z",
 
116
  },
117
  {
118
  "cell_type": "code",
119
+ "execution_count": 3,
120
  "metadata": {
121
  "execution": {
122
  "iopub.execute_input": "2023-06-09T02:10:11.562488Z",
 
153
  },
154
  {
155
  "cell_type": "code",
156
+ "execution_count": 4,
157
  "metadata": {
158
  "execution": {
159
  "iopub.execute_input": "2023-06-09T02:11:40.531442Z",
 
171
  "/usr/local/lib/python3.10/dist-packages/torchvision/models/_utils.py:208: UserWarning: The parameter 'pretrained' is deprecated since 0.13 and may be removed in the future, please use 'weights' instead.\n",
172
  " warnings.warn(\n",
173
  "/usr/local/lib/python3.10/dist-packages/torchvision/models/_utils.py:223: UserWarning: Arguments other than a weight enum or `None` for 'weights' are deprecated since 0.13 and may be removed in the future. The current behavior is equivalent to passing `weights=AlexNet_Weights.IMAGENET1K_V1`. You can also use `weights=AlexNet_Weights.DEFAULT` to get the most up-to-date weights.\n",
174
+ " warnings.warn(msg)\n"
 
 
175
  ]
176
  }
177
  ],
 
182
  },
183
  {
184
  "cell_type": "code",
185
+ "execution_count": 5,
186
  "metadata": {
187
  "execution": {
188
  "iopub.execute_input": "2023-06-09T02:12:39.020940Z",
 
217
  },
218
  {
219
  "cell_type": "code",
220
+ "execution_count": 6,
221
  "metadata": {
222
  "execution": {
223
  "iopub.execute_input": "2023-06-09T02:14:18.682336Z",
 
236
  },
237
  {
238
  "cell_type": "code",
239
+ "execution_count": null,
240
  "metadata": {
241
  "execution": {
242
  "iopub.execute_input": "2023-06-09T02:15:33.227206Z",
 
246
  "shell.execute_reply.started": "2023-06-09T02:15:33.227171Z"
247
  }
248
  },
249
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
250
  "source": [
251
  "# 下面是调试内容\n",
252
  "np.eye(num_labels)[target_label].shape"
 
254
  },
255
  {
256
  "cell_type": "code",
257
+ "execution_count": null,
258
  "metadata": {
259
  "execution": {
260
  "iopub.execute_input": "2023-06-09T02:16:32.401599Z",
 
264
  "shell.execute_reply.started": "2023-06-09T02:16:32.401569Z"
265
  }
266
  },
267
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
268
  "source": [
269
  "# print(tlab)\n",
270
  "tlab.shape"
 
272
  },
273
  {
274
  "cell_type": "code",
275
+ "execution_count": 7,
276
  "metadata": {
277
  "execution": {
278
  "iopub.execute_input": "2023-06-09T02:34:21.875455Z",
 
289
  },
290
  {
291
  "cell_type": "code",
292
+ "execution_count": 8,
293
  "metadata": {
294
  "execution": {
295
  "iopub.execute_input": "2023-06-09T02:34:24.649587Z",
 
314
  },
315
  {
316
  "cell_type": "code",
317
+ "execution_count": 9,
318
  "metadata": {
319
  "execution": {
320
  "iopub.execute_input": "2023-06-09T02:48:29.739149Z",
 
446
  },
447
  {
448
  "cell_type": "code",
449
+ "execution_count": null,
450
  "metadata": {
451
  "execution": {
452
  "iopub.execute_input": "2023-06-09T02:56:04.716191Z",
 
456
  "shell.execute_reply.started": "2023-06-09T02:56:04.716162Z"
457
  }
458
  },
459
+ "outputs": [],
 
 
 
 
 
 
 
 
 
460
  "source": [
461
  "print(o_bestattack.shape)\n",
462
  "print(img.shape)"
 
464
  },
465
  {
466
  "cell_type": "code",
467
+ "execution_count": 10,
468
  "metadata": {
469
  "execution": {
470
  "iopub.execute_input": "2023-06-09T02:59:51.731662Z",
 
510
  },
511
  {
512
  "cell_type": "code",
513
+ "execution_count": 11,
514
  "metadata": {
515
  "execution": {
516
  "iopub.execute_input": "2023-06-09T03:05:08.845633Z",
 
575
  },
576
  {
577
  "cell_type": "code",
578
+ "execution_count": 12,
579
  "metadata": {
580
  "execution": {
581
  "iopub.execute_input": "2023-06-09T03:05:11.739431Z",
 
593
  "traceback": [
594
  "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
595
  "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
596
+ "\u001b[0;32m<ipython-input-12-5bc605183c9d>\u001b[0m in \u001b[0;36m<cell line: 1>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mimshow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0madv\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
597
  "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/matplotlib/pyplot.py\u001b[0m in \u001b[0;36mimshow\u001b[0;34m(X, cmap, norm, aspect, interpolation, alpha, vmin, vmax, origin, extent, interpolation_stage, filternorm, filterrad, resample, url, data, **kwargs)\u001b[0m\n\u001b[1;32m 2693\u001b[0m \u001b[0minterpolation_stage\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfilternorm\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfilterrad\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m4.0\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2694\u001b[0m resample=None, url=None, data=None, **kwargs):\n\u001b[0;32m-> 2695\u001b[0;31m __ret = gca().imshow(\n\u001b[0m\u001b[1;32m 2696\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcmap\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mcmap\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnorm\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mnorm\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maspect\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0maspect\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2697\u001b[0m \u001b[0minterpolation\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0minterpolation\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0malpha\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0malpha\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mvmin\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mvmin\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
598
  "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/matplotlib/__init__.py\u001b[0m in \u001b[0;36minner\u001b[0;34m(ax, data, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1440\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0minner\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0max\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1441\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mdata\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1442\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0max\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0mmap\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msanitize_sequence\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1443\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1444\u001b[0m \u001b[0mbound\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnew_sig\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbind\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0max\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
599
  "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/matplotlib/axes/_axes.py\u001b[0m in \u001b[0;36mimshow\u001b[0;34m(self, X, cmap, norm, aspect, interpolation, alpha, vmin, vmax, origin, extent, interpolation_stage, filternorm, filterrad, resample, url, **kwargs)\u001b[0m\n\u001b[1;32m 5663\u001b[0m **kwargs)\n\u001b[1;32m 5664\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 5665\u001b[0;31m \u001b[0mim\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 5666\u001b[0m \u001b[0mim\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_alpha\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0malpha\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5667\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mim\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_clip_path\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
benchmark/NBspecific_12/NBspecific_12_fixed.ipynb CHANGED
@@ -26,6 +26,7 @@
26
  },
27
  "outputs": [],
28
  "source": [
 
29
  "import matplotlib.pyplot as plt\n",
30
  "import seaborn as sns\n",
31
  "%matplotlib inline\n"
@@ -418,7 +419,7 @@
418
  },
419
  {
420
  "cell_type": "code",
421
- "execution_count": 5,
422
  "metadata": {
423
  "execution": {
424
  "iopub.execute_input": "2023-10-24T05:45:47.424378Z",
@@ -435,7 +436,7 @@
435
  },
436
  {
437
  "cell_type": "code",
438
- "execution_count": 6,
439
  "metadata": {
440
  "execution": {
441
  "iopub.execute_input": "2023-10-24T05:45:55.533625Z",
@@ -498,7 +499,7 @@
498
  "\n",
499
  "fig, axs = plt.subplots(6, 3, figsize=(7, 17))\n",
500
  "\n",
501
- "# fix ----- an additional wrong variable name error\n",
502
  "# for col,ax in zip(numvars,axs.ravel()):\n",
503
  "for col,ax in zip(num,axs.ravel()):\n",
504
  " if pp.train[col].dtype == float or pp.train[col].dtype == int:\n",
@@ -514,6 +515,13 @@
514
  "fig.suptitle('Feature distributions', y=1.02, fontsize=20)\n",
515
  "plt.tight_layout()"
516
  ]
 
 
 
 
 
 
 
517
  }
518
  ],
519
  "metadata": {
 
26
  },
27
  "outputs": [],
28
  "source": [
29
+ "# fix 1 --- execute this cell\n",
30
  "import matplotlib.pyplot as plt\n",
31
  "import seaborn as sns\n",
32
  "%matplotlib inline\n"
 
419
  },
420
  {
421
  "cell_type": "code",
422
+ "execution_count": 6,
423
  "metadata": {
424
  "execution": {
425
  "iopub.execute_input": "2023-10-24T05:45:47.424378Z",
 
436
  },
437
  {
438
  "cell_type": "code",
439
+ "execution_count": null,
440
  "metadata": {
441
  "execution": {
442
  "iopub.execute_input": "2023-10-24T05:45:55.533625Z",
 
499
  "\n",
500
  "fig, axs = plt.subplots(6, 3, figsize=(7, 17))\n",
501
  "\n",
502
+ "# fix 2 ----- an additional wrong variable name error\n",
503
  "# for col,ax in zip(numvars,axs.ravel()):\n",
504
  "for col,ax in zip(num,axs.ravel()):\n",
505
  " if pp.train[col].dtype == float or pp.train[col].dtype == int:\n",
 
515
  "fig.suptitle('Feature distributions', y=1.02, fontsize=20)\n",
516
  "plt.tight_layout()"
517
  ]
518
+ },
519
+ {
520
+ "cell_type": "code",
521
+ "execution_count": null,
522
+ "metadata": {},
523
+ "outputs": [],
524
+ "source": []
525
  }
526
  ],
527
  "metadata": {
benchmark/NBspecific_12/NBspecific_12_reproduced.ipynb CHANGED
@@ -33,7 +33,7 @@
33
  },
34
  {
35
  "cell_type": "code",
36
- "execution_count": 3,
37
  "metadata": {
38
  "_cell_guid": "b1076dfc-b9ad-4769-8c92-a6c4dae69d19",
39
  "_uuid": "8f2839f25d086af736a60e9eeb907d3b93b6e0e5",
@@ -79,7 +79,7 @@
79
  },
80
  {
81
  "cell_type": "code",
82
- "execution_count": 4,
83
  "metadata": {
84
  "execution": {
85
  "iopub.execute_input": "2023-10-24T05:45:44.800959Z",
@@ -164,7 +164,7 @@
164
  },
165
  {
166
  "cell_type": "code",
167
- "execution_count": 5,
168
  "metadata": {
169
  "execution": {
170
  "iopub.execute_input": "2023-10-24T05:45:45.203530Z",
@@ -405,7 +405,7 @@
405
  "[5 rows x 24 columns]"
406
  ]
407
  },
408
- "execution_count": 5,
409
  "metadata": {},
410
  "output_type": "execute_result"
411
  }
@@ -418,7 +418,7 @@
418
  },
419
  {
420
  "cell_type": "code",
421
- "execution_count": 6,
422
  "metadata": {
423
  "execution": {
424
  "iopub.execute_input": "2023-10-24T05:45:47.424378Z",
@@ -435,7 +435,7 @@
435
  },
436
  {
437
  "cell_type": "code",
438
- "execution_count": 7,
439
  "metadata": {
440
  "execution": {
441
  "iopub.execute_input": "2023-10-24T05:45:55.533625Z",
@@ -468,7 +468,7 @@
468
  },
469
  {
470
  "cell_type": "code",
471
- "execution_count": 8,
472
  "metadata": {
473
  "execution": {
474
  "iopub.execute_input": "2023-10-24T05:46:36.494735Z",
@@ -486,7 +486,7 @@
486
  "traceback": [
487
  "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
488
  "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
489
- "\u001b[0;32m<ipython-input-8-ff56c1381872>\u001b[0m in \u001b[0;36m<cell line: 1>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mfig\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msubplots\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m6\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfigsize\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m7\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m17\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mcol\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0max\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnumvars\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0maxs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mravel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mpp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrain\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mcol\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdtype\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0mfloat\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mpp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrain\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mcol\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdtype\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0mint\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0msns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mhistplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0max\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrain\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mcol\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mbins\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m100\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mxlabel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcol\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
490
  "\u001b[0;31mNameError\u001b[0m: name 'plt' is not defined"
491
  ]
492
  }
 
33
  },
34
  {
35
  "cell_type": "code",
36
+ "execution_count": 1,
37
  "metadata": {
38
  "_cell_guid": "b1076dfc-b9ad-4769-8c92-a6c4dae69d19",
39
  "_uuid": "8f2839f25d086af736a60e9eeb907d3b93b6e0e5",
 
79
  },
80
  {
81
  "cell_type": "code",
82
+ "execution_count": 2,
83
  "metadata": {
84
  "execution": {
85
  "iopub.execute_input": "2023-10-24T05:45:44.800959Z",
 
164
  },
165
  {
166
  "cell_type": "code",
167
+ "execution_count": 3,
168
  "metadata": {
169
  "execution": {
170
  "iopub.execute_input": "2023-10-24T05:45:45.203530Z",
 
405
  "[5 rows x 24 columns]"
406
  ]
407
  },
408
+ "execution_count": 3,
409
  "metadata": {},
410
  "output_type": "execute_result"
411
  }
 
418
  },
419
  {
420
  "cell_type": "code",
421
+ "execution_count": null,
422
  "metadata": {
423
  "execution": {
424
  "iopub.execute_input": "2023-10-24T05:45:47.424378Z",
 
435
  },
436
  {
437
  "cell_type": "code",
438
+ "execution_count": null,
439
  "metadata": {
440
  "execution": {
441
  "iopub.execute_input": "2023-10-24T05:45:55.533625Z",
 
468
  },
469
  {
470
  "cell_type": "code",
471
+ "execution_count": 4,
472
  "metadata": {
473
  "execution": {
474
  "iopub.execute_input": "2023-10-24T05:46:36.494735Z",
 
486
  "traceback": [
487
  "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
488
  "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
489
+ "\u001b[0;32m<ipython-input-4-ff56c1381872>\u001b[0m in \u001b[0;36m<cell line: 1>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mfig\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msubplots\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m6\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m3\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfigsize\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m7\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m17\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mcol\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0max\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mzip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnumvars\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0maxs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mravel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mpp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrain\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mcol\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdtype\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0mfloat\u001b[0m \u001b[0;32mor\u001b[0m \u001b[0mpp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrain\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mcol\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdtype\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0mint\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0msns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mhistplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0max\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0max\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrain\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mcol\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mbins\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m100\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mxlabel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcol\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
490
  "\u001b[0;31mNameError\u001b[0m: name 'plt' is not defined"
491
  ]
492
  }
benchmark/NBspecific_13/NBspecific_13_fixed.ipynb CHANGED
@@ -467,7 +467,7 @@
467
  },
468
  {
469
  "cell_type": "code",
470
- "execution_count": 3,
471
  "metadata": {
472
  "execution": {
473
  "iopub.execute_input": "2023-12-11T14:20:38.616852Z",
@@ -477,162 +477,14 @@
477
  "shell.execute_reply.started": "2023-12-11T14:20:38.616816Z"
478
  }
479
  },
480
- "outputs": [
481
- {
482
- "data": {
483
- "text/html": [
484
- "<div>\n",
485
- "<style scoped>\n",
486
- " .dataframe tbody tr th:only-of-type {\n",
487
- " vertical-align: middle;\n",
488
- " }\n",
489
- "\n",
490
- " .dataframe tbody tr th {\n",
491
- " vertical-align: top;\n",
492
- " }\n",
493
- "\n",
494
- " .dataframe thead th {\n",
495
- " text-align: right;\n",
496
- " }\n",
497
- "</style>\n",
498
- "<table border=\"1\" class=\"dataframe\">\n",
499
- " <thead>\n",
500
- " <tr style=\"text-align: right;\">\n",
501
- " <th></th>\n",
502
- " <th>age</th>\n",
503
- " <th>sex</th>\n",
504
- " <th>cp</th>\n",
505
- " <th>trtbps</th>\n",
506
- " <th>chol</th>\n",
507
- " <th>fbs</th>\n",
508
- " <th>restecg</th>\n",
509
- " <th>thalachh</th>\n",
510
- " <th>exng</th>\n",
511
- " <th>oldpeak</th>\n",
512
- " <th>slp</th>\n",
513
- " <th>caa</th>\n",
514
- " <th>thall</th>\n",
515
- " <th>output</th>\n",
516
- " </tr>\n",
517
- " </thead>\n",
518
- " <tbody>\n",
519
- " <tr>\n",
520
- " <th>0</th>\n",
521
- " <td>63</td>\n",
522
- " <td>1</td>\n",
523
- " <td>3</td>\n",
524
- " <td>145</td>\n",
525
- " <td>233</td>\n",
526
- " <td>1</td>\n",
527
- " <td>0</td>\n",
528
- " <td>150</td>\n",
529
- " <td>0</td>\n",
530
- " <td>2.3</td>\n",
531
- " <td>0</td>\n",
532
- " <td>0</td>\n",
533
- " <td>1</td>\n",
534
- " <td>1</td>\n",
535
- " </tr>\n",
536
- " <tr>\n",
537
- " <th>1</th>\n",
538
- " <td>37</td>\n",
539
- " <td>1</td>\n",
540
- " <td>2</td>\n",
541
- " <td>130</td>\n",
542
- " <td>250</td>\n",
543
- " <td>0</td>\n",
544
- " <td>1</td>\n",
545
- " <td>187</td>\n",
546
- " <td>0</td>\n",
547
- " <td>3.5</td>\n",
548
- " <td>0</td>\n",
549
- " <td>0</td>\n",
550
- " <td>2</td>\n",
551
- " <td>1</td>\n",
552
- " </tr>\n",
553
- " <tr>\n",
554
- " <th>2</th>\n",
555
- " <td>41</td>\n",
556
- " <td>0</td>\n",
557
- " <td>1</td>\n",
558
- " <td>130</td>\n",
559
- " <td>204</td>\n",
560
- " <td>0</td>\n",
561
- " <td>0</td>\n",
562
- " <td>172</td>\n",
563
- " <td>0</td>\n",
564
- " <td>1.4</td>\n",
565
- " <td>2</td>\n",
566
- " <td>0</td>\n",
567
- " <td>2</td>\n",
568
- " <td>1</td>\n",
569
- " </tr>\n",
570
- " <tr>\n",
571
- " <th>3</th>\n",
572
- " <td>56</td>\n",
573
- " <td>1</td>\n",
574
- " <td>1</td>\n",
575
- " <td>120</td>\n",
576
- " <td>236</td>\n",
577
- " <td>0</td>\n",
578
- " <td>1</td>\n",
579
- " <td>178</td>\n",
580
- " <td>0</td>\n",
581
- " <td>0.8</td>\n",
582
- " <td>2</td>\n",
583
- " <td>0</td>\n",
584
- " <td>2</td>\n",
585
- " <td>1</td>\n",
586
- " </tr>\n",
587
- " <tr>\n",
588
- " <th>4</th>\n",
589
- " <td>57</td>\n",
590
- " <td>0</td>\n",
591
- " <td>0</td>\n",
592
- " <td>120</td>\n",
593
- " <td>354</td>\n",
594
- " <td>0</td>\n",
595
- " <td>1</td>\n",
596
- " <td>163</td>\n",
597
- " <td>1</td>\n",
598
- " <td>0.6</td>\n",
599
- " <td>2</td>\n",
600
- " <td>0</td>\n",
601
- " <td>2</td>\n",
602
- " <td>1</td>\n",
603
- " </tr>\n",
604
- " </tbody>\n",
605
- "</table>\n",
606
- "</div>"
607
- ],
608
- "text/plain": [
609
- " age sex cp trtbps chol fbs restecg thalachh exng oldpeak slp \\\n",
610
- "0 63 1 3 145 233 1 0 150 0 2.3 0 \n",
611
- "1 37 1 2 130 250 0 1 187 0 3.5 0 \n",
612
- "2 41 0 1 130 204 0 0 172 0 1.4 2 \n",
613
- "3 56 1 1 120 236 0 1 178 0 0.8 2 \n",
614
- "4 57 0 0 120 354 0 1 163 1 0.6 2 \n",
615
- "\n",
616
- " caa thall output \n",
617
- "0 0 1 1 \n",
618
- "1 0 2 1 \n",
619
- "2 0 2 1 \n",
620
- "3 0 2 1 \n",
621
- "4 0 2 1 "
622
- ]
623
- },
624
- "execution_count": 3,
625
- "metadata": {},
626
- "output_type": "execute_result"
627
- }
628
- ],
629
  "source": [
630
  "df.head()"
631
  ]
632
  },
633
  {
634
  "cell_type": "code",
635
- "execution_count": 6,
636
  "metadata": {
637
  "execution": {
638
  "iopub.execute_input": "2023-12-12T08:18:23.920518Z",
@@ -799,7 +651,7 @@
799
  },
800
  {
801
  "cell_type": "code",
802
- "execution_count": 5,
803
  "metadata": {
804
  "execution": {
805
  "iopub.execute_input": "2023-12-12T08:35:48.471762Z",
@@ -814,11 +666,12 @@
814
  "name": "stdout",
815
  "output_type": "stream",
816
  "text": [
817
- "Accuracy: 0.75\n"
818
  ]
819
  }
820
  ],
821
  "source": [
 
822
  "from sklearn.model_selection import train_test_split\n",
823
  "from sklearn.tree import DecisionTreeClassifier\n",
824
  "from sklearn.metrics import accuracy_score\n",
 
467
  },
468
  {
469
  "cell_type": "code",
470
+ "execution_count": null,
471
  "metadata": {
472
  "execution": {
473
  "iopub.execute_input": "2023-12-11T14:20:38.616852Z",
 
477
  "shell.execute_reply.started": "2023-12-11T14:20:38.616816Z"
478
  }
479
  },
480
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
481
  "source": [
482
  "df.head()"
483
  ]
484
  },
485
  {
486
  "cell_type": "code",
487
+ "execution_count": 4,
488
  "metadata": {
489
  "execution": {
490
  "iopub.execute_input": "2023-12-12T08:18:23.920518Z",
 
651
  },
652
  {
653
  "cell_type": "code",
654
+ "execution_count": 3,
655
  "metadata": {
656
  "execution": {
657
  "iopub.execute_input": "2023-12-12T08:35:48.471762Z",
 
666
  "name": "stdout",
667
  "output_type": "stream",
668
  "text": [
669
+ "Accuracy: 0.6973684210526315\n"
670
  ]
671
  }
672
  ],
673
  "source": [
674
+ "# fix --- execute this cell beforehand\n",
675
  "from sklearn.model_selection import train_test_split\n",
676
  "from sklearn.tree import DecisionTreeClassifier\n",
677
  "from sklearn.metrics import accuracy_score\n",
benchmark/NBspecific_13/NBspecific_13_reproduced.ipynb CHANGED
@@ -450,7 +450,7 @@
450
  },
451
  {
452
  "cell_type": "code",
453
- "execution_count": 3,
454
  "metadata": {
455
  "execution": {
456
  "iopub.execute_input": "2023-12-12T08:22:09.636349Z",
@@ -467,7 +467,7 @@
467
  },
468
  {
469
  "cell_type": "code",
470
- "execution_count": 4,
471
  "metadata": {
472
  "execution": {
473
  "iopub.execute_input": "2023-12-11T14:20:38.616852Z",
@@ -477,162 +477,14 @@
477
  "shell.execute_reply.started": "2023-12-11T14:20:38.616816Z"
478
  }
479
  },
480
- "outputs": [
481
- {
482
- "data": {
483
- "text/html": [
484
- "<div>\n",
485
- "<style scoped>\n",
486
- " .dataframe tbody tr th:only-of-type {\n",
487
- " vertical-align: middle;\n",
488
- " }\n",
489
- "\n",
490
- " .dataframe tbody tr th {\n",
491
- " vertical-align: top;\n",
492
- " }\n",
493
- "\n",
494
- " .dataframe thead th {\n",
495
- " text-align: right;\n",
496
- " }\n",
497
- "</style>\n",
498
- "<table border=\"1\" class=\"dataframe\">\n",
499
- " <thead>\n",
500
- " <tr style=\"text-align: right;\">\n",
501
- " <th></th>\n",
502
- " <th>age</th>\n",
503
- " <th>sex</th>\n",
504
- " <th>cp</th>\n",
505
- " <th>trtbps</th>\n",
506
- " <th>chol</th>\n",
507
- " <th>fbs</th>\n",
508
- " <th>restecg</th>\n",
509
- " <th>thalachh</th>\n",
510
- " <th>exng</th>\n",
511
- " <th>oldpeak</th>\n",
512
- " <th>slp</th>\n",
513
- " <th>caa</th>\n",
514
- " <th>thall</th>\n",
515
- " <th>output</th>\n",
516
- " </tr>\n",
517
- " </thead>\n",
518
- " <tbody>\n",
519
- " <tr>\n",
520
- " <th>0</th>\n",
521
- " <td>63</td>\n",
522
- " <td>1</td>\n",
523
- " <td>3</td>\n",
524
- " <td>145</td>\n",
525
- " <td>233</td>\n",
526
- " <td>1</td>\n",
527
- " <td>0</td>\n",
528
- " <td>150</td>\n",
529
- " <td>0</td>\n",
530
- " <td>2.3</td>\n",
531
- " <td>0</td>\n",
532
- " <td>0</td>\n",
533
- " <td>1</td>\n",
534
- " <td>1</td>\n",
535
- " </tr>\n",
536
- " <tr>\n",
537
- " <th>1</th>\n",
538
- " <td>37</td>\n",
539
- " <td>1</td>\n",
540
- " <td>2</td>\n",
541
- " <td>130</td>\n",
542
- " <td>250</td>\n",
543
- " <td>0</td>\n",
544
- " <td>1</td>\n",
545
- " <td>187</td>\n",
546
- " <td>0</td>\n",
547
- " <td>3.5</td>\n",
548
- " <td>0</td>\n",
549
- " <td>0</td>\n",
550
- " <td>2</td>\n",
551
- " <td>1</td>\n",
552
- " </tr>\n",
553
- " <tr>\n",
554
- " <th>2</th>\n",
555
- " <td>41</td>\n",
556
- " <td>0</td>\n",
557
- " <td>1</td>\n",
558
- " <td>130</td>\n",
559
- " <td>204</td>\n",
560
- " <td>0</td>\n",
561
- " <td>0</td>\n",
562
- " <td>172</td>\n",
563
- " <td>0</td>\n",
564
- " <td>1.4</td>\n",
565
- " <td>2</td>\n",
566
- " <td>0</td>\n",
567
- " <td>2</td>\n",
568
- " <td>1</td>\n",
569
- " </tr>\n",
570
- " <tr>\n",
571
- " <th>3</th>\n",
572
- " <td>56</td>\n",
573
- " <td>1</td>\n",
574
- " <td>1</td>\n",
575
- " <td>120</td>\n",
576
- " <td>236</td>\n",
577
- " <td>0</td>\n",
578
- " <td>1</td>\n",
579
- " <td>178</td>\n",
580
- " <td>0</td>\n",
581
- " <td>0.8</td>\n",
582
- " <td>2</td>\n",
583
- " <td>0</td>\n",
584
- " <td>2</td>\n",
585
- " <td>1</td>\n",
586
- " </tr>\n",
587
- " <tr>\n",
588
- " <th>4</th>\n",
589
- " <td>57</td>\n",
590
- " <td>0</td>\n",
591
- " <td>0</td>\n",
592
- " <td>120</td>\n",
593
- " <td>354</td>\n",
594
- " <td>0</td>\n",
595
- " <td>1</td>\n",
596
- " <td>163</td>\n",
597
- " <td>1</td>\n",
598
- " <td>0.6</td>\n",
599
- " <td>2</td>\n",
600
- " <td>0</td>\n",
601
- " <td>2</td>\n",
602
- " <td>1</td>\n",
603
- " </tr>\n",
604
- " </tbody>\n",
605
- "</table>\n",
606
- "</div>"
607
- ],
608
- "text/plain": [
609
- " age sex cp trtbps chol fbs restecg thalachh exng oldpeak slp \\\n",
610
- "0 63 1 3 145 233 1 0 150 0 2.3 0 \n",
611
- "1 37 1 2 130 250 0 1 187 0 3.5 0 \n",
612
- "2 41 0 1 130 204 0 0 172 0 1.4 2 \n",
613
- "3 56 1 1 120 236 0 1 178 0 0.8 2 \n",
614
- "4 57 0 0 120 354 0 1 163 1 0.6 2 \n",
615
- "\n",
616
- " caa thall output \n",
617
- "0 0 1 1 \n",
618
- "1 0 2 1 \n",
619
- "2 0 2 1 \n",
620
- "3 0 2 1 \n",
621
- "4 0 2 1 "
622
- ]
623
- },
624
- "execution_count": 4,
625
- "metadata": {},
626
- "output_type": "execute_result"
627
- }
628
- ],
629
  "source": [
630
  "df.head()"
631
  ]
632
  },
633
  {
634
  "cell_type": "code",
635
- "execution_count": 5,
636
  "metadata": {
637
  "execution": {
638
  "iopub.execute_input": "2023-12-12T08:18:23.920518Z",
@@ -650,7 +502,7 @@
650
  "traceback": [
651
  "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
652
  "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
653
- "\u001b[0;32m<ipython-input-5-522783fb824e>\u001b[0m in \u001b[0;36m<cell line: 3>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0msklearn\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtree\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mDecisionTreeClassifier\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mmodel\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mDecisionTreeClassifier\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mmodel\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0my_hat\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpredict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mprint\u001b[0m \u001b[0;34m(\u001b[0m \u001b[0maccuracy_score\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0my_hat\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
654
  "\u001b[0;31mNameError\u001b[0m: name 'X' is not defined"
655
  ]
656
  }
 
450
  },
451
  {
452
  "cell_type": "code",
453
+ "execution_count": 2,
454
  "metadata": {
455
  "execution": {
456
  "iopub.execute_input": "2023-12-12T08:22:09.636349Z",
 
467
  },
468
  {
469
  "cell_type": "code",
470
+ "execution_count": null,
471
  "metadata": {
472
  "execution": {
473
  "iopub.execute_input": "2023-12-11T14:20:38.616852Z",
 
477
  "shell.execute_reply.started": "2023-12-11T14:20:38.616816Z"
478
  }
479
  },
480
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
481
  "source": [
482
  "df.head()"
483
  ]
484
  },
485
  {
486
  "cell_type": "code",
487
+ "execution_count": 3,
488
  "metadata": {
489
  "execution": {
490
  "iopub.execute_input": "2023-12-12T08:18:23.920518Z",
 
502
  "traceback": [
503
  "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
504
  "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
505
+ "\u001b[0;32m<ipython-input-3-522783fb824e>\u001b[0m in \u001b[0;36m<cell line: 3>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0msklearn\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtree\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mDecisionTreeClassifier\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mmodel\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mDecisionTreeClassifier\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mmodel\u001b[0m \u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0my_hat\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmodel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpredict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mprint\u001b[0m \u001b[0;34m(\u001b[0m \u001b[0maccuracy_score\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0my_hat\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0my\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
506
  "\u001b[0;31mNameError\u001b[0m: name 'X' is not defined"
507
  ]
508
  }
benchmark/NBspecific_14/NBspecific_14_fixed.ipynb CHANGED
@@ -201,6 +201,7 @@
201
  }
202
  ],
203
  "source": [
 
204
  "train_data = pd.read_csv(\"data/train.csv\")\n",
205
  "train_data.head()"
206
  ]
@@ -349,13 +350,14 @@
349
  }
350
  ],
351
  "source": [
 
352
  "test_data = pd.read_csv(\"data/test.csv\")\n",
353
  "test_data.head()"
354
  ]
355
  },
356
  {
357
  "cell_type": "code",
358
- "execution_count": 4,
359
  "metadata": {
360
  "execution": {
361
  "iopub.execute_input": "2023-08-14T22:30:13.299598Z",
@@ -365,15 +367,7 @@
365
  "shell.execute_reply.started": "2023-08-14T22:30:13.299556Z"
366
  }
367
  },
368
- "outputs": [
369
- {
370
- "name": "stdout",
371
- "output_type": "stream",
372
- "text": [
373
- "% of women who survived: 0.7420382165605095\n"
374
- ]
375
- }
376
- ],
377
  "source": [
378
  "women = train_data.loc[train_data.Sex == 'female'][\"Survived\"]\n",
379
  "rate_women = sum(women)/len(women)\n",
@@ -383,7 +377,7 @@
383
  },
384
  {
385
  "cell_type": "code",
386
- "execution_count": 5,
387
  "metadata": {
388
  "execution": {
389
  "iopub.execute_input": "2023-08-14T22:30:33.452100Z",
@@ -393,15 +387,7 @@
393
  "shell.execute_reply.started": "2023-08-14T22:30:33.452066Z"
394
  }
395
  },
396
- "outputs": [
397
- {
398
- "name": "stdout",
399
- "output_type": "stream",
400
- "text": [
401
- "% of men who survived: 0.18890814558058924\n"
402
- ]
403
- }
404
- ],
405
  "source": [
406
  "men = train_data.loc[train_data.Sex == 'male'][\"Survived\"]\n",
407
  "rate_men = sum(men)/len(men)\n",
@@ -411,7 +397,7 @@
411
  },
412
  {
413
  "cell_type": "code",
414
- "execution_count": 11,
415
  "metadata": {
416
  "execution": {
417
  "iopub.execute_input": "2023-08-16T22:27:02.446192Z",
 
201
  }
202
  ],
203
  "source": [
204
+ "# fix --- execute this cell\n",
205
  "train_data = pd.read_csv(\"data/train.csv\")\n",
206
  "train_data.head()"
207
  ]
 
350
  }
351
  ],
352
  "source": [
353
+ "# fix --- execute this cell\n",
354
  "test_data = pd.read_csv(\"data/test.csv\")\n",
355
  "test_data.head()"
356
  ]
357
  },
358
  {
359
  "cell_type": "code",
360
+ "execution_count": null,
361
  "metadata": {
362
  "execution": {
363
  "iopub.execute_input": "2023-08-14T22:30:13.299598Z",
 
367
  "shell.execute_reply.started": "2023-08-14T22:30:13.299556Z"
368
  }
369
  },
370
+ "outputs": [],
 
 
 
 
 
 
 
 
371
  "source": [
372
  "women = train_data.loc[train_data.Sex == 'female'][\"Survived\"]\n",
373
  "rate_women = sum(women)/len(women)\n",
 
377
  },
378
  {
379
  "cell_type": "code",
380
+ "execution_count": null,
381
  "metadata": {
382
  "execution": {
383
  "iopub.execute_input": "2023-08-14T22:30:33.452100Z",
 
387
  "shell.execute_reply.started": "2023-08-14T22:30:33.452066Z"
388
  }
389
  },
390
+ "outputs": [],
 
 
 
 
 
 
 
 
391
  "source": [
392
  "men = train_data.loc[train_data.Sex == 'male'][\"Survived\"]\n",
393
  "rate_men = sum(men)/len(men)\n",
 
397
  },
398
  {
399
  "cell_type": "code",
400
+ "execution_count": 4,
401
  "metadata": {
402
  "execution": {
403
  "iopub.execute_input": "2023-08-16T22:27:02.446192Z",
benchmark/NBspecific_15/NBspecific_15_fixed.ipynb CHANGED
The diff for this file is too large to render. See raw diff
 
benchmark/NBspecific_15/NBspecific_15_reproduced.ipynb CHANGED
The diff for this file is too large to render. See raw diff
 
benchmark/NBspecific_16/NBspecific_16_fixed.ipynb CHANGED
@@ -193,6 +193,7 @@
193
  }
194
  ],
195
  "source": [
 
196
  "base_skin_dir = os.path.join('data_small', 'skin-cancer-mnist-ham10000')\n",
197
  "skin_df = pd.read_csv(os.path.join(base_skin_dir, 'HAM10000_metadata.csv'))\n",
198
  "\n",
@@ -219,7 +220,7 @@
219
  },
220
  {
221
  "cell_type": "code",
222
- "execution_count": 4,
223
  "metadata": {},
224
  "outputs": [],
225
  "source": [
@@ -229,7 +230,7 @@
229
  },
230
  {
231
  "cell_type": "code",
232
- "execution_count": 5,
233
  "metadata": {
234
  "_cell_guid": "b1076dfc-b9ad-4769-8c92-a6c4dae69d19",
235
  "_uuid": "8f2839f25d086af736a60e9eeb907d3b93b6e0e5",
@@ -241,20 +242,7 @@
241
  "shell.execute_reply.started": "2024-01-01T11:59:57.382255Z"
242
  }
243
  },
244
- "outputs": [
245
- {
246
- "data": {
247
- "text/plain": [
248
- "image\n",
249
- "(224, 224, 3) 48\n",
250
- "Name: count, dtype: int64"
251
- ]
252
- },
253
- "execution_count": 5,
254
- "metadata": {},
255
- "output_type": "execute_result"
256
- }
257
- ],
258
  "source": [
259
  "from PIL import Image\n",
260
  "skin_df['image'] = skin_df['path'].map(lambda x: np.asarray(Image.open(x).resize((HEIGHT, WIDTH))))\n",
@@ -263,7 +251,7 @@
263
  },
264
  {
265
  "cell_type": "code",
266
- "execution_count": 6,
267
  "metadata": {
268
  "execution": {
269
  "iopub.execute_input": "2024-01-01T18:58:20.307523Z",
@@ -305,115 +293,95 @@
305
  " <th>path</th>\n",
306
  " <th>cell_type</th>\n",
307
  " <th>cell_type_idx</th>\n",
308
- " <th>image</th>\n",
309
  " </tr>\n",
310
  " </thead>\n",
311
  " <tbody>\n",
312
  " <tr>\n",
313
- " <th>90</th>\n",
314
- " <td>HAM_0002921</td>\n",
315
- " <td>ISIC_0029308</td>\n",
316
  " <td>bkl</td>\n",
317
  " <td>histo</td>\n",
318
- " <td>60.0</td>\n",
319
- " <td>female</td>\n",
320
- " <td>face</td>\n",
321
- " <td>data_small/skin-cancer-mnist-ham10000/HAM10000...</td>\n",
322
  " <td>Benign keratosis-like lesions</td>\n",
323
  " <td>2</td>\n",
324
- " <td>[[[25, 12, 18], [25, 12, 19], [25, 14, 23], [2...</td>\n",
325
  " </tr>\n",
326
  " <tr>\n",
327
- " <th>342</th>\n",
328
- " <td>HAM_0005157</td>\n",
329
- " <td>ISIC_0029340</td>\n",
330
  " <td>bkl</td>\n",
331
  " <td>histo</td>\n",
332
- " <td>40.0</td>\n",
333
  " <td>male</td>\n",
334
- " <td>chest</td>\n",
335
- " <td>data_small/skin-cancer-mnist-ham10000/HAM10000...</td>\n",
336
  " <td>Benign keratosis-like lesions</td>\n",
337
  " <td>2</td>\n",
338
- " <td>[[[179, 158, 162], [192, 171, 172], [191, 170,...</td>\n",
339
  " </tr>\n",
340
  " <tr>\n",
341
- " <th>526</th>\n",
342
- " <td>HAM_0002592</td>\n",
343
- " <td>ISIC_0029311</td>\n",
344
  " <td>bkl</td>\n",
345
  " <td>histo</td>\n",
346
- " <td>60.0</td>\n",
347
- " <td>female</td>\n",
348
- " <td>lower extremity</td>\n",
349
- " <td>data_small/skin-cancer-mnist-ham10000/HAM10000...</td>\n",
350
  " <td>Benign keratosis-like lesions</td>\n",
351
  " <td>2</td>\n",
352
- " <td>[[[135, 121, 134], [135, 121, 134], [136, 122,...</td>\n",
353
  " </tr>\n",
354
  " <tr>\n",
355
- " <th>732</th>\n",
356
- " <td>HAM_0002844</td>\n",
357
- " <td>ISIC_0029329</td>\n",
358
  " <td>bkl</td>\n",
359
  " <td>histo</td>\n",
360
- " <td>85.0</td>\n",
361
  " <td>male</td>\n",
362
- " <td>back</td>\n",
363
- " <td>data_small/skin-cancer-mnist-ham10000/HAM10000...</td>\n",
364
  " <td>Benign keratosis-like lesions</td>\n",
365
  " <td>2</td>\n",
366
- " <td>[[[148, 107, 103], [147, 106, 103], [145, 102,...</td>\n",
367
  " </tr>\n",
368
  " <tr>\n",
369
- " <th>865</th>\n",
370
- " <td>HAM_0006186</td>\n",
371
- " <td>ISIC_0029320</td>\n",
372
  " <td>bkl</td>\n",
373
- " <td>consensus</td>\n",
374
- " <td>0.0</td>\n",
375
  " <td>male</td>\n",
376
- " <td>lower extremity</td>\n",
377
- " <td>data_small/skin-cancer-mnist-ham10000/HAM10000...</td>\n",
378
  " <td>Benign keratosis-like lesions</td>\n",
379
  " <td>2</td>\n",
380
- " <td>[[[67, 47, 56], [72, 51, 62], [86, 60, 70], [9...</td>\n",
381
  " </tr>\n",
382
  " </tbody>\n",
383
  "</table>\n",
384
  "</div>"
385
  ],
386
  "text/plain": [
387
- " lesion_id image_id dx dx_type age sex localization \\\n",
388
- "90 HAM_0002921 ISIC_0029308 bkl histo 60.0 female face \n",
389
- "342 HAM_0005157 ISIC_0029340 bkl histo 40.0 male chest \n",
390
- "526 HAM_0002592 ISIC_0029311 bkl histo 60.0 female lower extremity \n",
391
- "732 HAM_0002844 ISIC_0029329 bkl histo 85.0 male back \n",
392
- "865 HAM_0006186 ISIC_0029320 bkl consensus 0.0 male lower extremity \n",
393
- "\n",
394
- " path \\\n",
395
- "90 data_small/skin-cancer-mnist-ham10000/HAM10000... \n",
396
- "342 data_small/skin-cancer-mnist-ham10000/HAM10000... \n",
397
- "526 data_small/skin-cancer-mnist-ham10000/HAM10000... \n",
398
- "732 data_small/skin-cancer-mnist-ham10000/HAM10000... \n",
399
- "865 data_small/skin-cancer-mnist-ham10000/HAM10000... \n",
400
- "\n",
401
- " cell_type cell_type_idx \\\n",
402
- "90 Benign keratosis-like lesions 2 \n",
403
- "342 Benign keratosis-like lesions 2 \n",
404
- "526 Benign keratosis-like lesions 2 \n",
405
- "732 Benign keratosis-like lesions 2 \n",
406
- "865 Benign keratosis-like lesions 2 \n",
407
  "\n",
408
- " image \n",
409
- "90 [[[25, 12, 18], [25, 12, 19], [25, 14, 23], [2... \n",
410
- "342 [[[179, 158, 162], [192, 171, 172], [191, 170,... \n",
411
- "526 [[[135, 121, 134], [135, 121, 134], [136, 122,... \n",
412
- "732 [[[148, 107, 103], [147, 106, 103], [145, 102,... \n",
413
- "865 [[[67, 47, 56], [72, 51, 62], [86, 60, 70], [9... "
414
  ]
415
  },
416
- "execution_count": 6,
417
  "metadata": {},
418
  "output_type": "execute_result"
419
  }
@@ -438,7 +406,7 @@
438
  },
439
  {
440
  "cell_type": "code",
441
- "execution_count": 7,
442
  "metadata": {
443
  "execution": {
444
  "iopub.execute_input": "2024-01-01T12:03:24.917862Z",
@@ -464,7 +432,7 @@
464
  },
465
  {
466
  "cell_type": "code",
467
- "execution_count": 8,
468
  "metadata": {
469
  "execution": {
470
  "iopub.execute_input": "2024-01-01T12:03:25.242919Z",
@@ -488,7 +456,7 @@
488
  },
489
  {
490
  "cell_type": "code",
491
- "execution_count": 9,
492
  "metadata": {
493
  "execution": {
494
  "iopub.execute_input": "2024-01-01T12:03:25.264419Z",
@@ -516,7 +484,7 @@
516
  },
517
  {
518
  "cell_type": "code",
519
- "execution_count": 10,
520
  "metadata": {
521
  "execution": {
522
  "iopub.execute_input": "2024-01-01T12:03:27.601346Z",
@@ -546,7 +514,7 @@
546
  },
547
  {
548
  "cell_type": "code",
549
- "execution_count": 11,
550
  "metadata": {
551
  "execution": {
552
  "iopub.execute_input": "2024-01-01T12:03:31.275322Z",
@@ -556,20 +524,7 @@
556
  "shell.execute_reply.started": "2024-01-01T12:03:31.275264Z"
557
  }
558
  },
559
- "outputs": [
560
- {
561
- "name": "stdout",
562
- "output_type": "stream",
563
- "text": [
564
- "Epoch 1/3\n",
565
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m11s\u001b[0m 2s/step - accuracy: 0.1716 - loss: 1.9351 - val_accuracy: 0.4000 - val_loss: 2.0258\n",
566
- "Epoch 2/3\n",
567
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 258ms/step - accuracy: 0.6294 - loss: 1.4507 - val_accuracy: 0.4000 - val_loss: 2.1167\n",
568
- "Epoch 3/3\n",
569
- "\u001b[1m2/2\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 290ms/step - accuracy: 0.6294 - loss: 1.5548 - val_accuracy: 0.4000 - val_loss: 1.7907\n"
570
- ]
571
- }
572
- ],
573
  "source": [
574
  "base_model.trainable = False\n",
575
  "model.compile(optimizer=Adam(), loss='categorical_crossentropy', metrics=['accuracy'])\n",
 
193
  }
194
  ],
195
  "source": [
196
+ "# fix --- execute this cell\n",
197
  "base_skin_dir = os.path.join('data_small', 'skin-cancer-mnist-ham10000')\n",
198
  "skin_df = pd.read_csv(os.path.join(base_skin_dir, 'HAM10000_metadata.csv'))\n",
199
  "\n",
 
220
  },
221
  {
222
  "cell_type": "code",
223
+ "execution_count": null,
224
  "metadata": {},
225
  "outputs": [],
226
  "source": [
 
230
  },
231
  {
232
  "cell_type": "code",
233
+ "execution_count": null,
234
  "metadata": {
235
  "_cell_guid": "b1076dfc-b9ad-4769-8c92-a6c4dae69d19",
236
  "_uuid": "8f2839f25d086af736a60e9eeb907d3b93b6e0e5",
 
242
  "shell.execute_reply.started": "2024-01-01T11:59:57.382255Z"
243
  }
244
  },
245
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
246
  "source": [
247
  "from PIL import Image\n",
248
  "skin_df['image'] = skin_df['path'].map(lambda x: np.asarray(Image.open(x).resize((HEIGHT, WIDTH))))\n",
 
251
  },
252
  {
253
  "cell_type": "code",
254
+ "execution_count": 4,
255
  "metadata": {
256
  "execution": {
257
  "iopub.execute_input": "2024-01-01T18:58:20.307523Z",
 
293
  " <th>path</th>\n",
294
  " <th>cell_type</th>\n",
295
  " <th>cell_type_idx</th>\n",
 
296
  " </tr>\n",
297
  " </thead>\n",
298
  " <tbody>\n",
299
  " <tr>\n",
300
+ " <th>0</th>\n",
301
+ " <td>HAM_0000118</td>\n",
302
+ " <td>ISIC_0027419</td>\n",
303
  " <td>bkl</td>\n",
304
  " <td>histo</td>\n",
305
+ " <td>80.0</td>\n",
306
+ " <td>male</td>\n",
307
+ " <td>scalp</td>\n",
308
+ " <td>None</td>\n",
309
  " <td>Benign keratosis-like lesions</td>\n",
310
  " <td>2</td>\n",
 
311
  " </tr>\n",
312
  " <tr>\n",
313
+ " <th>1</th>\n",
314
+ " <td>HAM_0000118</td>\n",
315
+ " <td>ISIC_0025030</td>\n",
316
  " <td>bkl</td>\n",
317
  " <td>histo</td>\n",
318
+ " <td>80.0</td>\n",
319
  " <td>male</td>\n",
320
+ " <td>scalp</td>\n",
321
+ " <td>None</td>\n",
322
  " <td>Benign keratosis-like lesions</td>\n",
323
  " <td>2</td>\n",
 
324
  " </tr>\n",
325
  " <tr>\n",
326
+ " <th>2</th>\n",
327
+ " <td>HAM_0002730</td>\n",
328
+ " <td>ISIC_0026769</td>\n",
329
  " <td>bkl</td>\n",
330
  " <td>histo</td>\n",
331
+ " <td>80.0</td>\n",
332
+ " <td>male</td>\n",
333
+ " <td>scalp</td>\n",
334
+ " <td>None</td>\n",
335
  " <td>Benign keratosis-like lesions</td>\n",
336
  " <td>2</td>\n",
 
337
  " </tr>\n",
338
  " <tr>\n",
339
+ " <th>3</th>\n",
340
+ " <td>HAM_0002730</td>\n",
341
+ " <td>ISIC_0025661</td>\n",
342
  " <td>bkl</td>\n",
343
  " <td>histo</td>\n",
344
+ " <td>80.0</td>\n",
345
  " <td>male</td>\n",
346
+ " <td>scalp</td>\n",
347
+ " <td>None</td>\n",
348
  " <td>Benign keratosis-like lesions</td>\n",
349
  " <td>2</td>\n",
 
350
  " </tr>\n",
351
  " <tr>\n",
352
+ " <th>4</th>\n",
353
+ " <td>HAM_0001466</td>\n",
354
+ " <td>ISIC_0031633</td>\n",
355
  " <td>bkl</td>\n",
356
+ " <td>histo</td>\n",
357
+ " <td>75.0</td>\n",
358
  " <td>male</td>\n",
359
+ " <td>ear</td>\n",
360
+ " <td>None</td>\n",
361
  " <td>Benign keratosis-like lesions</td>\n",
362
  " <td>2</td>\n",
 
363
  " </tr>\n",
364
  " </tbody>\n",
365
  "</table>\n",
366
  "</div>"
367
  ],
368
  "text/plain": [
369
+ " lesion_id image_id dx dx_type age sex localization path \\\n",
370
+ "0 HAM_0000118 ISIC_0027419 bkl histo 80.0 male scalp None \n",
371
+ "1 HAM_0000118 ISIC_0025030 bkl histo 80.0 male scalp None \n",
372
+ "2 HAM_0002730 ISIC_0026769 bkl histo 80.0 male scalp None \n",
373
+ "3 HAM_0002730 ISIC_0025661 bkl histo 80.0 male scalp None \n",
374
+ "4 HAM_0001466 ISIC_0031633 bkl histo 75.0 male ear None \n",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
375
  "\n",
376
+ " cell_type cell_type_idx \n",
377
+ "0 Benign keratosis-like lesions 2 \n",
378
+ "1 Benign keratosis-like lesions 2 \n",
379
+ "2 Benign keratosis-like lesions 2 \n",
380
+ "3 Benign keratosis-like lesions 2 \n",
381
+ "4 Benign keratosis-like lesions 2 "
382
  ]
383
  },
384
+ "execution_count": 4,
385
  "metadata": {},
386
  "output_type": "execute_result"
387
  }
 
406
  },
407
  {
408
  "cell_type": "code",
409
+ "execution_count": null,
410
  "metadata": {
411
  "execution": {
412
  "iopub.execute_input": "2024-01-01T12:03:24.917862Z",
 
432
  },
433
  {
434
  "cell_type": "code",
435
+ "execution_count": null,
436
  "metadata": {
437
  "execution": {
438
  "iopub.execute_input": "2024-01-01T12:03:25.242919Z",
 
456
  },
457
  {
458
  "cell_type": "code",
459
+ "execution_count": null,
460
  "metadata": {
461
  "execution": {
462
  "iopub.execute_input": "2024-01-01T12:03:25.264419Z",
 
484
  },
485
  {
486
  "cell_type": "code",
487
+ "execution_count": null,
488
  "metadata": {
489
  "execution": {
490
  "iopub.execute_input": "2024-01-01T12:03:27.601346Z",
 
514
  },
515
  {
516
  "cell_type": "code",
517
+ "execution_count": null,
518
  "metadata": {
519
  "execution": {
520
  "iopub.execute_input": "2024-01-01T12:03:31.275322Z",
 
524
  "shell.execute_reply.started": "2024-01-01T12:03:31.275264Z"
525
  }
526
  },
527
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
528
  "source": [
529
  "base_model.trainable = False\n",
530
  "model.compile(optimizer=Adam(), loss='categorical_crossentropy', metrics=['accuracy'])\n",
benchmark/NBspecific_17/NBspecific_17_fixed.ipynb CHANGED
@@ -67,1403 +67,237 @@
67
  },
68
  {
69
  "cell_type": "code",
70
- "execution_count": 3,
71
- "metadata": {
72
- "execution": {
73
- "iopub.execute_input": "2023-06-25T13:23:09.551735Z",
74
- "iopub.status.busy": "2023-06-25T13:23:09.551039Z",
75
- "iopub.status.idle": "2023-06-25T13:23:09.584973Z",
76
- "shell.execute_reply": "2023-06-25T13:23:09.584115Z",
77
- "shell.execute_reply.started": "2023-06-25T13:23:09.551700Z"
78
- }
79
- },
80
- "outputs": [
81
- {
82
- "data": {
83
- "text/html": [
84
- "<div>\n",
85
- "<style scoped>\n",
86
- " .dataframe tbody tr th:only-of-type {\n",
87
- " vertical-align: middle;\n",
88
- " }\n",
89
- "\n",
90
- " .dataframe tbody tr th {\n",
91
- " vertical-align: top;\n",
92
- " }\n",
93
- "\n",
94
- " .dataframe thead th {\n",
95
- " text-align: right;\n",
96
- " }\n",
97
- "</style>\n",
98
- "<table border=\"1\" class=\"dataframe\">\n",
99
- " <thead>\n",
100
- " <tr style=\"text-align: right;\">\n",
101
- " <th></th>\n",
102
- " <th>MSSubClass</th>\n",
103
- " <th>MSZoning</th>\n",
104
- " <th>LotFrontage</th>\n",
105
- " <th>LotArea</th>\n",
106
- " <th>Street</th>\n",
107
- " <th>Alley</th>\n",
108
- " <th>LotShape</th>\n",
109
- " <th>LandContour</th>\n",
110
- " <th>Utilities</th>\n",
111
- " <th>LotConfig</th>\n",
112
- " <th>...</th>\n",
113
- " <th>PoolArea</th>\n",
114
- " <th>PoolQC</th>\n",
115
- " <th>Fence</th>\n",
116
- " <th>MiscFeature</th>\n",
117
- " <th>MiscVal</th>\n",
118
- " <th>MoSold</th>\n",
119
- " <th>YrSold</th>\n",
120
- " <th>SaleType</th>\n",
121
- " <th>SaleCondition</th>\n",
122
- " <th>SalePrice</th>\n",
123
- " </tr>\n",
124
- " <tr>\n",
125
- " <th>Id</th>\n",
126
- " <th></th>\n",
127
- " <th></th>\n",
128
- " <th></th>\n",
129
- " <th></th>\n",
130
- " <th></th>\n",
131
- " <th></th>\n",
132
- " <th></th>\n",
133
- " <th></th>\n",
134
- " <th></th>\n",
135
- " <th></th>\n",
136
- " <th></th>\n",
137
- " <th></th>\n",
138
- " <th></th>\n",
139
- " <th></th>\n",
140
- " <th></th>\n",
141
- " <th></th>\n",
142
- " <th></th>\n",
143
- " <th></th>\n",
144
- " <th></th>\n",
145
- " <th></th>\n",
146
- " <th></th>\n",
147
- " </tr>\n",
148
- " </thead>\n",
149
- " <tbody>\n",
150
- " <tr>\n",
151
- " <th>1</th>\n",
152
- " <td>60</td>\n",
153
- " <td>RL</td>\n",
154
- " <td>65.0</td>\n",
155
- " <td>8450</td>\n",
156
- " <td>Pave</td>\n",
157
- " <td>NaN</td>\n",
158
- " <td>Reg</td>\n",
159
- " <td>Lvl</td>\n",
160
- " <td>AllPub</td>\n",
161
- " <td>Inside</td>\n",
162
- " <td>...</td>\n",
163
- " <td>0</td>\n",
164
- " <td>NaN</td>\n",
165
- " <td>NaN</td>\n",
166
- " <td>NaN</td>\n",
167
- " <td>0</td>\n",
168
- " <td>2</td>\n",
169
- " <td>2008</td>\n",
170
- " <td>WD</td>\n",
171
- " <td>Normal</td>\n",
172
- " <td>208500</td>\n",
173
- " </tr>\n",
174
- " <tr>\n",
175
- " <th>2</th>\n",
176
- " <td>20</td>\n",
177
- " <td>RL</td>\n",
178
- " <td>80.0</td>\n",
179
- " <td>9600</td>\n",
180
- " <td>Pave</td>\n",
181
- " <td>NaN</td>\n",
182
- " <td>Reg</td>\n",
183
- " <td>Lvl</td>\n",
184
- " <td>AllPub</td>\n",
185
- " <td>FR2</td>\n",
186
- " <td>...</td>\n",
187
- " <td>0</td>\n",
188
- " <td>NaN</td>\n",
189
- " <td>NaN</td>\n",
190
- " <td>NaN</td>\n",
191
- " <td>0</td>\n",
192
- " <td>5</td>\n",
193
- " <td>2007</td>\n",
194
- " <td>WD</td>\n",
195
- " <td>Normal</td>\n",
196
- " <td>181500</td>\n",
197
- " </tr>\n",
198
- " <tr>\n",
199
- " <th>3</th>\n",
200
- " <td>60</td>\n",
201
- " <td>RL</td>\n",
202
- " <td>68.0</td>\n",
203
- " <td>11250</td>\n",
204
- " <td>Pave</td>\n",
205
- " <td>NaN</td>\n",
206
- " <td>IR1</td>\n",
207
- " <td>Lvl</td>\n",
208
- " <td>AllPub</td>\n",
209
- " <td>Inside</td>\n",
210
- " <td>...</td>\n",
211
- " <td>0</td>\n",
212
- " <td>NaN</td>\n",
213
- " <td>NaN</td>\n",
214
- " <td>NaN</td>\n",
215
- " <td>0</td>\n",
216
- " <td>9</td>\n",
217
- " <td>2008</td>\n",
218
- " <td>WD</td>\n",
219
- " <td>Normal</td>\n",
220
- " <td>223500</td>\n",
221
- " </tr>\n",
222
- " <tr>\n",
223
- " <th>4</th>\n",
224
- " <td>70</td>\n",
225
- " <td>RL</td>\n",
226
- " <td>60.0</td>\n",
227
- " <td>9550</td>\n",
228
- " <td>Pave</td>\n",
229
- " <td>NaN</td>\n",
230
- " <td>IR1</td>\n",
231
- " <td>Lvl</td>\n",
232
- " <td>AllPub</td>\n",
233
- " <td>Corner</td>\n",
234
- " <td>...</td>\n",
235
- " <td>0</td>\n",
236
- " <td>NaN</td>\n",
237
- " <td>NaN</td>\n",
238
- " <td>NaN</td>\n",
239
- " <td>0</td>\n",
240
- " <td>2</td>\n",
241
- " <td>2006</td>\n",
242
- " <td>WD</td>\n",
243
- " <td>Abnorml</td>\n",
244
- " <td>140000</td>\n",
245
- " </tr>\n",
246
- " <tr>\n",
247
- " <th>5</th>\n",
248
- " <td>60</td>\n",
249
- " <td>RL</td>\n",
250
- " <td>84.0</td>\n",
251
- " <td>14260</td>\n",
252
- " <td>Pave</td>\n",
253
- " <td>NaN</td>\n",
254
- " <td>IR1</td>\n",
255
- " <td>Lvl</td>\n",
256
- " <td>AllPub</td>\n",
257
- " <td>FR2</td>\n",
258
- " <td>...</td>\n",
259
- " <td>0</td>\n",
260
- " <td>NaN</td>\n",
261
- " <td>NaN</td>\n",
262
- " <td>NaN</td>\n",
263
- " <td>0</td>\n",
264
- " <td>12</td>\n",
265
- " <td>2008</td>\n",
266
- " <td>WD</td>\n",
267
- " <td>Normal</td>\n",
268
- " <td>250000</td>\n",
269
- " </tr>\n",
270
- " <tr>\n",
271
- " <th>...</th>\n",
272
- " <td>...</td>\n",
273
- " <td>...</td>\n",
274
- " <td>...</td>\n",
275
- " <td>...</td>\n",
276
- " <td>...</td>\n",
277
- " <td>...</td>\n",
278
- " <td>...</td>\n",
279
- " <td>...</td>\n",
280
- " <td>...</td>\n",
281
- " <td>...</td>\n",
282
- " <td>...</td>\n",
283
- " <td>...</td>\n",
284
- " <td>...</td>\n",
285
- " <td>...</td>\n",
286
- " <td>...</td>\n",
287
- " <td>...</td>\n",
288
- " <td>...</td>\n",
289
- " <td>...</td>\n",
290
- " <td>...</td>\n",
291
- " <td>...</td>\n",
292
- " <td>...</td>\n",
293
- " </tr>\n",
294
- " <tr>\n",
295
- " <th>1456</th>\n",
296
- " <td>60</td>\n",
297
- " <td>RL</td>\n",
298
- " <td>62.0</td>\n",
299
- " <td>7917</td>\n",
300
- " <td>Pave</td>\n",
301
- " <td>NaN</td>\n",
302
- " <td>Reg</td>\n",
303
- " <td>Lvl</td>\n",
304
- " <td>AllPub</td>\n",
305
- " <td>Inside</td>\n",
306
- " <td>...</td>\n",
307
- " <td>0</td>\n",
308
- " <td>NaN</td>\n",
309
- " <td>NaN</td>\n",
310
- " <td>NaN</td>\n",
311
- " <td>0</td>\n",
312
- " <td>8</td>\n",
313
- " <td>2007</td>\n",
314
- " <td>WD</td>\n",
315
- " <td>Normal</td>\n",
316
- " <td>175000</td>\n",
317
- " </tr>\n",
318
- " <tr>\n",
319
- " <th>1457</th>\n",
320
- " <td>20</td>\n",
321
- " <td>RL</td>\n",
322
- " <td>85.0</td>\n",
323
- " <td>13175</td>\n",
324
- " <td>Pave</td>\n",
325
- " <td>NaN</td>\n",
326
- " <td>Reg</td>\n",
327
- " <td>Lvl</td>\n",
328
- " <td>AllPub</td>\n",
329
- " <td>Inside</td>\n",
330
- " <td>...</td>\n",
331
- " <td>0</td>\n",
332
- " <td>NaN</td>\n",
333
- " <td>MnPrv</td>\n",
334
- " <td>NaN</td>\n",
335
- " <td>0</td>\n",
336
- " <td>2</td>\n",
337
- " <td>2010</td>\n",
338
- " <td>WD</td>\n",
339
- " <td>Normal</td>\n",
340
- " <td>210000</td>\n",
341
- " </tr>\n",
342
- " <tr>\n",
343
- " <th>1458</th>\n",
344
- " <td>70</td>\n",
345
- " <td>RL</td>\n",
346
- " <td>66.0</td>\n",
347
- " <td>9042</td>\n",
348
- " <td>Pave</td>\n",
349
- " <td>NaN</td>\n",
350
- " <td>Reg</td>\n",
351
- " <td>Lvl</td>\n",
352
- " <td>AllPub</td>\n",
353
- " <td>Inside</td>\n",
354
- " <td>...</td>\n",
355
- " <td>0</td>\n",
356
- " <td>NaN</td>\n",
357
- " <td>GdPrv</td>\n",
358
- " <td>Shed</td>\n",
359
- " <td>2500</td>\n",
360
- " <td>5</td>\n",
361
- " <td>2010</td>\n",
362
- " <td>WD</td>\n",
363
- " <td>Normal</td>\n",
364
- " <td>266500</td>\n",
365
- " </tr>\n",
366
- " <tr>\n",
367
- " <th>1459</th>\n",
368
- " <td>20</td>\n",
369
- " <td>RL</td>\n",
370
- " <td>68.0</td>\n",
371
- " <td>9717</td>\n",
372
- " <td>Pave</td>\n",
373
- " <td>NaN</td>\n",
374
- " <td>Reg</td>\n",
375
- " <td>Lvl</td>\n",
376
- " <td>AllPub</td>\n",
377
- " <td>Inside</td>\n",
378
- " <td>...</td>\n",
379
- " <td>0</td>\n",
380
- " <td>NaN</td>\n",
381
- " <td>NaN</td>\n",
382
- " <td>NaN</td>\n",
383
- " <td>0</td>\n",
384
- " <td>4</td>\n",
385
- " <td>2010</td>\n",
386
- " <td>WD</td>\n",
387
- " <td>Normal</td>\n",
388
- " <td>142125</td>\n",
389
- " </tr>\n",
390
- " <tr>\n",
391
- " <th>1460</th>\n",
392
- " <td>20</td>\n",
393
- " <td>RL</td>\n",
394
- " <td>75.0</td>\n",
395
- " <td>9937</td>\n",
396
- " <td>Pave</td>\n",
397
- " <td>NaN</td>\n",
398
- " <td>Reg</td>\n",
399
- " <td>Lvl</td>\n",
400
- " <td>AllPub</td>\n",
401
- " <td>Inside</td>\n",
402
- " <td>...</td>\n",
403
- " <td>0</td>\n",
404
- " <td>NaN</td>\n",
405
- " <td>NaN</td>\n",
406
- " <td>NaN</td>\n",
407
- " <td>0</td>\n",
408
- " <td>6</td>\n",
409
- " <td>2008</td>\n",
410
- " <td>WD</td>\n",
411
- " <td>Normal</td>\n",
412
- " <td>147500</td>\n",
413
- " </tr>\n",
414
- " </tbody>\n",
415
- "</table>\n",
416
- "<p>1460 rows × 80 columns</p>\n",
417
- "</div>"
418
- ],
419
- "text/plain": [
420
- " MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape \\\n",
421
- "Id \n",
422
- "1 60 RL 65.0 8450 Pave NaN Reg \n",
423
- "2 20 RL 80.0 9600 Pave NaN Reg \n",
424
- "3 60 RL 68.0 11250 Pave NaN IR1 \n",
425
- "4 70 RL 60.0 9550 Pave NaN IR1 \n",
426
- "5 60 RL 84.0 14260 Pave NaN IR1 \n",
427
- "... ... ... ... ... ... ... ... \n",
428
- "1456 60 RL 62.0 7917 Pave NaN Reg \n",
429
- "1457 20 RL 85.0 13175 Pave NaN Reg \n",
430
- "1458 70 RL 66.0 9042 Pave NaN Reg \n",
431
- "1459 20 RL 68.0 9717 Pave NaN Reg \n",
432
- "1460 20 RL 75.0 9937 Pave NaN Reg \n",
433
- "\n",
434
- " LandContour Utilities LotConfig ... PoolArea PoolQC Fence MiscFeature \\\n",
435
- "Id ... \n",
436
- "1 Lvl AllPub Inside ... 0 NaN NaN NaN \n",
437
- "2 Lvl AllPub FR2 ... 0 NaN NaN NaN \n",
438
- "3 Lvl AllPub Inside ... 0 NaN NaN NaN \n",
439
- "4 Lvl AllPub Corner ... 0 NaN NaN NaN \n",
440
- "5 Lvl AllPub FR2 ... 0 NaN NaN NaN \n",
441
- "... ... ... ... ... ... ... ... ... \n",
442
- "1456 Lvl AllPub Inside ... 0 NaN NaN NaN \n",
443
- "1457 Lvl AllPub Inside ... 0 NaN MnPrv NaN \n",
444
- "1458 Lvl AllPub Inside ... 0 NaN GdPrv Shed \n",
445
- "1459 Lvl AllPub Inside ... 0 NaN NaN NaN \n",
446
- "1460 Lvl AllPub Inside ... 0 NaN NaN NaN \n",
447
- "\n",
448
- " MiscVal MoSold YrSold SaleType SaleCondition SalePrice \n",
449
- "Id \n",
450
- "1 0 2 2008 WD Normal 208500 \n",
451
- "2 0 5 2007 WD Normal 181500 \n",
452
- "3 0 9 2008 WD Normal 223500 \n",
453
- "4 0 2 2006 WD Abnorml 140000 \n",
454
- "5 0 12 2008 WD Normal 250000 \n",
455
- "... ... ... ... ... ... ... \n",
456
- "1456 0 8 2007 WD Normal 175000 \n",
457
- "1457 0 2 2010 WD Normal 210000 \n",
458
- "1458 2500 5 2010 WD Normal 266500 \n",
459
- "1459 0 4 2010 WD Normal 142125 \n",
460
- "1460 0 6 2008 WD Normal 147500 \n",
461
- "\n",
462
- "[1460 rows x 80 columns]"
463
- ]
464
- },
465
- "execution_count": 3,
466
- "metadata": {},
467
- "output_type": "execute_result"
468
- }
469
- ],
470
- "source": [
471
- "train_df"
472
- ]
473
- },
474
- {
475
- "cell_type": "code",
476
- "execution_count": null,
477
- "metadata": {
478
- "execution": {
479
- "iopub.execute_input": "2023-06-25T13:23:10.039100Z",
480
- "iopub.status.busy": "2023-06-25T13:23:10.038687Z",
481
- "iopub.status.idle": "2023-06-25T13:23:10.057291Z",
482
- "shell.execute_reply": "2023-06-25T13:23:10.056458Z",
483
- "shell.execute_reply.started": "2023-06-25T13:23:10.039067Z"
484
- }
485
- },
486
- "outputs": [],
487
- "source": [
488
- "train_df.info()"
489
- ]
490
- },
491
- {
492
- "cell_type": "code",
493
- "execution_count": 5,
494
- "metadata": {
495
- "execution": {
496
- "iopub.execute_input": "2023-06-25T13:23:10.620763Z",
497
- "iopub.status.busy": "2023-06-25T13:23:10.620023Z",
498
- "iopub.status.idle": "2023-06-25T13:23:10.654397Z",
499
- "shell.execute_reply": "2023-06-25T13:23:10.653445Z",
500
- "shell.execute_reply.started": "2023-06-25T13:23:10.620726Z"
501
- }
502
- },
503
- "outputs": [
504
- {
505
- "data": {
506
- "text/html": [
507
- "<div>\n",
508
- "<style scoped>\n",
509
- " .dataframe tbody tr th:only-of-type {\n",
510
- " vertical-align: middle;\n",
511
- " }\n",
512
- "\n",
513
- " .dataframe tbody tr th {\n",
514
- " vertical-align: top;\n",
515
- " }\n",
516
- "\n",
517
- " .dataframe thead th {\n",
518
- " text-align: right;\n",
519
- " }\n",
520
- "</style>\n",
521
- "<table border=\"1\" class=\"dataframe\">\n",
522
- " <thead>\n",
523
- " <tr style=\"text-align: right;\">\n",
524
- " <th></th>\n",
525
- " <th>MSSubClass</th>\n",
526
- " <th>MSZoning</th>\n",
527
- " <th>LotFrontage</th>\n",
528
- " <th>LotArea</th>\n",
529
- " <th>Street</th>\n",
530
- " <th>Alley</th>\n",
531
- " <th>LotShape</th>\n",
532
- " <th>LandContour</th>\n",
533
- " <th>Utilities</th>\n",
534
- " <th>LotConfig</th>\n",
535
- " <th>...</th>\n",
536
- " <th>ScreenPorch</th>\n",
537
- " <th>PoolArea</th>\n",
538
- " <th>PoolQC</th>\n",
539
- " <th>Fence</th>\n",
540
- " <th>MiscFeature</th>\n",
541
- " <th>MiscVal</th>\n",
542
- " <th>MoSold</th>\n",
543
- " <th>YrSold</th>\n",
544
- " <th>SaleType</th>\n",
545
- " <th>SaleCondition</th>\n",
546
- " </tr>\n",
547
- " <tr>\n",
548
- " <th>Id</th>\n",
549
- " <th></th>\n",
550
- " <th></th>\n",
551
- " <th></th>\n",
552
- " <th></th>\n",
553
- " <th></th>\n",
554
- " <th></th>\n",
555
- " <th></th>\n",
556
- " <th></th>\n",
557
- " <th></th>\n",
558
- " <th></th>\n",
559
- " <th></th>\n",
560
- " <th></th>\n",
561
- " <th></th>\n",
562
- " <th></th>\n",
563
- " <th></th>\n",
564
- " <th></th>\n",
565
- " <th></th>\n",
566
- " <th></th>\n",
567
- " <th></th>\n",
568
- " <th></th>\n",
569
- " <th></th>\n",
570
- " </tr>\n",
571
- " </thead>\n",
572
- " <tbody>\n",
573
- " <tr>\n",
574
- " <th>1461</th>\n",
575
- " <td>20</td>\n",
576
- " <td>RH</td>\n",
577
- " <td>80.0</td>\n",
578
- " <td>11622</td>\n",
579
- " <td>Pave</td>\n",
580
- " <td>NaN</td>\n",
581
- " <td>Reg</td>\n",
582
- " <td>Lvl</td>\n",
583
- " <td>AllPub</td>\n",
584
- " <td>Inside</td>\n",
585
- " <td>...</td>\n",
586
- " <td>120</td>\n",
587
- " <td>0</td>\n",
588
- " <td>NaN</td>\n",
589
- " <td>MnPrv</td>\n",
590
- " <td>NaN</td>\n",
591
- " <td>0</td>\n",
592
- " <td>6</td>\n",
593
- " <td>2010</td>\n",
594
- " <td>WD</td>\n",
595
- " <td>Normal</td>\n",
596
- " </tr>\n",
597
- " <tr>\n",
598
- " <th>1462</th>\n",
599
- " <td>20</td>\n",
600
- " <td>RL</td>\n",
601
- " <td>81.0</td>\n",
602
- " <td>14267</td>\n",
603
- " <td>Pave</td>\n",
604
- " <td>NaN</td>\n",
605
- " <td>IR1</td>\n",
606
- " <td>Lvl</td>\n",
607
- " <td>AllPub</td>\n",
608
- " <td>Corner</td>\n",
609
- " <td>...</td>\n",
610
- " <td>0</td>\n",
611
- " <td>0</td>\n",
612
- " <td>NaN</td>\n",
613
- " <td>NaN</td>\n",
614
- " <td>Gar2</td>\n",
615
- " <td>12500</td>\n",
616
- " <td>6</td>\n",
617
- " <td>2010</td>\n",
618
- " <td>WD</td>\n",
619
- " <td>Normal</td>\n",
620
- " </tr>\n",
621
- " <tr>\n",
622
- " <th>1463</th>\n",
623
- " <td>60</td>\n",
624
- " <td>RL</td>\n",
625
- " <td>74.0</td>\n",
626
- " <td>13830</td>\n",
627
- " <td>Pave</td>\n",
628
- " <td>NaN</td>\n",
629
- " <td>IR1</td>\n",
630
- " <td>Lvl</td>\n",
631
- " <td>AllPub</td>\n",
632
- " <td>Inside</td>\n",
633
- " <td>...</td>\n",
634
- " <td>0</td>\n",
635
- " <td>0</td>\n",
636
- " <td>NaN</td>\n",
637
- " <td>MnPrv</td>\n",
638
- " <td>NaN</td>\n",
639
- " <td>0</td>\n",
640
- " <td>3</td>\n",
641
- " <td>2010</td>\n",
642
- " <td>WD</td>\n",
643
- " <td>Normal</td>\n",
644
- " </tr>\n",
645
- " <tr>\n",
646
- " <th>1464</th>\n",
647
- " <td>60</td>\n",
648
- " <td>RL</td>\n",
649
- " <td>78.0</td>\n",
650
- " <td>9978</td>\n",
651
- " <td>Pave</td>\n",
652
- " <td>NaN</td>\n",
653
- " <td>IR1</td>\n",
654
- " <td>Lvl</td>\n",
655
- " <td>AllPub</td>\n",
656
- " <td>Inside</td>\n",
657
- " <td>...</td>\n",
658
- " <td>0</td>\n",
659
- " <td>0</td>\n",
660
- " <td>NaN</td>\n",
661
- " <td>NaN</td>\n",
662
- " <td>NaN</td>\n",
663
- " <td>0</td>\n",
664
- " <td>6</td>\n",
665
- " <td>2010</td>\n",
666
- " <td>WD</td>\n",
667
- " <td>Normal</td>\n",
668
- " </tr>\n",
669
- " <tr>\n",
670
- " <th>1465</th>\n",
671
- " <td>120</td>\n",
672
- " <td>RL</td>\n",
673
- " <td>43.0</td>\n",
674
- " <td>5005</td>\n",
675
- " <td>Pave</td>\n",
676
- " <td>NaN</td>\n",
677
- " <td>IR1</td>\n",
678
- " <td>HLS</td>\n",
679
- " <td>AllPub</td>\n",
680
- " <td>Inside</td>\n",
681
- " <td>...</td>\n",
682
- " <td>144</td>\n",
683
- " <td>0</td>\n",
684
- " <td>NaN</td>\n",
685
- " <td>NaN</td>\n",
686
- " <td>NaN</td>\n",
687
- " <td>0</td>\n",
688
- " <td>1</td>\n",
689
- " <td>2010</td>\n",
690
- " <td>WD</td>\n",
691
- " <td>Normal</td>\n",
692
- " </tr>\n",
693
- " <tr>\n",
694
- " <th>...</th>\n",
695
- " <td>...</td>\n",
696
- " <td>...</td>\n",
697
- " <td>...</td>\n",
698
- " <td>...</td>\n",
699
- " <td>...</td>\n",
700
- " <td>...</td>\n",
701
- " <td>...</td>\n",
702
- " <td>...</td>\n",
703
- " <td>...</td>\n",
704
- " <td>...</td>\n",
705
- " <td>...</td>\n",
706
- " <td>...</td>\n",
707
- " <td>...</td>\n",
708
- " <td>...</td>\n",
709
- " <td>...</td>\n",
710
- " <td>...</td>\n",
711
- " <td>...</td>\n",
712
- " <td>...</td>\n",
713
- " <td>...</td>\n",
714
- " <td>...</td>\n",
715
- " <td>...</td>\n",
716
- " </tr>\n",
717
- " <tr>\n",
718
- " <th>2915</th>\n",
719
- " <td>160</td>\n",
720
- " <td>RM</td>\n",
721
- " <td>21.0</td>\n",
722
- " <td>1936</td>\n",
723
- " <td>Pave</td>\n",
724
- " <td>NaN</td>\n",
725
- " <td>Reg</td>\n",
726
- " <td>Lvl</td>\n",
727
- " <td>AllPub</td>\n",
728
- " <td>Inside</td>\n",
729
- " <td>...</td>\n",
730
- " <td>0</td>\n",
731
- " <td>0</td>\n",
732
- " <td>NaN</td>\n",
733
- " <td>NaN</td>\n",
734
- " <td>NaN</td>\n",
735
- " <td>0</td>\n",
736
- " <td>6</td>\n",
737
- " <td>2006</td>\n",
738
- " <td>WD</td>\n",
739
- " <td>Normal</td>\n",
740
- " </tr>\n",
741
- " <tr>\n",
742
- " <th>2916</th>\n",
743
- " <td>160</td>\n",
744
- " <td>RM</td>\n",
745
- " <td>21.0</td>\n",
746
- " <td>1894</td>\n",
747
- " <td>Pave</td>\n",
748
- " <td>NaN</td>\n",
749
- " <td>Reg</td>\n",
750
- " <td>Lvl</td>\n",
751
- " <td>AllPub</td>\n",
752
- " <td>Inside</td>\n",
753
- " <td>...</td>\n",
754
- " <td>0</td>\n",
755
- " <td>0</td>\n",
756
- " <td>NaN</td>\n",
757
- " <td>NaN</td>\n",
758
- " <td>NaN</td>\n",
759
- " <td>0</td>\n",
760
- " <td>4</td>\n",
761
- " <td>2006</td>\n",
762
- " <td>WD</td>\n",
763
- " <td>Abnorml</td>\n",
764
- " </tr>\n",
765
- " <tr>\n",
766
- " <th>2917</th>\n",
767
- " <td>20</td>\n",
768
- " <td>RL</td>\n",
769
- " <td>160.0</td>\n",
770
- " <td>20000</td>\n",
771
- " <td>Pave</td>\n",
772
- " <td>NaN</td>\n",
773
- " <td>Reg</td>\n",
774
- " <td>Lvl</td>\n",
775
- " <td>AllPub</td>\n",
776
- " <td>Inside</td>\n",
777
- " <td>...</td>\n",
778
- " <td>0</td>\n",
779
- " <td>0</td>\n",
780
- " <td>NaN</td>\n",
781
- " <td>NaN</td>\n",
782
- " <td>NaN</td>\n",
783
- " <td>0</td>\n",
784
- " <td>9</td>\n",
785
- " <td>2006</td>\n",
786
- " <td>WD</td>\n",
787
- " <td>Abnorml</td>\n",
788
- " </tr>\n",
789
- " <tr>\n",
790
- " <th>2918</th>\n",
791
- " <td>85</td>\n",
792
- " <td>RL</td>\n",
793
- " <td>62.0</td>\n",
794
- " <td>10441</td>\n",
795
- " <td>Pave</td>\n",
796
- " <td>NaN</td>\n",
797
- " <td>Reg</td>\n",
798
- " <td>Lvl</td>\n",
799
- " <td>AllPub</td>\n",
800
- " <td>Inside</td>\n",
801
- " <td>...</td>\n",
802
- " <td>0</td>\n",
803
- " <td>0</td>\n",
804
- " <td>NaN</td>\n",
805
- " <td>MnPrv</td>\n",
806
- " <td>Shed</td>\n",
807
- " <td>700</td>\n",
808
- " <td>7</td>\n",
809
- " <td>2006</td>\n",
810
- " <td>WD</td>\n",
811
- " <td>Normal</td>\n",
812
- " </tr>\n",
813
- " <tr>\n",
814
- " <th>2919</th>\n",
815
- " <td>60</td>\n",
816
- " <td>RL</td>\n",
817
- " <td>74.0</td>\n",
818
- " <td>9627</td>\n",
819
- " <td>Pave</td>\n",
820
- " <td>NaN</td>\n",
821
- " <td>Reg</td>\n",
822
- " <td>Lvl</td>\n",
823
- " <td>AllPub</td>\n",
824
- " <td>Inside</td>\n",
825
- " <td>...</td>\n",
826
- " <td>0</td>\n",
827
- " <td>0</td>\n",
828
- " <td>NaN</td>\n",
829
- " <td>NaN</td>\n",
830
- " <td>NaN</td>\n",
831
- " <td>0</td>\n",
832
- " <td>11</td>\n",
833
- " <td>2006</td>\n",
834
- " <td>WD</td>\n",
835
- " <td>Normal</td>\n",
836
- " </tr>\n",
837
- " </tbody>\n",
838
- "</table>\n",
839
- "<p>1459 rows × 79 columns</p>\n",
840
- "</div>"
841
- ],
842
- "text/plain": [
843
- " MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape \\\n",
844
- "Id \n",
845
- "1461 20 RH 80.0 11622 Pave NaN Reg \n",
846
- "1462 20 RL 81.0 14267 Pave NaN IR1 \n",
847
- "1463 60 RL 74.0 13830 Pave NaN IR1 \n",
848
- "1464 60 RL 78.0 9978 Pave NaN IR1 \n",
849
- "1465 120 RL 43.0 5005 Pave NaN IR1 \n",
850
- "... ... ... ... ... ... ... ... \n",
851
- "2915 160 RM 21.0 1936 Pave NaN Reg \n",
852
- "2916 160 RM 21.0 1894 Pave NaN Reg \n",
853
- "2917 20 RL 160.0 20000 Pave NaN Reg \n",
854
- "2918 85 RL 62.0 10441 Pave NaN Reg \n",
855
- "2919 60 RL 74.0 9627 Pave NaN Reg \n",
856
- "\n",
857
- " LandContour Utilities LotConfig ... ScreenPorch PoolArea PoolQC Fence \\\n",
858
- "Id ... \n",
859
- "1461 Lvl AllPub Inside ... 120 0 NaN MnPrv \n",
860
- "1462 Lvl AllPub Corner ... 0 0 NaN NaN \n",
861
- "1463 Lvl AllPub Inside ... 0 0 NaN MnPrv \n",
862
- "1464 Lvl AllPub Inside ... 0 0 NaN NaN \n",
863
- "1465 HLS AllPub Inside ... 144 0 NaN NaN \n",
864
- "... ... ... ... ... ... ... ... ... \n",
865
- "2915 Lvl AllPub Inside ... 0 0 NaN NaN \n",
866
- "2916 Lvl AllPub Inside ... 0 0 NaN NaN \n",
867
- "2917 Lvl AllPub Inside ... 0 0 NaN NaN \n",
868
- "2918 Lvl AllPub Inside ... 0 0 NaN MnPrv \n",
869
- "2919 Lvl AllPub Inside ... 0 0 NaN NaN \n",
870
- "\n",
871
- " MiscFeature MiscVal MoSold YrSold SaleType SaleCondition \n",
872
- "Id \n",
873
- "1461 NaN 0 6 2010 WD Normal \n",
874
- "1462 Gar2 12500 6 2010 WD Normal \n",
875
- "1463 NaN 0 3 2010 WD Normal \n",
876
- "1464 NaN 0 6 2010 WD Normal \n",
877
- "1465 NaN 0 1 2010 WD Normal \n",
878
- "... ... ... ... ... ... ... \n",
879
- "2915 NaN 0 6 2006 WD Normal \n",
880
- "2916 NaN 0 4 2006 WD Abnorml \n",
881
- "2917 NaN 0 9 2006 WD Abnorml \n",
882
- "2918 Shed 700 7 2006 WD Normal \n",
883
- "2919 NaN 0 11 2006 WD Normal \n",
884
- "\n",
885
- "[1459 rows x 79 columns]"
886
- ]
887
- },
888
- "execution_count": 5,
889
- "metadata": {},
890
- "output_type": "execute_result"
891
- }
892
- ],
893
- "source": [
894
- "test_df"
895
- ]
896
- },
897
- {
898
- "cell_type": "code",
899
- "execution_count": null,
900
- "metadata": {
901
- "execution": {
902
- "iopub.execute_input": "2023-06-25T13:23:11.131462Z",
903
- "iopub.status.busy": "2023-06-25T13:23:11.130679Z",
904
- "iopub.status.idle": "2023-06-25T13:23:11.150802Z",
905
- "shell.execute_reply": "2023-06-25T13:23:11.149870Z",
906
- "shell.execute_reply.started": "2023-06-25T13:23:11.131424Z"
907
- }
908
- },
909
- "outputs": [],
910
- "source": [
911
- "test_df.info()"
912
- ]
913
- },
914
- {
915
- "cell_type": "markdown",
916
- "metadata": {},
917
- "source": [
918
- "## 1_1. 통계적 분석"
919
- ]
920
- },
921
- {
922
- "cell_type": "code",
923
- "execution_count": null,
924
- "metadata": {
925
- "execution": {
926
- "iopub.execute_input": "2023-06-25T13:23:11.907074Z",
927
- "iopub.status.busy": "2023-06-25T13:23:11.906709Z",
928
- "iopub.status.idle": "2023-06-25T13:23:12.010254Z",
929
- "shell.execute_reply": "2023-06-25T13:23:12.009287Z",
930
- "shell.execute_reply.started": "2023-06-25T13:23:11.907046Z"
931
- }
932
- },
933
- "outputs": [],
934
- "source": [
935
- "train_df.describe()"
936
- ]
937
- },
938
- {
939
- "cell_type": "code",
940
- "execution_count": null,
941
- "metadata": {
942
- "execution": {
943
- "iopub.execute_input": "2023-06-25T13:23:12.176455Z",
944
- "iopub.status.busy": "2023-06-25T13:23:12.176129Z",
945
- "iopub.status.idle": "2023-06-25T13:23:12.276238Z",
946
- "shell.execute_reply": "2023-06-25T13:23:12.275426Z",
947
- "shell.execute_reply.started": "2023-06-25T13:23:12.176427Z"
948
- }
949
- },
950
- "outputs": [],
951
- "source": [
952
- "test_df.describe()"
953
- ]
954
- },
955
- {
956
- "cell_type": "markdown",
957
- "metadata": {},
958
- "source": [
959
- "## 1_2. 상관관계 분석"
960
- ]
961
- },
962
- {
963
- "cell_type": "code",
964
- "execution_count": null,
965
- "metadata": {
966
- "execution": {
967
- "iopub.execute_input": "2023-06-25T13:23:12.942491Z",
968
- "iopub.status.busy": "2023-06-25T13:23:12.942135Z",
969
- "iopub.status.idle": "2023-06-25T13:23:13.004797Z",
970
- "shell.execute_reply": "2023-06-25T13:23:13.004032Z",
971
- "shell.execute_reply.started": "2023-06-25T13:23:12.942462Z"
972
- }
973
- },
974
- "outputs": [],
975
- "source": [
976
- "train_df.select_dtypes(include='number').corr()"
977
- ]
978
- },
979
- {
980
- "cell_type": "code",
981
- "execution_count": null,
982
- "metadata": {
983
- "execution": {
984
- "iopub.execute_input": "2023-06-25T13:23:13.452652Z",
985
- "iopub.status.busy": "2023-06-25T13:23:13.452258Z",
986
- "iopub.status.idle": "2023-06-25T13:23:17.052104Z",
987
- "shell.execute_reply": "2023-06-25T13:23:17.051263Z",
988
- "shell.execute_reply.started": "2023-06-25T13:23:13.452618Z"
989
- }
990
- },
991
- "outputs": [],
992
- "source": [
993
- "fig, ax = plt.subplots(figsize=(20,20))\n",
994
- "sns.heatmap(data=train_df.select_dtypes(include='number').corr(), vmin=abs(0.5), annot=True, fmt = '.2f')\n",
995
- "plt.show()"
996
- ]
997
- },
998
- {
999
- "cell_type": "code",
1000
- "execution_count": null,
1001
- "metadata": {
1002
- "execution": {
1003
- "iopub.execute_input": "2023-06-25T13:23:17.053953Z",
1004
- "iopub.status.busy": "2023-06-25T13:23:17.053665Z",
1005
- "iopub.status.idle": "2023-06-25T13:23:17.058931Z",
1006
- "shell.execute_reply": "2023-06-25T13:23:17.058050Z",
1007
- "shell.execute_reply.started": "2023-06-25T13:23:17.053927Z"
1008
- }
1009
- },
1010
- "outputs": [],
1011
- "source": [
1012
- "num_cols = train_df.select_dtypes(include='number')"
1013
- ]
1014
- },
1015
- {
1016
- "cell_type": "code",
1017
- "execution_count": null,
1018
- "metadata": {
1019
- "execution": {
1020
- "iopub.execute_input": "2023-06-25T13:23:17.060402Z",
1021
- "iopub.status.busy": "2023-06-25T13:23:17.060101Z"
1022
- }
1023
- },
1024
- "outputs": [],
1025
- "source": [
1026
- "for col in num_cols:\n",
1027
- " fig, ax = plt.subplots(1, 3, figsize=(20,3))\n",
1028
- " sns.boxplot(data=train_df, x=col, ax=ax[0] )\n",
1029
- " sns.histplot(data=train_df, x=col, bins=40, ax=ax[1])\n",
1030
- " sns.kdeplot(data=train_df, x=col, ax=ax[2])\n",
1031
- " plt.show()"
1032
- ]
1033
- },
1034
- {
1035
- "cell_type": "markdown",
1036
- "metadata": {},
1037
- "source": [
1038
- "# 2. Data preprocessing"
1039
- ]
1040
- },
1041
- {
1042
- "cell_type": "markdown",
1043
- "metadata": {},
1044
- "source": [
1045
- "## 2_1. 결측치 처리"
1046
- ]
1047
- },
1048
- {
1049
- "cell_type": "code",
1050
- "execution_count": 6,
1051
- "metadata": {
1052
- "execution": {
1053
- "iopub.execute_input": "2023-06-25T13:22:25.832475Z",
1054
- "iopub.status.busy": "2023-06-25T13:22:25.832137Z",
1055
- "iopub.status.idle": "2023-06-25T13:22:25.845482Z",
1056
- "shell.execute_reply": "2023-06-25T13:22:25.844584Z",
1057
- "shell.execute_reply.started": "2023-06-25T13:22:25.832443Z"
1058
- }
1059
- },
1060
- "outputs": [],
1061
- "source": [
1062
- "data_df = pd.concat([train_df, test_df], axis = 0)"
1063
- ]
1064
- },
1065
- {
1066
- "cell_type": "code",
1067
- "execution_count": 7,
1068
- "metadata": {
1069
- "execution": {
1070
- "iopub.execute_input": "2023-06-25T13:22:25.846913Z",
1071
- "iopub.status.busy": "2023-06-25T13:22:25.846612Z",
1072
- "iopub.status.idle": "2023-06-25T13:22:25.883701Z",
1073
- "shell.execute_reply": "2023-06-25T13:22:25.882835Z",
1074
- "shell.execute_reply.started": "2023-06-25T13:22:25.846886Z"
1075
- }
1076
- },
1077
- "outputs": [
1078
- {
1079
- "data": {
1080
- "text/html": [
1081
- "<div>\n",
1082
- "<style scoped>\n",
1083
- " .dataframe tbody tr th:only-of-type {\n",
1084
- " vertical-align: middle;\n",
1085
- " }\n",
1086
- "\n",
1087
- " .dataframe tbody tr th {\n",
1088
- " vertical-align: top;\n",
1089
- " }\n",
1090
- "\n",
1091
- " .dataframe thead th {\n",
1092
- " text-align: right;\n",
1093
- " }\n",
1094
- "</style>\n",
1095
- "<table border=\"1\" class=\"dataframe\">\n",
1096
- " <thead>\n",
1097
- " <tr style=\"text-align: right;\">\n",
1098
- " <th></th>\n",
1099
- " <th>MSSubClass</th>\n",
1100
- " <th>MSZoning</th>\n",
1101
- " <th>LotFrontage</th>\n",
1102
- " <th>LotArea</th>\n",
1103
- " <th>Street</th>\n",
1104
- " <th>Alley</th>\n",
1105
- " <th>LotShape</th>\n",
1106
- " <th>LandContour</th>\n",
1107
- " <th>Utilities</th>\n",
1108
- " <th>LotConfig</th>\n",
1109
- " <th>...</th>\n",
1110
- " <th>PoolArea</th>\n",
1111
- " <th>PoolQC</th>\n",
1112
- " <th>Fence</th>\n",
1113
- " <th>MiscFeature</th>\n",
1114
- " <th>MiscVal</th>\n",
1115
- " <th>MoSold</th>\n",
1116
- " <th>YrSold</th>\n",
1117
- " <th>SaleType</th>\n",
1118
- " <th>SaleCondition</th>\n",
1119
- " <th>SalePrice</th>\n",
1120
- " </tr>\n",
1121
- " <tr>\n",
1122
- " <th>Id</th>\n",
1123
- " <th></th>\n",
1124
- " <th></th>\n",
1125
- " <th></th>\n",
1126
- " <th></th>\n",
1127
- " <th></th>\n",
1128
- " <th></th>\n",
1129
- " <th></th>\n",
1130
- " <th></th>\n",
1131
- " <th></th>\n",
1132
- " <th></th>\n",
1133
- " <th></th>\n",
1134
- " <th></th>\n",
1135
- " <th></th>\n",
1136
- " <th></th>\n",
1137
- " <th></th>\n",
1138
- " <th></th>\n",
1139
- " <th></th>\n",
1140
- " <th></th>\n",
1141
- " <th></th>\n",
1142
- " <th></th>\n",
1143
- " <th></th>\n",
1144
- " </tr>\n",
1145
- " </thead>\n",
1146
- " <tbody>\n",
1147
- " <tr>\n",
1148
- " <th>1</th>\n",
1149
- " <td>60</td>\n",
1150
- " <td>RL</td>\n",
1151
- " <td>65.0</td>\n",
1152
- " <td>8450</td>\n",
1153
- " <td>Pave</td>\n",
1154
- " <td>NaN</td>\n",
1155
- " <td>Reg</td>\n",
1156
- " <td>Lvl</td>\n",
1157
- " <td>AllPub</td>\n",
1158
- " <td>Inside</td>\n",
1159
- " <td>...</td>\n",
1160
- " <td>0</td>\n",
1161
- " <td>NaN</td>\n",
1162
- " <td>NaN</td>\n",
1163
- " <td>NaN</td>\n",
1164
- " <td>0</td>\n",
1165
- " <td>2</td>\n",
1166
- " <td>2008</td>\n",
1167
- " <td>WD</td>\n",
1168
- " <td>Normal</td>\n",
1169
- " <td>208500.0</td>\n",
1170
- " </tr>\n",
1171
- " <tr>\n",
1172
- " <th>2</th>\n",
1173
- " <td>20</td>\n",
1174
- " <td>RL</td>\n",
1175
- " <td>80.0</td>\n",
1176
- " <td>9600</td>\n",
1177
- " <td>Pave</td>\n",
1178
- " <td>NaN</td>\n",
1179
- " <td>Reg</td>\n",
1180
- " <td>Lvl</td>\n",
1181
- " <td>AllPub</td>\n",
1182
- " <td>FR2</td>\n",
1183
- " <td>...</td>\n",
1184
- " <td>0</td>\n",
1185
- " <td>NaN</td>\n",
1186
- " <td>NaN</td>\n",
1187
- " <td>NaN</td>\n",
1188
- " <td>0</td>\n",
1189
- " <td>5</td>\n",
1190
- " <td>2007</td>\n",
1191
- " <td>WD</td>\n",
1192
- " <td>Normal</td>\n",
1193
- " <td>181500.0</td>\n",
1194
- " </tr>\n",
1195
- " <tr>\n",
1196
- " <th>3</th>\n",
1197
- " <td>60</td>\n",
1198
- " <td>RL</td>\n",
1199
- " <td>68.0</td>\n",
1200
- " <td>11250</td>\n",
1201
- " <td>Pave</td>\n",
1202
- " <td>NaN</td>\n",
1203
- " <td>IR1</td>\n",
1204
- " <td>Lvl</td>\n",
1205
- " <td>AllPub</td>\n",
1206
- " <td>Inside</td>\n",
1207
- " <td>...</td>\n",
1208
- " <td>0</td>\n",
1209
- " <td>NaN</td>\n",
1210
- " <td>NaN</td>\n",
1211
- " <td>NaN</td>\n",
1212
- " <td>0</td>\n",
1213
- " <td>9</td>\n",
1214
- " <td>2008</td>\n",
1215
- " <td>WD</td>\n",
1216
- " <td>Normal</td>\n",
1217
- " <td>223500.0</td>\n",
1218
- " </tr>\n",
1219
- " <tr>\n",
1220
- " <th>4</th>\n",
1221
- " <td>70</td>\n",
1222
- " <td>RL</td>\n",
1223
- " <td>60.0</td>\n",
1224
- " <td>9550</td>\n",
1225
- " <td>Pave</td>\n",
1226
- " <td>NaN</td>\n",
1227
- " <td>IR1</td>\n",
1228
- " <td>Lvl</td>\n",
1229
- " <td>AllPub</td>\n",
1230
- " <td>Corner</td>\n",
1231
- " <td>...</td>\n",
1232
- " <td>0</td>\n",
1233
- " <td>NaN</td>\n",
1234
- " <td>NaN</td>\n",
1235
- " <td>NaN</td>\n",
1236
- " <td>0</td>\n",
1237
- " <td>2</td>\n",
1238
- " <td>2006</td>\n",
1239
- " <td>WD</td>\n",
1240
- " <td>Abnorml</td>\n",
1241
- " <td>140000.0</td>\n",
1242
- " </tr>\n",
1243
- " <tr>\n",
1244
- " <th>5</th>\n",
1245
- " <td>60</td>\n",
1246
- " <td>RL</td>\n",
1247
- " <td>84.0</td>\n",
1248
- " <td>14260</td>\n",
1249
- " <td>Pave</td>\n",
1250
- " <td>NaN</td>\n",
1251
- " <td>IR1</td>\n",
1252
- " <td>Lvl</td>\n",
1253
- " <td>AllPub</td>\n",
1254
- " <td>FR2</td>\n",
1255
- " <td>...</td>\n",
1256
- " <td>0</td>\n",
1257
- " <td>NaN</td>\n",
1258
- " <td>NaN</td>\n",
1259
- " <td>NaN</td>\n",
1260
- " <td>0</td>\n",
1261
- " <td>12</td>\n",
1262
- " <td>2008</td>\n",
1263
- " <td>WD</td>\n",
1264
- " <td>Normal</td>\n",
1265
- " <td>250000.0</td>\n",
1266
- " </tr>\n",
1267
- " <tr>\n",
1268
- " <th>...</th>\n",
1269
- " <td>...</td>\n",
1270
- " <td>...</td>\n",
1271
- " <td>...</td>\n",
1272
- " <td>...</td>\n",
1273
- " <td>...</td>\n",
1274
- " <td>...</td>\n",
1275
- " <td>...</td>\n",
1276
- " <td>...</td>\n",
1277
- " <td>...</td>\n",
1278
- " <td>...</td>\n",
1279
- " <td>...</td>\n",
1280
- " <td>...</td>\n",
1281
- " <td>...</td>\n",
1282
- " <td>...</td>\n",
1283
- " <td>...</td>\n",
1284
- " <td>...</td>\n",
1285
- " <td>...</td>\n",
1286
- " <td>...</td>\n",
1287
- " <td>...</td>\n",
1288
- " <td>...</td>\n",
1289
- " <td>...</td>\n",
1290
- " </tr>\n",
1291
- " <tr>\n",
1292
- " <th>2915</th>\n",
1293
- " <td>160</td>\n",
1294
- " <td>RM</td>\n",
1295
- " <td>21.0</td>\n",
1296
- " <td>1936</td>\n",
1297
- " <td>Pave</td>\n",
1298
- " <td>NaN</td>\n",
1299
- " <td>Reg</td>\n",
1300
- " <td>Lvl</td>\n",
1301
- " <td>AllPub</td>\n",
1302
- " <td>Inside</td>\n",
1303
- " <td>...</td>\n",
1304
- " <td>0</td>\n",
1305
- " <td>NaN</td>\n",
1306
- " <td>NaN</td>\n",
1307
- " <td>NaN</td>\n",
1308
- " <td>0</td>\n",
1309
- " <td>6</td>\n",
1310
- " <td>2006</td>\n",
1311
- " <td>WD</td>\n",
1312
- " <td>Normal</td>\n",
1313
- " <td>NaN</td>\n",
1314
- " </tr>\n",
1315
- " <tr>\n",
1316
- " <th>2916</th>\n",
1317
- " <td>160</td>\n",
1318
- " <td>RM</td>\n",
1319
- " <td>21.0</td>\n",
1320
- " <td>1894</td>\n",
1321
- " <td>Pave</td>\n",
1322
- " <td>NaN</td>\n",
1323
- " <td>Reg</td>\n",
1324
- " <td>Lvl</td>\n",
1325
- " <td>AllPub</td>\n",
1326
- " <td>Inside</td>\n",
1327
- " <td>...</td>\n",
1328
- " <td>0</td>\n",
1329
- " <td>NaN</td>\n",
1330
- " <td>NaN</td>\n",
1331
- " <td>NaN</td>\n",
1332
- " <td>0</td>\n",
1333
- " <td>4</td>\n",
1334
- " <td>2006</td>\n",
1335
- " <td>WD</td>\n",
1336
- " <td>Abnorml</td>\n",
1337
- " <td>NaN</td>\n",
1338
- " </tr>\n",
1339
- " <tr>\n",
1340
- " <th>2917</th>\n",
1341
- " <td>20</td>\n",
1342
- " <td>RL</td>\n",
1343
- " <td>160.0</td>\n",
1344
- " <td>20000</td>\n",
1345
- " <td>Pave</td>\n",
1346
- " <td>NaN</td>\n",
1347
- " <td>Reg</td>\n",
1348
- " <td>Lvl</td>\n",
1349
- " <td>AllPub</td>\n",
1350
- " <td>Inside</td>\n",
1351
- " <td>...</td>\n",
1352
- " <td>0</td>\n",
1353
- " <td>NaN</td>\n",
1354
- " <td>NaN</td>\n",
1355
- " <td>NaN</td>\n",
1356
- " <td>0</td>\n",
1357
- " <td>9</td>\n",
1358
- " <td>2006</td>\n",
1359
- " <td>WD</td>\n",
1360
- " <td>Abnorml</td>\n",
1361
- " <td>NaN</td>\n",
1362
- " </tr>\n",
1363
- " <tr>\n",
1364
- " <th>2918</th>\n",
1365
- " <td>85</td>\n",
1366
- " <td>RL</td>\n",
1367
- " <td>62.0</td>\n",
1368
- " <td>10441</td>\n",
1369
- " <td>Pave</td>\n",
1370
- " <td>NaN</td>\n",
1371
- " <td>Reg</td>\n",
1372
- " <td>Lvl</td>\n",
1373
- " <td>AllPub</td>\n",
1374
- " <td>Inside</td>\n",
1375
- " <td>...</td>\n",
1376
- " <td>0</td>\n",
1377
- " <td>NaN</td>\n",
1378
- " <td>MnPrv</td>\n",
1379
- " <td>Shed</td>\n",
1380
- " <td>700</td>\n",
1381
- " <td>7</td>\n",
1382
- " <td>2006</td>\n",
1383
- " <td>WD</td>\n",
1384
- " <td>Normal</td>\n",
1385
- " <td>NaN</td>\n",
1386
- " </tr>\n",
1387
- " <tr>\n",
1388
- " <th>2919</th>\n",
1389
- " <td>60</td>\n",
1390
- " <td>RL</td>\n",
1391
- " <td>74.0</td>\n",
1392
- " <td>9627</td>\n",
1393
- " <td>Pave</td>\n",
1394
- " <td>NaN</td>\n",
1395
- " <td>Reg</td>\n",
1396
- " <td>Lvl</td>\n",
1397
- " <td>AllPub</td>\n",
1398
- " <td>Inside</td>\n",
1399
- " <td>...</td>\n",
1400
- " <td>0</td>\n",
1401
- " <td>NaN</td>\n",
1402
- " <td>NaN</td>\n",
1403
- " <td>NaN</td>\n",
1404
- " <td>0</td>\n",
1405
- " <td>11</td>\n",
1406
- " <td>2006</td>\n",
1407
- " <td>WD</td>\n",
1408
- " <td>Normal</td>\n",
1409
- " <td>NaN</td>\n",
1410
- " </tr>\n",
1411
- " </tbody>\n",
1412
- "</table>\n",
1413
- "<p>2919 rows × 80 columns</p>\n",
1414
- "</div>"
1415
- ],
1416
- "text/plain": [
1417
- " MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape \\\n",
1418
- "Id \n",
1419
- "1 60 RL 65.0 8450 Pave NaN Reg \n",
1420
- "2 20 RL 80.0 9600 Pave NaN Reg \n",
1421
- "3 60 RL 68.0 11250 Pave NaN IR1 \n",
1422
- "4 70 RL 60.0 9550 Pave NaN IR1 \n",
1423
- "5 60 RL 84.0 14260 Pave NaN IR1 \n",
1424
- "... ... ... ... ... ... ... ... \n",
1425
- "2915 160 RM 21.0 1936 Pave NaN Reg \n",
1426
- "2916 160 RM 21.0 1894 Pave NaN Reg \n",
1427
- "2917 20 RL 160.0 20000 Pave NaN Reg \n",
1428
- "2918 85 RL 62.0 10441 Pave NaN Reg \n",
1429
- "2919 60 RL 74.0 9627 Pave NaN Reg \n",
1430
- "\n",
1431
- " LandContour Utilities LotConfig ... PoolArea PoolQC Fence MiscFeature \\\n",
1432
- "Id ... \n",
1433
- "1 Lvl AllPub Inside ... 0 NaN NaN NaN \n",
1434
- "2 Lvl AllPub FR2 ... 0 NaN NaN NaN \n",
1435
- "3 Lvl AllPub Inside ... 0 NaN NaN NaN \n",
1436
- "4 Lvl AllPub Corner ... 0 NaN NaN NaN \n",
1437
- "5 Lvl AllPub FR2 ... 0 NaN NaN NaN \n",
1438
- "... ... ... ... ... ... ... ... ... \n",
1439
- "2915 Lvl AllPub Inside ... 0 NaN NaN NaN \n",
1440
- "2916 Lvl AllPub Inside ... 0 NaN NaN NaN \n",
1441
- "2917 Lvl AllPub Inside ... 0 NaN NaN NaN \n",
1442
- "2918 Lvl AllPub Inside ... 0 NaN MnPrv Shed \n",
1443
- "2919 Lvl AllPub Inside ... 0 NaN NaN NaN \n",
1444
- "\n",
1445
- " MiscVal MoSold YrSold SaleType SaleCondition SalePrice \n",
1446
- "Id \n",
1447
- "1 0 2 2008 WD Normal 208500.0 \n",
1448
- "2 0 5 2007 WD Normal 181500.0 \n",
1449
- "3 0 9 2008 WD Normal 223500.0 \n",
1450
- "4 0 2 2006 WD Abnorml 140000.0 \n",
1451
- "5 0 12 2008 WD Normal 250000.0 \n",
1452
- "... ... ... ... ... ... ... \n",
1453
- "2915 0 6 2006 WD Normal NaN \n",
1454
- "2916 0 4 2006 WD Abnorml NaN \n",
1455
- "2917 0 9 2006 WD Abnorml NaN \n",
1456
- "2918 700 7 2006 WD Normal NaN \n",
1457
- "2919 0 11 2006 WD Normal NaN \n",
1458
- "\n",
1459
- "[2919 rows x 80 columns]"
1460
- ]
1461
- },
1462
- "execution_count": 7,
1463
- "metadata": {},
1464
- "output_type": "execute_result"
1465
  }
1466
- ],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1467
  "source": [
1468
  "data_df"
1469
  ]
@@ -1519,7 +353,7 @@
1519
  },
1520
  {
1521
  "cell_type": "code",
1522
- "execution_count": 8,
1523
  "metadata": {
1524
  "execution": {
1525
  "iopub.status.busy": "2023-06-25T13:22:25.918575Z",
@@ -1927,19 +761,20 @@
1927
  "[2919 rows x 37 columns]"
1928
  ]
1929
  },
1930
- "execution_count": 8,
1931
  "metadata": {},
1932
  "output_type": "execute_result"
1933
  }
1934
  ],
1935
  "source": [
 
1936
  "nume_cols = data_df.select_dtypes(include='number')\n",
1937
  "nume_cols"
1938
  ]
1939
  },
1940
  {
1941
  "cell_type": "code",
1942
- "execution_count": 9,
1943
  "metadata": {
1944
  "execution": {
1945
  "iopub.status.busy": "2023-06-25T13:22:25.920075Z",
@@ -1950,6 +785,7 @@
1950
  },
1951
  "outputs": [],
1952
  "source": [
 
1953
  "num_filled = nume_cols.fillna(nume_cols.mean())"
1954
  ]
1955
  },
@@ -1985,7 +821,7 @@
1985
  },
1986
  {
1987
  "cell_type": "code",
1988
- "execution_count": 10,
1989
  "metadata": {
1990
  "execution": {
1991
  "iopub.status.busy": "2023-06-25T13:22:25.924104Z",
@@ -2379,19 +1215,20 @@
2379
  "[2919 rows x 43 columns]"
2380
  ]
2381
  },
2382
- "execution_count": 10,
2383
  "metadata": {},
2384
  "output_type": "execute_result"
2385
  }
2386
  ],
2387
  "source": [
 
2388
  "cat_cols = data_df.select_dtypes(include='object')\n",
2389
  "cat_cols"
2390
  ]
2391
  },
2392
  {
2393
  "cell_type": "code",
2394
- "execution_count": 11,
2395
  "metadata": {
2396
  "execution": {
2397
  "iopub.status.busy": "2023-06-25T13:22:25.925561Z",
@@ -2402,6 +1239,7 @@
2402
  },
2403
  "outputs": [],
2404
  "source": [
 
2405
  "cat_filled = cat_cols.fillna(cat_cols.mode().iloc[0])"
2406
  ]
2407
  },
@@ -2430,7 +1268,7 @@
2430
  },
2431
  {
2432
  "cell_type": "code",
2433
- "execution_count": 12,
2434
  "metadata": {
2435
  "execution": {
2436
  "iopub.status.busy": "2023-06-25T13:22:25.928626Z",
@@ -2441,6 +1279,7 @@
2441
  },
2442
  "outputs": [],
2443
  "source": [
 
2444
  "cat_enc = pd.get_dummies(cat_filled)"
2445
  ]
2446
  },
@@ -2485,7 +1324,7 @@
2485
  },
2486
  {
2487
  "cell_type": "code",
2488
- "execution_count": 13,
2489
  "metadata": {
2490
  "execution": {
2491
  "iopub.status.busy": "2023-06-25T13:22:25.933152Z",
@@ -2496,6 +1335,7 @@
2496
  },
2497
  "outputs": [],
2498
  "source": [
 
2499
  "from sklearn.preprocessing import MinMaxScaler\n",
2500
  "\n",
2501
  "columns_to_scale = num_filled.drop('SalePrice', axis=1).columns\n",
@@ -2534,7 +1374,7 @@
2534
  },
2535
  {
2536
  "cell_type": "code",
2537
- "execution_count": 14,
2538
  "metadata": {
2539
  "execution": {
2540
  "iopub.status.busy": "2023-06-25T13:22:25.937170Z",
@@ -2545,6 +1385,7 @@
2545
  },
2546
  "outputs": [],
2547
  "source": [
 
2548
  "data = pd.concat([final_df.reset_index(drop=True), cat_enc.reset_index(drop=True)], axis = 1)"
2549
  ]
2550
  },
@@ -2573,7 +1414,7 @@
2573
  },
2574
  {
2575
  "cell_type": "code",
2576
- "execution_count": 15,
2577
  "metadata": {
2578
  "execution": {
2579
  "iopub.status.busy": "2023-06-25T13:22:25.940252Z",
@@ -2584,13 +1425,14 @@
2584
  },
2585
  "outputs": [],
2586
  "source": [
 
2587
  "target = data['SalePrice']\n",
2588
  "features = data.drop('SalePrice', axis=1)"
2589
  ]
2590
  },
2591
  {
2592
  "cell_type": "code",
2593
- "execution_count": 16,
2594
  "metadata": {
2595
  "execution": {
2596
  "iopub.status.busy": "2023-06-25T13:22:25.941942Z",
@@ -2601,6 +1443,7 @@
2601
  },
2602
  "outputs": [],
2603
  "source": [
 
2604
  "X = features[:len(train_df)]\n",
2605
  "X_test = features[len(train_df):]\n",
2606
  "\n",
@@ -2633,7 +1476,7 @@
2633
  },
2634
  {
2635
  "cell_type": "code",
2636
- "execution_count": 17,
2637
  "metadata": {
2638
  "execution": {
2639
  "iopub.execute_input": "2023-06-25T13:22:51.312853Z",
@@ -2670,7 +1513,7 @@
2670
  },
2671
  {
2672
  "cell_type": "code",
2673
- "execution_count": 18,
2674
  "metadata": {
2675
  "execution": {
2676
  "iopub.execute_input": "2023-06-25T13:22:52.925171Z",
@@ -2687,7 +1530,7 @@
2687
  "((1460, 287), (1460, 288))"
2688
  ]
2689
  },
2690
- "execution_count": 18,
2691
  "metadata": {},
2692
  "output_type": "execute_result"
2693
  }
 
67
  },
68
  {
69
  "cell_type": "code",
70
+ "execution_count": null,
71
+ "metadata": {
72
+ "execution": {
73
+ "iopub.execute_input": "2023-06-25T13:23:09.551735Z",
74
+ "iopub.status.busy": "2023-06-25T13:23:09.551039Z",
75
+ "iopub.status.idle": "2023-06-25T13:23:09.584973Z",
76
+ "shell.execute_reply": "2023-06-25T13:23:09.584115Z",
77
+ "shell.execute_reply.started": "2023-06-25T13:23:09.551700Z"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78
  }
79
+ },
80
+ "outputs": [],
81
+ "source": [
82
+ "train_df"
83
+ ]
84
+ },
85
+ {
86
+ "cell_type": "code",
87
+ "execution_count": null,
88
+ "metadata": {
89
+ "execution": {
90
+ "iopub.execute_input": "2023-06-25T13:23:10.039100Z",
91
+ "iopub.status.busy": "2023-06-25T13:23:10.038687Z",
92
+ "iopub.status.idle": "2023-06-25T13:23:10.057291Z",
93
+ "shell.execute_reply": "2023-06-25T13:23:10.056458Z",
94
+ "shell.execute_reply.started": "2023-06-25T13:23:10.039067Z"
95
+ }
96
+ },
97
+ "outputs": [],
98
+ "source": [
99
+ "train_df.info()"
100
+ ]
101
+ },
102
+ {
103
+ "cell_type": "code",
104
+ "execution_count": null,
105
+ "metadata": {
106
+ "execution": {
107
+ "iopub.execute_input": "2023-06-25T13:23:10.620763Z",
108
+ "iopub.status.busy": "2023-06-25T13:23:10.620023Z",
109
+ "iopub.status.idle": "2023-06-25T13:23:10.654397Z",
110
+ "shell.execute_reply": "2023-06-25T13:23:10.653445Z",
111
+ "shell.execute_reply.started": "2023-06-25T13:23:10.620726Z"
112
+ }
113
+ },
114
+ "outputs": [],
115
+ "source": [
116
+ "test_df"
117
+ ]
118
+ },
119
+ {
120
+ "cell_type": "code",
121
+ "execution_count": null,
122
+ "metadata": {
123
+ "execution": {
124
+ "iopub.execute_input": "2023-06-25T13:23:11.131462Z",
125
+ "iopub.status.busy": "2023-06-25T13:23:11.130679Z",
126
+ "iopub.status.idle": "2023-06-25T13:23:11.150802Z",
127
+ "shell.execute_reply": "2023-06-25T13:23:11.149870Z",
128
+ "shell.execute_reply.started": "2023-06-25T13:23:11.131424Z"
129
+ }
130
+ },
131
+ "outputs": [],
132
+ "source": [
133
+ "test_df.info()"
134
+ ]
135
+ },
136
+ {
137
+ "cell_type": "markdown",
138
+ "metadata": {},
139
+ "source": [
140
+ "## 1_1. 통계적 분석"
141
+ ]
142
+ },
143
+ {
144
+ "cell_type": "code",
145
+ "execution_count": null,
146
+ "metadata": {
147
+ "execution": {
148
+ "iopub.execute_input": "2023-06-25T13:23:11.907074Z",
149
+ "iopub.status.busy": "2023-06-25T13:23:11.906709Z",
150
+ "iopub.status.idle": "2023-06-25T13:23:12.010254Z",
151
+ "shell.execute_reply": "2023-06-25T13:23:12.009287Z",
152
+ "shell.execute_reply.started": "2023-06-25T13:23:11.907046Z"
153
+ }
154
+ },
155
+ "outputs": [],
156
+ "source": [
157
+ "train_df.describe()"
158
+ ]
159
+ },
160
+ {
161
+ "cell_type": "code",
162
+ "execution_count": null,
163
+ "metadata": {
164
+ "execution": {
165
+ "iopub.execute_input": "2023-06-25T13:23:12.176455Z",
166
+ "iopub.status.busy": "2023-06-25T13:23:12.176129Z",
167
+ "iopub.status.idle": "2023-06-25T13:23:12.276238Z",
168
+ "shell.execute_reply": "2023-06-25T13:23:12.275426Z",
169
+ "shell.execute_reply.started": "2023-06-25T13:23:12.176427Z"
170
+ }
171
+ },
172
+ "outputs": [],
173
+ "source": [
174
+ "test_df.describe()"
175
+ ]
176
+ },
177
+ {
178
+ "cell_type": "markdown",
179
+ "metadata": {},
180
+ "source": [
181
+ "## 1_2. 상관관계 분석"
182
+ ]
183
+ },
184
+ {
185
+ "cell_type": "code",
186
+ "execution_count": null,
187
+ "metadata": {
188
+ "execution": {
189
+ "iopub.execute_input": "2023-06-25T13:23:12.942491Z",
190
+ "iopub.status.busy": "2023-06-25T13:23:12.942135Z",
191
+ "iopub.status.idle": "2023-06-25T13:23:13.004797Z",
192
+ "shell.execute_reply": "2023-06-25T13:23:13.004032Z",
193
+ "shell.execute_reply.started": "2023-06-25T13:23:12.942462Z"
194
+ }
195
+ },
196
+ "outputs": [],
197
+ "source": [
198
+ "train_df.select_dtypes(include='number').corr()"
199
+ ]
200
+ },
201
+ {
202
+ "cell_type": "code",
203
+ "execution_count": null,
204
+ "metadata": {
205
+ "execution": {
206
+ "iopub.execute_input": "2023-06-25T13:23:13.452652Z",
207
+ "iopub.status.busy": "2023-06-25T13:23:13.452258Z",
208
+ "iopub.status.idle": "2023-06-25T13:23:17.052104Z",
209
+ "shell.execute_reply": "2023-06-25T13:23:17.051263Z",
210
+ "shell.execute_reply.started": "2023-06-25T13:23:13.452618Z"
211
+ }
212
+ },
213
+ "outputs": [],
214
+ "source": [
215
+ "fig, ax = plt.subplots(figsize=(20,20))\n",
216
+ "sns.heatmap(data=train_df.select_dtypes(include='number').corr(), vmin=abs(0.5), annot=True, fmt = '.2f')\n",
217
+ "plt.show()"
218
+ ]
219
+ },
220
+ {
221
+ "cell_type": "code",
222
+ "execution_count": null,
223
+ "metadata": {
224
+ "execution": {
225
+ "iopub.execute_input": "2023-06-25T13:23:17.053953Z",
226
+ "iopub.status.busy": "2023-06-25T13:23:17.053665Z",
227
+ "iopub.status.idle": "2023-06-25T13:23:17.058931Z",
228
+ "shell.execute_reply": "2023-06-25T13:23:17.058050Z",
229
+ "shell.execute_reply.started": "2023-06-25T13:23:17.053927Z"
230
+ }
231
+ },
232
+ "outputs": [],
233
+ "source": [
234
+ "num_cols = train_df.select_dtypes(include='number')"
235
+ ]
236
+ },
237
+ {
238
+ "cell_type": "code",
239
+ "execution_count": null,
240
+ "metadata": {
241
+ "execution": {
242
+ "iopub.execute_input": "2023-06-25T13:23:17.060402Z",
243
+ "iopub.status.busy": "2023-06-25T13:23:17.060101Z"
244
+ }
245
+ },
246
+ "outputs": [],
247
+ "source": [
248
+ "for col in num_cols:\n",
249
+ " fig, ax = plt.subplots(1, 3, figsize=(20,3))\n",
250
+ " sns.boxplot(data=train_df, x=col, ax=ax[0] )\n",
251
+ " sns.histplot(data=train_df, x=col, bins=40, ax=ax[1])\n",
252
+ " sns.kdeplot(data=train_df, x=col, ax=ax[2])\n",
253
+ " plt.show()"
254
+ ]
255
+ },
256
+ {
257
+ "cell_type": "markdown",
258
+ "metadata": {},
259
+ "source": [
260
+ "# 2. Data preprocessing"
261
+ ]
262
+ },
263
+ {
264
+ "cell_type": "markdown",
265
+ "metadata": {},
266
+ "source": [
267
+ "## 2_1. 결측치 처리"
268
+ ]
269
+ },
270
+ {
271
+ "cell_type": "code",
272
+ "execution_count": 4,
273
+ "metadata": {
274
+ "execution": {
275
+ "iopub.execute_input": "2023-06-25T13:22:25.832475Z",
276
+ "iopub.status.busy": "2023-06-25T13:22:25.832137Z",
277
+ "iopub.status.idle": "2023-06-25T13:22:25.845482Z",
278
+ "shell.execute_reply": "2023-06-25T13:22:25.844584Z",
279
+ "shell.execute_reply.started": "2023-06-25T13:22:25.832443Z"
280
+ }
281
+ },
282
+ "outputs": [],
283
+ "source": [
284
+ "# fix --- execute this cell\n",
285
+ "data_df = pd.concat([train_df, test_df], axis = 0)"
286
+ ]
287
+ },
288
+ {
289
+ "cell_type": "code",
290
+ "execution_count": null,
291
+ "metadata": {
292
+ "execution": {
293
+ "iopub.execute_input": "2023-06-25T13:22:25.846913Z",
294
+ "iopub.status.busy": "2023-06-25T13:22:25.846612Z",
295
+ "iopub.status.idle": "2023-06-25T13:22:25.883701Z",
296
+ "shell.execute_reply": "2023-06-25T13:22:25.882835Z",
297
+ "shell.execute_reply.started": "2023-06-25T13:22:25.846886Z"
298
+ }
299
+ },
300
+ "outputs": [],
301
  "source": [
302
  "data_df"
303
  ]
 
353
  },
354
  {
355
  "cell_type": "code",
356
+ "execution_count": 5,
357
  "metadata": {
358
  "execution": {
359
  "iopub.status.busy": "2023-06-25T13:22:25.918575Z",
 
761
  "[2919 rows x 37 columns]"
762
  ]
763
  },
764
+ "execution_count": 5,
765
  "metadata": {},
766
  "output_type": "execute_result"
767
  }
768
  ],
769
  "source": [
770
+ "# fix --- execute this cell\n",
771
  "nume_cols = data_df.select_dtypes(include='number')\n",
772
  "nume_cols"
773
  ]
774
  },
775
  {
776
  "cell_type": "code",
777
+ "execution_count": 6,
778
  "metadata": {
779
  "execution": {
780
  "iopub.status.busy": "2023-06-25T13:22:25.920075Z",
 
785
  },
786
  "outputs": [],
787
  "source": [
788
+ "# fix --- execute this cell\n",
789
  "num_filled = nume_cols.fillna(nume_cols.mean())"
790
  ]
791
  },
 
821
  },
822
  {
823
  "cell_type": "code",
824
+ "execution_count": 7,
825
  "metadata": {
826
  "execution": {
827
  "iopub.status.busy": "2023-06-25T13:22:25.924104Z",
 
1215
  "[2919 rows x 43 columns]"
1216
  ]
1217
  },
1218
+ "execution_count": 7,
1219
  "metadata": {},
1220
  "output_type": "execute_result"
1221
  }
1222
  ],
1223
  "source": [
1224
+ "# fix --- execute this cell\n",
1225
  "cat_cols = data_df.select_dtypes(include='object')\n",
1226
  "cat_cols"
1227
  ]
1228
  },
1229
  {
1230
  "cell_type": "code",
1231
+ "execution_count": 8,
1232
  "metadata": {
1233
  "execution": {
1234
  "iopub.status.busy": "2023-06-25T13:22:25.925561Z",
 
1239
  },
1240
  "outputs": [],
1241
  "source": [
1242
+ "# fix --- execute this cell\n",
1243
  "cat_filled = cat_cols.fillna(cat_cols.mode().iloc[0])"
1244
  ]
1245
  },
 
1268
  },
1269
  {
1270
  "cell_type": "code",
1271
+ "execution_count": 9,
1272
  "metadata": {
1273
  "execution": {
1274
  "iopub.status.busy": "2023-06-25T13:22:25.928626Z",
 
1279
  },
1280
  "outputs": [],
1281
  "source": [
1282
+ "# fix --- execute this cell\n",
1283
  "cat_enc = pd.get_dummies(cat_filled)"
1284
  ]
1285
  },
 
1324
  },
1325
  {
1326
  "cell_type": "code",
1327
+ "execution_count": 10,
1328
  "metadata": {
1329
  "execution": {
1330
  "iopub.status.busy": "2023-06-25T13:22:25.933152Z",
 
1335
  },
1336
  "outputs": [],
1337
  "source": [
1338
+ "# fix --- execute this cell\n",
1339
  "from sklearn.preprocessing import MinMaxScaler\n",
1340
  "\n",
1341
  "columns_to_scale = num_filled.drop('SalePrice', axis=1).columns\n",
 
1374
  },
1375
  {
1376
  "cell_type": "code",
1377
+ "execution_count": 11,
1378
  "metadata": {
1379
  "execution": {
1380
  "iopub.status.busy": "2023-06-25T13:22:25.937170Z",
 
1385
  },
1386
  "outputs": [],
1387
  "source": [
1388
+ "# fix --- execute this cell\n",
1389
  "data = pd.concat([final_df.reset_index(drop=True), cat_enc.reset_index(drop=True)], axis = 1)"
1390
  ]
1391
  },
 
1414
  },
1415
  {
1416
  "cell_type": "code",
1417
+ "execution_count": 12,
1418
  "metadata": {
1419
  "execution": {
1420
  "iopub.status.busy": "2023-06-25T13:22:25.940252Z",
 
1425
  },
1426
  "outputs": [],
1427
  "source": [
1428
+ "# fix --- execute this cell\n",
1429
  "target = data['SalePrice']\n",
1430
  "features = data.drop('SalePrice', axis=1)"
1431
  ]
1432
  },
1433
  {
1434
  "cell_type": "code",
1435
+ "execution_count": 13,
1436
  "metadata": {
1437
  "execution": {
1438
  "iopub.status.busy": "2023-06-25T13:22:25.941942Z",
 
1443
  },
1444
  "outputs": [],
1445
  "source": [
1446
+ "# fix --- execute this cell\n",
1447
  "X = features[:len(train_df)]\n",
1448
  "X_test = features[len(train_df):]\n",
1449
  "\n",
 
1476
  },
1477
  {
1478
  "cell_type": "code",
1479
+ "execution_count": 14,
1480
  "metadata": {
1481
  "execution": {
1482
  "iopub.execute_input": "2023-06-25T13:22:51.312853Z",
 
1513
  },
1514
  {
1515
  "cell_type": "code",
1516
+ "execution_count": 15,
1517
  "metadata": {
1518
  "execution": {
1519
  "iopub.execute_input": "2023-06-25T13:22:52.925171Z",
 
1530
  "((1460, 287), (1460, 288))"
1531
  ]
1532
  },
1533
+ "execution_count": 15,
1534
  "metadata": {},
1535
  "output_type": "execute_result"
1536
  }
benchmark/NBspecific_17/NBspecific_17_reproduced.ipynb CHANGED
@@ -67,7 +67,7 @@
67
  },
68
  {
69
  "cell_type": "code",
70
- "execution_count": 3,
71
  "metadata": {
72
  "execution": {
73
  "iopub.execute_input": "2023-06-25T13:23:09.551735Z",
@@ -77,396 +77,7 @@
77
  "shell.execute_reply.started": "2023-06-25T13:23:09.551700Z"
78
  }
79
  },
80
- "outputs": [
81
- {
82
- "data": {
83
- "text/html": [
84
- "<div>\n",
85
- "<style scoped>\n",
86
- " .dataframe tbody tr th:only-of-type {\n",
87
- " vertical-align: middle;\n",
88
- " }\n",
89
- "\n",
90
- " .dataframe tbody tr th {\n",
91
- " vertical-align: top;\n",
92
- " }\n",
93
- "\n",
94
- " .dataframe thead th {\n",
95
- " text-align: right;\n",
96
- " }\n",
97
- "</style>\n",
98
- "<table border=\"1\" class=\"dataframe\">\n",
99
- " <thead>\n",
100
- " <tr style=\"text-align: right;\">\n",
101
- " <th></th>\n",
102
- " <th>MSSubClass</th>\n",
103
- " <th>MSZoning</th>\n",
104
- " <th>LotFrontage</th>\n",
105
- " <th>LotArea</th>\n",
106
- " <th>Street</th>\n",
107
- " <th>Alley</th>\n",
108
- " <th>LotShape</th>\n",
109
- " <th>LandContour</th>\n",
110
- " <th>Utilities</th>\n",
111
- " <th>LotConfig</th>\n",
112
- " <th>...</th>\n",
113
- " <th>PoolArea</th>\n",
114
- " <th>PoolQC</th>\n",
115
- " <th>Fence</th>\n",
116
- " <th>MiscFeature</th>\n",
117
- " <th>MiscVal</th>\n",
118
- " <th>MoSold</th>\n",
119
- " <th>YrSold</th>\n",
120
- " <th>SaleType</th>\n",
121
- " <th>SaleCondition</th>\n",
122
- " <th>SalePrice</th>\n",
123
- " </tr>\n",
124
- " <tr>\n",
125
- " <th>Id</th>\n",
126
- " <th></th>\n",
127
- " <th></th>\n",
128
- " <th></th>\n",
129
- " <th></th>\n",
130
- " <th></th>\n",
131
- " <th></th>\n",
132
- " <th></th>\n",
133
- " <th></th>\n",
134
- " <th></th>\n",
135
- " <th></th>\n",
136
- " <th></th>\n",
137
- " <th></th>\n",
138
- " <th></th>\n",
139
- " <th></th>\n",
140
- " <th></th>\n",
141
- " <th></th>\n",
142
- " <th></th>\n",
143
- " <th></th>\n",
144
- " <th></th>\n",
145
- " <th></th>\n",
146
- " <th></th>\n",
147
- " </tr>\n",
148
- " </thead>\n",
149
- " <tbody>\n",
150
- " <tr>\n",
151
- " <th>1</th>\n",
152
- " <td>60</td>\n",
153
- " <td>RL</td>\n",
154
- " <td>65.0</td>\n",
155
- " <td>8450</td>\n",
156
- " <td>Pave</td>\n",
157
- " <td>NaN</td>\n",
158
- " <td>Reg</td>\n",
159
- " <td>Lvl</td>\n",
160
- " <td>AllPub</td>\n",
161
- " <td>Inside</td>\n",
162
- " <td>...</td>\n",
163
- " <td>0</td>\n",
164
- " <td>NaN</td>\n",
165
- " <td>NaN</td>\n",
166
- " <td>NaN</td>\n",
167
- " <td>0</td>\n",
168
- " <td>2</td>\n",
169
- " <td>2008</td>\n",
170
- " <td>WD</td>\n",
171
- " <td>Normal</td>\n",
172
- " <td>208500</td>\n",
173
- " </tr>\n",
174
- " <tr>\n",
175
- " <th>2</th>\n",
176
- " <td>20</td>\n",
177
- " <td>RL</td>\n",
178
- " <td>80.0</td>\n",
179
- " <td>9600</td>\n",
180
- " <td>Pave</td>\n",
181
- " <td>NaN</td>\n",
182
- " <td>Reg</td>\n",
183
- " <td>Lvl</td>\n",
184
- " <td>AllPub</td>\n",
185
- " <td>FR2</td>\n",
186
- " <td>...</td>\n",
187
- " <td>0</td>\n",
188
- " <td>NaN</td>\n",
189
- " <td>NaN</td>\n",
190
- " <td>NaN</td>\n",
191
- " <td>0</td>\n",
192
- " <td>5</td>\n",
193
- " <td>2007</td>\n",
194
- " <td>WD</td>\n",
195
- " <td>Normal</td>\n",
196
- " <td>181500</td>\n",
197
- " </tr>\n",
198
- " <tr>\n",
199
- " <th>3</th>\n",
200
- " <td>60</td>\n",
201
- " <td>RL</td>\n",
202
- " <td>68.0</td>\n",
203
- " <td>11250</td>\n",
204
- " <td>Pave</td>\n",
205
- " <td>NaN</td>\n",
206
- " <td>IR1</td>\n",
207
- " <td>Lvl</td>\n",
208
- " <td>AllPub</td>\n",
209
- " <td>Inside</td>\n",
210
- " <td>...</td>\n",
211
- " <td>0</td>\n",
212
- " <td>NaN</td>\n",
213
- " <td>NaN</td>\n",
214
- " <td>NaN</td>\n",
215
- " <td>0</td>\n",
216
- " <td>9</td>\n",
217
- " <td>2008</td>\n",
218
- " <td>WD</td>\n",
219
- " <td>Normal</td>\n",
220
- " <td>223500</td>\n",
221
- " </tr>\n",
222
- " <tr>\n",
223
- " <th>4</th>\n",
224
- " <td>70</td>\n",
225
- " <td>RL</td>\n",
226
- " <td>60.0</td>\n",
227
- " <td>9550</td>\n",
228
- " <td>Pave</td>\n",
229
- " <td>NaN</td>\n",
230
- " <td>IR1</td>\n",
231
- " <td>Lvl</td>\n",
232
- " <td>AllPub</td>\n",
233
- " <td>Corner</td>\n",
234
- " <td>...</td>\n",
235
- " <td>0</td>\n",
236
- " <td>NaN</td>\n",
237
- " <td>NaN</td>\n",
238
- " <td>NaN</td>\n",
239
- " <td>0</td>\n",
240
- " <td>2</td>\n",
241
- " <td>2006</td>\n",
242
- " <td>WD</td>\n",
243
- " <td>Abnorml</td>\n",
244
- " <td>140000</td>\n",
245
- " </tr>\n",
246
- " <tr>\n",
247
- " <th>5</th>\n",
248
- " <td>60</td>\n",
249
- " <td>RL</td>\n",
250
- " <td>84.0</td>\n",
251
- " <td>14260</td>\n",
252
- " <td>Pave</td>\n",
253
- " <td>NaN</td>\n",
254
- " <td>IR1</td>\n",
255
- " <td>Lvl</td>\n",
256
- " <td>AllPub</td>\n",
257
- " <td>FR2</td>\n",
258
- " <td>...</td>\n",
259
- " <td>0</td>\n",
260
- " <td>NaN</td>\n",
261
- " <td>NaN</td>\n",
262
- " <td>NaN</td>\n",
263
- " <td>0</td>\n",
264
- " <td>12</td>\n",
265
- " <td>2008</td>\n",
266
- " <td>WD</td>\n",
267
- " <td>Normal</td>\n",
268
- " <td>250000</td>\n",
269
- " </tr>\n",
270
- " <tr>\n",
271
- " <th>...</th>\n",
272
- " <td>...</td>\n",
273
- " <td>...</td>\n",
274
- " <td>...</td>\n",
275
- " <td>...</td>\n",
276
- " <td>...</td>\n",
277
- " <td>...</td>\n",
278
- " <td>...</td>\n",
279
- " <td>...</td>\n",
280
- " <td>...</td>\n",
281
- " <td>...</td>\n",
282
- " <td>...</td>\n",
283
- " <td>...</td>\n",
284
- " <td>...</td>\n",
285
- " <td>...</td>\n",
286
- " <td>...</td>\n",
287
- " <td>...</td>\n",
288
- " <td>...</td>\n",
289
- " <td>...</td>\n",
290
- " <td>...</td>\n",
291
- " <td>...</td>\n",
292
- " <td>...</td>\n",
293
- " </tr>\n",
294
- " <tr>\n",
295
- " <th>1456</th>\n",
296
- " <td>60</td>\n",
297
- " <td>RL</td>\n",
298
- " <td>62.0</td>\n",
299
- " <td>7917</td>\n",
300
- " <td>Pave</td>\n",
301
- " <td>NaN</td>\n",
302
- " <td>Reg</td>\n",
303
- " <td>Lvl</td>\n",
304
- " <td>AllPub</td>\n",
305
- " <td>Inside</td>\n",
306
- " <td>...</td>\n",
307
- " <td>0</td>\n",
308
- " <td>NaN</td>\n",
309
- " <td>NaN</td>\n",
310
- " <td>NaN</td>\n",
311
- " <td>0</td>\n",
312
- " <td>8</td>\n",
313
- " <td>2007</td>\n",
314
- " <td>WD</td>\n",
315
- " <td>Normal</td>\n",
316
- " <td>175000</td>\n",
317
- " </tr>\n",
318
- " <tr>\n",
319
- " <th>1457</th>\n",
320
- " <td>20</td>\n",
321
- " <td>RL</td>\n",
322
- " <td>85.0</td>\n",
323
- " <td>13175</td>\n",
324
- " <td>Pave</td>\n",
325
- " <td>NaN</td>\n",
326
- " <td>Reg</td>\n",
327
- " <td>Lvl</td>\n",
328
- " <td>AllPub</td>\n",
329
- " <td>Inside</td>\n",
330
- " <td>...</td>\n",
331
- " <td>0</td>\n",
332
- " <td>NaN</td>\n",
333
- " <td>MnPrv</td>\n",
334
- " <td>NaN</td>\n",
335
- " <td>0</td>\n",
336
- " <td>2</td>\n",
337
- " <td>2010</td>\n",
338
- " <td>WD</td>\n",
339
- " <td>Normal</td>\n",
340
- " <td>210000</td>\n",
341
- " </tr>\n",
342
- " <tr>\n",
343
- " <th>1458</th>\n",
344
- " <td>70</td>\n",
345
- " <td>RL</td>\n",
346
- " <td>66.0</td>\n",
347
- " <td>9042</td>\n",
348
- " <td>Pave</td>\n",
349
- " <td>NaN</td>\n",
350
- " <td>Reg</td>\n",
351
- " <td>Lvl</td>\n",
352
- " <td>AllPub</td>\n",
353
- " <td>Inside</td>\n",
354
- " <td>...</td>\n",
355
- " <td>0</td>\n",
356
- " <td>NaN</td>\n",
357
- " <td>GdPrv</td>\n",
358
- " <td>Shed</td>\n",
359
- " <td>2500</td>\n",
360
- " <td>5</td>\n",
361
- " <td>2010</td>\n",
362
- " <td>WD</td>\n",
363
- " <td>Normal</td>\n",
364
- " <td>266500</td>\n",
365
- " </tr>\n",
366
- " <tr>\n",
367
- " <th>1459</th>\n",
368
- " <td>20</td>\n",
369
- " <td>RL</td>\n",
370
- " <td>68.0</td>\n",
371
- " <td>9717</td>\n",
372
- " <td>Pave</td>\n",
373
- " <td>NaN</td>\n",
374
- " <td>Reg</td>\n",
375
- " <td>Lvl</td>\n",
376
- " <td>AllPub</td>\n",
377
- " <td>Inside</td>\n",
378
- " <td>...</td>\n",
379
- " <td>0</td>\n",
380
- " <td>NaN</td>\n",
381
- " <td>NaN</td>\n",
382
- " <td>NaN</td>\n",
383
- " <td>0</td>\n",
384
- " <td>4</td>\n",
385
- " <td>2010</td>\n",
386
- " <td>WD</td>\n",
387
- " <td>Normal</td>\n",
388
- " <td>142125</td>\n",
389
- " </tr>\n",
390
- " <tr>\n",
391
- " <th>1460</th>\n",
392
- " <td>20</td>\n",
393
- " <td>RL</td>\n",
394
- " <td>75.0</td>\n",
395
- " <td>9937</td>\n",
396
- " <td>Pave</td>\n",
397
- " <td>NaN</td>\n",
398
- " <td>Reg</td>\n",
399
- " <td>Lvl</td>\n",
400
- " <td>AllPub</td>\n",
401
- " <td>Inside</td>\n",
402
- " <td>...</td>\n",
403
- " <td>0</td>\n",
404
- " <td>NaN</td>\n",
405
- " <td>NaN</td>\n",
406
- " <td>NaN</td>\n",
407
- " <td>0</td>\n",
408
- " <td>6</td>\n",
409
- " <td>2008</td>\n",
410
- " <td>WD</td>\n",
411
- " <td>Normal</td>\n",
412
- " <td>147500</td>\n",
413
- " </tr>\n",
414
- " </tbody>\n",
415
- "</table>\n",
416
- "<p>1460 rows × 80 columns</p>\n",
417
- "</div>"
418
- ],
419
- "text/plain": [
420
- " MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape \\\n",
421
- "Id \n",
422
- "1 60 RL 65.0 8450 Pave NaN Reg \n",
423
- "2 20 RL 80.0 9600 Pave NaN Reg \n",
424
- "3 60 RL 68.0 11250 Pave NaN IR1 \n",
425
- "4 70 RL 60.0 9550 Pave NaN IR1 \n",
426
- "5 60 RL 84.0 14260 Pave NaN IR1 \n",
427
- "... ... ... ... ... ... ... ... \n",
428
- "1456 60 RL 62.0 7917 Pave NaN Reg \n",
429
- "1457 20 RL 85.0 13175 Pave NaN Reg \n",
430
- "1458 70 RL 66.0 9042 Pave NaN Reg \n",
431
- "1459 20 RL 68.0 9717 Pave NaN Reg \n",
432
- "1460 20 RL 75.0 9937 Pave NaN Reg \n",
433
- "\n",
434
- " LandContour Utilities LotConfig ... PoolArea PoolQC Fence MiscFeature \\\n",
435
- "Id ... \n",
436
- "1 Lvl AllPub Inside ... 0 NaN NaN NaN \n",
437
- "2 Lvl AllPub FR2 ... 0 NaN NaN NaN \n",
438
- "3 Lvl AllPub Inside ... 0 NaN NaN NaN \n",
439
- "4 Lvl AllPub Corner ... 0 NaN NaN NaN \n",
440
- "5 Lvl AllPub FR2 ... 0 NaN NaN NaN \n",
441
- "... ... ... ... ... ... ... ... ... \n",
442
- "1456 Lvl AllPub Inside ... 0 NaN NaN NaN \n",
443
- "1457 Lvl AllPub Inside ... 0 NaN MnPrv NaN \n",
444
- "1458 Lvl AllPub Inside ... 0 NaN GdPrv Shed \n",
445
- "1459 Lvl AllPub Inside ... 0 NaN NaN NaN \n",
446
- "1460 Lvl AllPub Inside ... 0 NaN NaN NaN \n",
447
- "\n",
448
- " MiscVal MoSold YrSold SaleType SaleCondition SalePrice \n",
449
- "Id \n",
450
- "1 0 2 2008 WD Normal 208500 \n",
451
- "2 0 5 2007 WD Normal 181500 \n",
452
- "3 0 9 2008 WD Normal 223500 \n",
453
- "4 0 2 2006 WD Abnorml 140000 \n",
454
- "5 0 12 2008 WD Normal 250000 \n",
455
- "... ... ... ... ... ... ... \n",
456
- "1456 0 8 2007 WD Normal 175000 \n",
457
- "1457 0 2 2010 WD Normal 210000 \n",
458
- "1458 2500 5 2010 WD Normal 266500 \n",
459
- "1459 0 4 2010 WD Normal 142125 \n",
460
- "1460 0 6 2008 WD Normal 147500 \n",
461
- "\n",
462
- "[1460 rows x 80 columns]"
463
- ]
464
- },
465
- "execution_count": 3,
466
- "metadata": {},
467
- "output_type": "execute_result"
468
- }
469
- ],
470
  "source": [
471
  "train_df"
472
  ]
@@ -490,7 +101,7 @@
490
  },
491
  {
492
  "cell_type": "code",
493
- "execution_count": 4,
494
  "metadata": {
495
  "execution": {
496
  "iopub.execute_input": "2023-06-25T13:23:10.620763Z",
@@ -500,396 +111,7 @@
500
  "shell.execute_reply.started": "2023-06-25T13:23:10.620726Z"
501
  }
502
  },
503
- "outputs": [
504
- {
505
- "data": {
506
- "text/html": [
507
- "<div>\n",
508
- "<style scoped>\n",
509
- " .dataframe tbody tr th:only-of-type {\n",
510
- " vertical-align: middle;\n",
511
- " }\n",
512
- "\n",
513
- " .dataframe tbody tr th {\n",
514
- " vertical-align: top;\n",
515
- " }\n",
516
- "\n",
517
- " .dataframe thead th {\n",
518
- " text-align: right;\n",
519
- " }\n",
520
- "</style>\n",
521
- "<table border=\"1\" class=\"dataframe\">\n",
522
- " <thead>\n",
523
- " <tr style=\"text-align: right;\">\n",
524
- " <th></th>\n",
525
- " <th>MSSubClass</th>\n",
526
- " <th>MSZoning</th>\n",
527
- " <th>LotFrontage</th>\n",
528
- " <th>LotArea</th>\n",
529
- " <th>Street</th>\n",
530
- " <th>Alley</th>\n",
531
- " <th>LotShape</th>\n",
532
- " <th>LandContour</th>\n",
533
- " <th>Utilities</th>\n",
534
- " <th>LotConfig</th>\n",
535
- " <th>...</th>\n",
536
- " <th>ScreenPorch</th>\n",
537
- " <th>PoolArea</th>\n",
538
- " <th>PoolQC</th>\n",
539
- " <th>Fence</th>\n",
540
- " <th>MiscFeature</th>\n",
541
- " <th>MiscVal</th>\n",
542
- " <th>MoSold</th>\n",
543
- " <th>YrSold</th>\n",
544
- " <th>SaleType</th>\n",
545
- " <th>SaleCondition</th>\n",
546
- " </tr>\n",
547
- " <tr>\n",
548
- " <th>Id</th>\n",
549
- " <th></th>\n",
550
- " <th></th>\n",
551
- " <th></th>\n",
552
- " <th></th>\n",
553
- " <th></th>\n",
554
- " <th></th>\n",
555
- " <th></th>\n",
556
- " <th></th>\n",
557
- " <th></th>\n",
558
- " <th></th>\n",
559
- " <th></th>\n",
560
- " <th></th>\n",
561
- " <th></th>\n",
562
- " <th></th>\n",
563
- " <th></th>\n",
564
- " <th></th>\n",
565
- " <th></th>\n",
566
- " <th></th>\n",
567
- " <th></th>\n",
568
- " <th></th>\n",
569
- " <th></th>\n",
570
- " </tr>\n",
571
- " </thead>\n",
572
- " <tbody>\n",
573
- " <tr>\n",
574
- " <th>1461</th>\n",
575
- " <td>20</td>\n",
576
- " <td>RH</td>\n",
577
- " <td>80.0</td>\n",
578
- " <td>11622</td>\n",
579
- " <td>Pave</td>\n",
580
- " <td>NaN</td>\n",
581
- " <td>Reg</td>\n",
582
- " <td>Lvl</td>\n",
583
- " <td>AllPub</td>\n",
584
- " <td>Inside</td>\n",
585
- " <td>...</td>\n",
586
- " <td>120</td>\n",
587
- " <td>0</td>\n",
588
- " <td>NaN</td>\n",
589
- " <td>MnPrv</td>\n",
590
- " <td>NaN</td>\n",
591
- " <td>0</td>\n",
592
- " <td>6</td>\n",
593
- " <td>2010</td>\n",
594
- " <td>WD</td>\n",
595
- " <td>Normal</td>\n",
596
- " </tr>\n",
597
- " <tr>\n",
598
- " <th>1462</th>\n",
599
- " <td>20</td>\n",
600
- " <td>RL</td>\n",
601
- " <td>81.0</td>\n",
602
- " <td>14267</td>\n",
603
- " <td>Pave</td>\n",
604
- " <td>NaN</td>\n",
605
- " <td>IR1</td>\n",
606
- " <td>Lvl</td>\n",
607
- " <td>AllPub</td>\n",
608
- " <td>Corner</td>\n",
609
- " <td>...</td>\n",
610
- " <td>0</td>\n",
611
- " <td>0</td>\n",
612
- " <td>NaN</td>\n",
613
- " <td>NaN</td>\n",
614
- " <td>Gar2</td>\n",
615
- " <td>12500</td>\n",
616
- " <td>6</td>\n",
617
- " <td>2010</td>\n",
618
- " <td>WD</td>\n",
619
- " <td>Normal</td>\n",
620
- " </tr>\n",
621
- " <tr>\n",
622
- " <th>1463</th>\n",
623
- " <td>60</td>\n",
624
- " <td>RL</td>\n",
625
- " <td>74.0</td>\n",
626
- " <td>13830</td>\n",
627
- " <td>Pave</td>\n",
628
- " <td>NaN</td>\n",
629
- " <td>IR1</td>\n",
630
- " <td>Lvl</td>\n",
631
- " <td>AllPub</td>\n",
632
- " <td>Inside</td>\n",
633
- " <td>...</td>\n",
634
- " <td>0</td>\n",
635
- " <td>0</td>\n",
636
- " <td>NaN</td>\n",
637
- " <td>MnPrv</td>\n",
638
- " <td>NaN</td>\n",
639
- " <td>0</td>\n",
640
- " <td>3</td>\n",
641
- " <td>2010</td>\n",
642
- " <td>WD</td>\n",
643
- " <td>Normal</td>\n",
644
- " </tr>\n",
645
- " <tr>\n",
646
- " <th>1464</th>\n",
647
- " <td>60</td>\n",
648
- " <td>RL</td>\n",
649
- " <td>78.0</td>\n",
650
- " <td>9978</td>\n",
651
- " <td>Pave</td>\n",
652
- " <td>NaN</td>\n",
653
- " <td>IR1</td>\n",
654
- " <td>Lvl</td>\n",
655
- " <td>AllPub</td>\n",
656
- " <td>Inside</td>\n",
657
- " <td>...</td>\n",
658
- " <td>0</td>\n",
659
- " <td>0</td>\n",
660
- " <td>NaN</td>\n",
661
- " <td>NaN</td>\n",
662
- " <td>NaN</td>\n",
663
- " <td>0</td>\n",
664
- " <td>6</td>\n",
665
- " <td>2010</td>\n",
666
- " <td>WD</td>\n",
667
- " <td>Normal</td>\n",
668
- " </tr>\n",
669
- " <tr>\n",
670
- " <th>1465</th>\n",
671
- " <td>120</td>\n",
672
- " <td>RL</td>\n",
673
- " <td>43.0</td>\n",
674
- " <td>5005</td>\n",
675
- " <td>Pave</td>\n",
676
- " <td>NaN</td>\n",
677
- " <td>IR1</td>\n",
678
- " <td>HLS</td>\n",
679
- " <td>AllPub</td>\n",
680
- " <td>Inside</td>\n",
681
- " <td>...</td>\n",
682
- " <td>144</td>\n",
683
- " <td>0</td>\n",
684
- " <td>NaN</td>\n",
685
- " <td>NaN</td>\n",
686
- " <td>NaN</td>\n",
687
- " <td>0</td>\n",
688
- " <td>1</td>\n",
689
- " <td>2010</td>\n",
690
- " <td>WD</td>\n",
691
- " <td>Normal</td>\n",
692
- " </tr>\n",
693
- " <tr>\n",
694
- " <th>...</th>\n",
695
- " <td>...</td>\n",
696
- " <td>...</td>\n",
697
- " <td>...</td>\n",
698
- " <td>...</td>\n",
699
- " <td>...</td>\n",
700
- " <td>...</td>\n",
701
- " <td>...</td>\n",
702
- " <td>...</td>\n",
703
- " <td>...</td>\n",
704
- " <td>...</td>\n",
705
- " <td>...</td>\n",
706
- " <td>...</td>\n",
707
- " <td>...</td>\n",
708
- " <td>...</td>\n",
709
- " <td>...</td>\n",
710
- " <td>...</td>\n",
711
- " <td>...</td>\n",
712
- " <td>...</td>\n",
713
- " <td>...</td>\n",
714
- " <td>...</td>\n",
715
- " <td>...</td>\n",
716
- " </tr>\n",
717
- " <tr>\n",
718
- " <th>2915</th>\n",
719
- " <td>160</td>\n",
720
- " <td>RM</td>\n",
721
- " <td>21.0</td>\n",
722
- " <td>1936</td>\n",
723
- " <td>Pave</td>\n",
724
- " <td>NaN</td>\n",
725
- " <td>Reg</td>\n",
726
- " <td>Lvl</td>\n",
727
- " <td>AllPub</td>\n",
728
- " <td>Inside</td>\n",
729
- " <td>...</td>\n",
730
- " <td>0</td>\n",
731
- " <td>0</td>\n",
732
- " <td>NaN</td>\n",
733
- " <td>NaN</td>\n",
734
- " <td>NaN</td>\n",
735
- " <td>0</td>\n",
736
- " <td>6</td>\n",
737
- " <td>2006</td>\n",
738
- " <td>WD</td>\n",
739
- " <td>Normal</td>\n",
740
- " </tr>\n",
741
- " <tr>\n",
742
- " <th>2916</th>\n",
743
- " <td>160</td>\n",
744
- " <td>RM</td>\n",
745
- " <td>21.0</td>\n",
746
- " <td>1894</td>\n",
747
- " <td>Pave</td>\n",
748
- " <td>NaN</td>\n",
749
- " <td>Reg</td>\n",
750
- " <td>Lvl</td>\n",
751
- " <td>AllPub</td>\n",
752
- " <td>Inside</td>\n",
753
- " <td>...</td>\n",
754
- " <td>0</td>\n",
755
- " <td>0</td>\n",
756
- " <td>NaN</td>\n",
757
- " <td>NaN</td>\n",
758
- " <td>NaN</td>\n",
759
- " <td>0</td>\n",
760
- " <td>4</td>\n",
761
- " <td>2006</td>\n",
762
- " <td>WD</td>\n",
763
- " <td>Abnorml</td>\n",
764
- " </tr>\n",
765
- " <tr>\n",
766
- " <th>2917</th>\n",
767
- " <td>20</td>\n",
768
- " <td>RL</td>\n",
769
- " <td>160.0</td>\n",
770
- " <td>20000</td>\n",
771
- " <td>Pave</td>\n",
772
- " <td>NaN</td>\n",
773
- " <td>Reg</td>\n",
774
- " <td>Lvl</td>\n",
775
- " <td>AllPub</td>\n",
776
- " <td>Inside</td>\n",
777
- " <td>...</td>\n",
778
- " <td>0</td>\n",
779
- " <td>0</td>\n",
780
- " <td>NaN</td>\n",
781
- " <td>NaN</td>\n",
782
- " <td>NaN</td>\n",
783
- " <td>0</td>\n",
784
- " <td>9</td>\n",
785
- " <td>2006</td>\n",
786
- " <td>WD</td>\n",
787
- " <td>Abnorml</td>\n",
788
- " </tr>\n",
789
- " <tr>\n",
790
- " <th>2918</th>\n",
791
- " <td>85</td>\n",
792
- " <td>RL</td>\n",
793
- " <td>62.0</td>\n",
794
- " <td>10441</td>\n",
795
- " <td>Pave</td>\n",
796
- " <td>NaN</td>\n",
797
- " <td>Reg</td>\n",
798
- " <td>Lvl</td>\n",
799
- " <td>AllPub</td>\n",
800
- " <td>Inside</td>\n",
801
- " <td>...</td>\n",
802
- " <td>0</td>\n",
803
- " <td>0</td>\n",
804
- " <td>NaN</td>\n",
805
- " <td>MnPrv</td>\n",
806
- " <td>Shed</td>\n",
807
- " <td>700</td>\n",
808
- " <td>7</td>\n",
809
- " <td>2006</td>\n",
810
- " <td>WD</td>\n",
811
- " <td>Normal</td>\n",
812
- " </tr>\n",
813
- " <tr>\n",
814
- " <th>2919</th>\n",
815
- " <td>60</td>\n",
816
- " <td>RL</td>\n",
817
- " <td>74.0</td>\n",
818
- " <td>9627</td>\n",
819
- " <td>Pave</td>\n",
820
- " <td>NaN</td>\n",
821
- " <td>Reg</td>\n",
822
- " <td>Lvl</td>\n",
823
- " <td>AllPub</td>\n",
824
- " <td>Inside</td>\n",
825
- " <td>...</td>\n",
826
- " <td>0</td>\n",
827
- " <td>0</td>\n",
828
- " <td>NaN</td>\n",
829
- " <td>NaN</td>\n",
830
- " <td>NaN</td>\n",
831
- " <td>0</td>\n",
832
- " <td>11</td>\n",
833
- " <td>2006</td>\n",
834
- " <td>WD</td>\n",
835
- " <td>Normal</td>\n",
836
- " </tr>\n",
837
- " </tbody>\n",
838
- "</table>\n",
839
- "<p>1459 rows × 79 columns</p>\n",
840
- "</div>"
841
- ],
842
- "text/plain": [
843
- " MSSubClass MSZoning LotFrontage LotArea Street Alley LotShape \\\n",
844
- "Id \n",
845
- "1461 20 RH 80.0 11622 Pave NaN Reg \n",
846
- "1462 20 RL 81.0 14267 Pave NaN IR1 \n",
847
- "1463 60 RL 74.0 13830 Pave NaN IR1 \n",
848
- "1464 60 RL 78.0 9978 Pave NaN IR1 \n",
849
- "1465 120 RL 43.0 5005 Pave NaN IR1 \n",
850
- "... ... ... ... ... ... ... ... \n",
851
- "2915 160 RM 21.0 1936 Pave NaN Reg \n",
852
- "2916 160 RM 21.0 1894 Pave NaN Reg \n",
853
- "2917 20 RL 160.0 20000 Pave NaN Reg \n",
854
- "2918 85 RL 62.0 10441 Pave NaN Reg \n",
855
- "2919 60 RL 74.0 9627 Pave NaN Reg \n",
856
- "\n",
857
- " LandContour Utilities LotConfig ... ScreenPorch PoolArea PoolQC Fence \\\n",
858
- "Id ... \n",
859
- "1461 Lvl AllPub Inside ... 120 0 NaN MnPrv \n",
860
- "1462 Lvl AllPub Corner ... 0 0 NaN NaN \n",
861
- "1463 Lvl AllPub Inside ... 0 0 NaN MnPrv \n",
862
- "1464 Lvl AllPub Inside ... 0 0 NaN NaN \n",
863
- "1465 HLS AllPub Inside ... 144 0 NaN NaN \n",
864
- "... ... ... ... ... ... ... ... ... \n",
865
- "2915 Lvl AllPub Inside ... 0 0 NaN NaN \n",
866
- "2916 Lvl AllPub Inside ... 0 0 NaN NaN \n",
867
- "2917 Lvl AllPub Inside ... 0 0 NaN NaN \n",
868
- "2918 Lvl AllPub Inside ... 0 0 NaN MnPrv \n",
869
- "2919 Lvl AllPub Inside ... 0 0 NaN NaN \n",
870
- "\n",
871
- " MiscFeature MiscVal MoSold YrSold SaleType SaleCondition \n",
872
- "Id \n",
873
- "1461 NaN 0 6 2010 WD Normal \n",
874
- "1462 Gar2 12500 6 2010 WD Normal \n",
875
- "1463 NaN 0 3 2010 WD Normal \n",
876
- "1464 NaN 0 6 2010 WD Normal \n",
877
- "1465 NaN 0 1 2010 WD Normal \n",
878
- "... ... ... ... ... ... ... \n",
879
- "2915 NaN 0 6 2006 WD Normal \n",
880
- "2916 NaN 0 4 2006 WD Abnorml \n",
881
- "2917 NaN 0 9 2006 WD Abnorml \n",
882
- "2918 Shed 700 7 2006 WD Normal \n",
883
- "2919 NaN 0 11 2006 WD Normal \n",
884
- "\n",
885
- "[1459 rows x 79 columns]"
886
- ]
887
- },
888
- "execution_count": 4,
889
- "metadata": {},
890
- "output_type": "execute_result"
891
- }
892
- ],
893
  "source": [
894
  "test_df"
895
  ]
@@ -1452,7 +674,7 @@
1452
  },
1453
  {
1454
  "cell_type": "code",
1455
- "execution_count": 5,
1456
  "metadata": {
1457
  "execution": {
1458
  "iopub.execute_input": "2023-06-25T13:22:51.312853Z",
@@ -1489,7 +711,7 @@
1489
  },
1490
  {
1491
  "cell_type": "code",
1492
- "execution_count": 6,
1493
  "metadata": {
1494
  "execution": {
1495
  "iopub.execute_input": "2023-06-25T13:22:52.925171Z",
@@ -1507,7 +729,7 @@
1507
  "traceback": [
1508
  "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
1509
  "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
1510
- "\u001b[0;32m<ipython-input-6-050313322d03>\u001b[0m in \u001b[0;36m<cell line: 3>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# removes squared and higher-order terms for reproducing and fixing purposes\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mpoly\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mPolynomialFeatures\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdegree\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minteraction_only\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# PolynomialFeatures(degree=3)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mpoly_X\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpoly\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit_transform\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpoly_X\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
1511
  "\u001b[0;31mNameError\u001b[0m: name 'X' is not defined"
1512
  ]
1513
  }
 
67
  },
68
  {
69
  "cell_type": "code",
70
+ "execution_count": null,
71
  "metadata": {
72
  "execution": {
73
  "iopub.execute_input": "2023-06-25T13:23:09.551735Z",
 
77
  "shell.execute_reply.started": "2023-06-25T13:23:09.551700Z"
78
  }
79
  },
80
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81
  "source": [
82
  "train_df"
83
  ]
 
101
  },
102
  {
103
  "cell_type": "code",
104
+ "execution_count": null,
105
  "metadata": {
106
  "execution": {
107
  "iopub.execute_input": "2023-06-25T13:23:10.620763Z",
 
111
  "shell.execute_reply.started": "2023-06-25T13:23:10.620726Z"
112
  }
113
  },
114
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
115
  "source": [
116
  "test_df"
117
  ]
 
674
  },
675
  {
676
  "cell_type": "code",
677
+ "execution_count": 3,
678
  "metadata": {
679
  "execution": {
680
  "iopub.execute_input": "2023-06-25T13:22:51.312853Z",
 
711
  },
712
  {
713
  "cell_type": "code",
714
+ "execution_count": 4,
715
  "metadata": {
716
  "execution": {
717
  "iopub.execute_input": "2023-06-25T13:22:52.925171Z",
 
729
  "traceback": [
730
  "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
731
  "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
732
+ "\u001b[0;32m<ipython-input-4-050313322d03>\u001b[0m in \u001b[0;36m<cell line: 3>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# removes squared and higher-order terms for reproducing and fixing purposes\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0mpoly\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mPolynomialFeatures\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdegree\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minteraction_only\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# PolynomialFeatures(degree=3)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mpoly_X\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpoly\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit_transform\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mX\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mpoly_X\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
733
  "\u001b[0;31mNameError\u001b[0m: name 'X' is not defined"
734
  ]
735
  }
benchmark/NBspecific_18/NBspecific_18_fixed.ipynb CHANGED
@@ -212,7 +212,7 @@
212
  },
213
  {
214
  "cell_type": "code",
215
- "execution_count": 3,
216
  "metadata": {
217
  "execution": {
218
  "iopub.execute_input": "2023-10-25T11:24:34.724205Z",
@@ -222,38 +222,14 @@
222
  "shell.execute_reply.started": "2023-10-25T11:24:34.724137Z"
223
  }
224
  },
225
- "outputs": [
226
- {
227
- "data": {
228
- "text/plain": [
229
- "Name 0\n",
230
- "Location 0\n",
231
- "Year 0\n",
232
- "Kilometers_Driven 0\n",
233
- "Fuel_Type 0\n",
234
- "Transmission 0\n",
235
- "Owner_Type 0\n",
236
- "Mileage 2\n",
237
- "Engine 36\n",
238
- "Power 36\n",
239
- "Seats 38\n",
240
- "New_Price 5032\n",
241
- "Price 0\n",
242
- "dtype: int64"
243
- ]
244
- },
245
- "execution_count": 3,
246
- "metadata": {},
247
- "output_type": "execute_result"
248
- }
249
- ],
250
  "source": [
251
  "df.isna().sum()"
252
  ]
253
  },
254
  {
255
  "cell_type": "code",
256
- "execution_count": 4,
257
  "metadata": {
258
  "execution": {
259
  "iopub.execute_input": "2023-10-25T11:24:34.747718Z",
@@ -270,7 +246,7 @@
270
  },
271
  {
272
  "cell_type": "code",
273
- "execution_count": 5,
274
  "metadata": {
275
  "execution": {
276
  "iopub.execute_input": "2023-10-25T11:24:34.759838Z",
@@ -419,7 +395,7 @@
419
  "6 3.50 "
420
  ]
421
  },
422
- "execution_count": 5,
423
  "metadata": {},
424
  "output_type": "execute_result"
425
  }
@@ -431,7 +407,7 @@
431
  },
432
  {
433
  "cell_type": "code",
434
- "execution_count": 6,
435
  "metadata": {
436
  "execution": {
437
  "iopub.execute_input": "2023-10-25T11:24:34.797282Z",
@@ -449,7 +425,7 @@
449
  },
450
  {
451
  "cell_type": "code",
452
- "execution_count": 7,
453
  "metadata": {
454
  "execution": {
455
  "iopub.execute_input": "2023-10-25T11:24:34.811483Z",
@@ -459,157 +435,14 @@
459
  "shell.execute_reply.started": "2023-10-25T11:24:34.811433Z"
460
  }
461
  },
462
- "outputs": [
463
- {
464
- "data": {
465
- "text/html": [
466
- "<div>\n",
467
- "<style scoped>\n",
468
- " .dataframe tbody tr th:only-of-type {\n",
469
- " vertical-align: middle;\n",
470
- " }\n",
471
- "\n",
472
- " .dataframe tbody tr th {\n",
473
- " vertical-align: top;\n",
474
- " }\n",
475
- "\n",
476
- " .dataframe thead th {\n",
477
- " text-align: right;\n",
478
- " }\n",
479
- "</style>\n",
480
- "<table border=\"1\" class=\"dataframe\">\n",
481
- " <thead>\n",
482
- " <tr style=\"text-align: right;\">\n",
483
- " <th></th>\n",
484
- " <th>Name</th>\n",
485
- " <th>Location</th>\n",
486
- " <th>Year</th>\n",
487
- " <th>Kilometers_Driven</th>\n",
488
- " <th>Fuel_Type</th>\n",
489
- " <th>Transmission</th>\n",
490
- " <th>Owner_Type</th>\n",
491
- " <th>Mileage</th>\n",
492
- " <th>Engine</th>\n",
493
- " <th>Power</th>\n",
494
- " <th>Seats</th>\n",
495
- " <th>Price</th>\n",
496
- " </tr>\n",
497
- " </thead>\n",
498
- " <tbody>\n",
499
- " <tr>\n",
500
- " <th>1</th>\n",
501
- " <td>Hyundai Creta 1.6 CRDi SX Option</td>\n",
502
- " <td>Pune</td>\n",
503
- " <td>2015</td>\n",
504
- " <td>41000</td>\n",
505
- " <td>Diesel</td>\n",
506
- " <td>Manual</td>\n",
507
- " <td>First</td>\n",
508
- " <td>19.67 kmpl</td>\n",
509
- " <td>1582.0</td>\n",
510
- " <td>126.2 bhp</td>\n",
511
- " <td>5.0</td>\n",
512
- " <td>12.50</td>\n",
513
- " </tr>\n",
514
- " <tr>\n",
515
- " <th>2</th>\n",
516
- " <td>Honda Jazz V</td>\n",
517
- " <td>Chennai</td>\n",
518
- " <td>2011</td>\n",
519
- " <td>46000</td>\n",
520
- " <td>Petrol</td>\n",
521
- " <td>Manual</td>\n",
522
- " <td>First</td>\n",
523
- " <td>13 km/kg</td>\n",
524
- " <td>1199.0</td>\n",
525
- " <td>88.7 bhp</td>\n",
526
- " <td>5.0</td>\n",
527
- " <td>4.50</td>\n",
528
- " </tr>\n",
529
- " <tr>\n",
530
- " <th>3</th>\n",
531
- " <td>Maruti Ertiga VDI</td>\n",
532
- " <td>Chennai</td>\n",
533
- " <td>2012</td>\n",
534
- " <td>87000</td>\n",
535
- " <td>Diesel</td>\n",
536
- " <td>Manual</td>\n",
537
- " <td>First</td>\n",
538
- " <td>20.77 kmpl</td>\n",
539
- " <td>1248.0</td>\n",
540
- " <td>88.76 bhp</td>\n",
541
- " <td>7.0</td>\n",
542
- " <td>6.00</td>\n",
543
- " </tr>\n",
544
- " <tr>\n",
545
- " <th>4</th>\n",
546
- " <td>Audi A4 New 2.0 TDI Multitronic</td>\n",
547
- " <td>Coimbatore</td>\n",
548
- " <td>2013</td>\n",
549
- " <td>40670</td>\n",
550
- " <td>Diesel</td>\n",
551
- " <td>Automatic</td>\n",
552
- " <td>Second</td>\n",
553
- " <td>15.2 kmpl</td>\n",
554
- " <td>1968.0</td>\n",
555
- " <td>140.8 bhp</td>\n",
556
- " <td>5.0</td>\n",
557
- " <td>17.74</td>\n",
558
- " </tr>\n",
559
- " <tr>\n",
560
- " <th>6</th>\n",
561
- " <td>Nissan Micra Diesel XV</td>\n",
562
- " <td>Jaipur</td>\n",
563
- " <td>2013</td>\n",
564
- " <td>86999</td>\n",
565
- " <td>Diesel</td>\n",
566
- " <td>Manual</td>\n",
567
- " <td>First</td>\n",
568
- " <td>23.08 kmpl</td>\n",
569
- " <td>1461.0</td>\n",
570
- " <td>63.1 bhp</td>\n",
571
- " <td>5.0</td>\n",
572
- " <td>3.50</td>\n",
573
- " </tr>\n",
574
- " </tbody>\n",
575
- "</table>\n",
576
- "</div>"
577
- ],
578
- "text/plain": [
579
- " Name Location Year Kilometers_Driven \\\n",
580
- "1 Hyundai Creta 1.6 CRDi SX Option Pune 2015 41000 \n",
581
- "2 Honda Jazz V Chennai 2011 46000 \n",
582
- "3 Maruti Ertiga VDI Chennai 2012 87000 \n",
583
- "4 Audi A4 New 2.0 TDI Multitronic Coimbatore 2013 40670 \n",
584
- "6 Nissan Micra Diesel XV Jaipur 2013 86999 \n",
585
- "\n",
586
- " Fuel_Type Transmission Owner_Type Mileage Engine Power Seats \\\n",
587
- "1 Diesel Manual First 19.67 kmpl 1582.0 126.2 bhp 5.0 \n",
588
- "2 Petrol Manual First 13 km/kg 1199.0 88.7 bhp 5.0 \n",
589
- "3 Diesel Manual First 20.77 kmpl 1248.0 88.76 bhp 7.0 \n",
590
- "4 Diesel Automatic Second 15.2 kmpl 1968.0 140.8 bhp 5.0 \n",
591
- "6 Diesel Manual First 23.08 kmpl 1461.0 63.1 bhp 5.0 \n",
592
- "\n",
593
- " Price \n",
594
- "1 12.50 \n",
595
- "2 4.50 \n",
596
- "3 6.00 \n",
597
- "4 17.74 \n",
598
- "6 3.50 "
599
- ]
600
- },
601
- "execution_count": 7,
602
- "metadata": {},
603
- "output_type": "execute_result"
604
- }
605
- ],
606
  "source": [
607
  "df.head()"
608
  ]
609
  },
610
  {
611
  "cell_type": "code",
612
- "execution_count": 8,
613
  "metadata": {
614
  "execution": {
615
  "iopub.execute_input": "2023-10-25T11:24:34.845806Z",
@@ -751,7 +584,7 @@
751
  "6 Diesel Manual First 23.08 1461.0 63.1 bhp 5.0 3.50 "
752
  ]
753
  },
754
- "execution_count": 8,
755
  "metadata": {},
756
  "output_type": "execute_result"
757
  }
@@ -772,7 +605,7 @@
772
  },
773
  {
774
  "cell_type": "code",
775
- "execution_count": 9,
776
  "metadata": {
777
  "execution": {
778
  "iopub.execute_input": "2023-10-25T11:24:34.884529Z",
@@ -782,30 +615,14 @@
782
  "shell.execute_reply.started": "2023-10-25T11:24:34.884478Z"
783
  }
784
  },
785
- "outputs": [
786
- {
787
- "data": {
788
- "text/plain": [
789
- "Owner_Type\n",
790
- "First 4786\n",
791
- "Second 913\n",
792
- "Third 101\n",
793
- "Fourth & Above 7\n",
794
- "Name: count, dtype: int64"
795
- ]
796
- },
797
- "execution_count": 9,
798
- "metadata": {},
799
- "output_type": "execute_result"
800
- }
801
- ],
802
  "source": [
803
  "df.Owner_Type.value_counts()"
804
  ]
805
  },
806
  {
807
  "cell_type": "code",
808
- "execution_count": 10,
809
  "metadata": {
810
  "execution": {
811
  "iopub.execute_input": "2023-10-25T11:24:34.901170Z",
@@ -960,7 +777,7 @@
960
  "6 1.0 "
961
  ]
962
  },
963
- "execution_count": 10,
964
  "metadata": {},
965
  "output_type": "execute_result"
966
  }
@@ -976,7 +793,7 @@
976
  },
977
  {
978
  "cell_type": "code",
979
- "execution_count": 11,
980
  "metadata": {
981
  "execution": {
982
  "iopub.execute_input": "2023-10-25T11:24:34.933045Z",
@@ -1125,7 +942,7 @@
1125
  "6 1.0 "
1126
  ]
1127
  },
1128
- "execution_count": 11,
1129
  "metadata": {},
1130
  "output_type": "execute_result"
1131
  }
@@ -1137,7 +954,7 @@
1137
  },
1138
  {
1139
  "cell_type": "code",
1140
- "execution_count": 12,
1141
  "metadata": {
1142
  "execution": {
1143
  "iopub.execute_input": "2023-10-25T11:24:34.960194Z",
@@ -1155,7 +972,7 @@
1155
  },
1156
  {
1157
  "cell_type": "code",
1158
- "execution_count": 13,
1159
  "metadata": {
1160
  "execution": {
1161
  "iopub.execute_input": "2023-10-25T11:24:34.974289Z",
@@ -1165,6 +982,40 @@
1165
  "shell.execute_reply.started": "2023-10-25T11:24:34.974246Z"
1166
  }
1167
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1168
  "outputs": [
1169
  {
1170
  "data": {
@@ -1191,14 +1042,16 @@
1191
  " <th>Location</th>\n",
1192
  " <th>Year</th>\n",
1193
  " <th>Kilometers_Driven</th>\n",
1194
- " <th>Fuel_Type</th>\n",
1195
- " <th>Transmission</th>\n",
1196
  " <th>Mileage</th>\n",
1197
  " <th>Engine</th>\n",
1198
  " <th>Power</th>\n",
1199
  " <th>Seats</th>\n",
1200
  " <th>Price</th>\n",
1201
  " <th>No_of_owners</th>\n",
 
 
 
 
1202
  " </tr>\n",
1203
  " </thead>\n",
1204
  " <tbody>\n",
@@ -1208,14 +1061,16 @@
1208
  " <td>Pune</td>\n",
1209
  " <td>2015</td>\n",
1210
  " <td>41000</td>\n",
1211
- " <td>Diesel</td>\n",
1212
- " <td>Manual</td>\n",
1213
  " <td>19.67</td>\n",
1214
  " <td>1582.0</td>\n",
1215
  " <td>126.20</td>\n",
1216
  " <td>5.0</td>\n",
1217
  " <td>12.50</td>\n",
1218
  " <td>1.0</td>\n",
 
 
 
 
1219
  " </tr>\n",
1220
  " <tr>\n",
1221
  " <th>2</th>\n",
@@ -1223,14 +1078,16 @@
1223
  " <td>Chennai</td>\n",
1224
  " <td>2011</td>\n",
1225
  " <td>46000</td>\n",
1226
- " <td>Petrol</td>\n",
1227
- " <td>Manual</td>\n",
1228
  " <td>18.20</td>\n",
1229
  " <td>1199.0</td>\n",
1230
  " <td>88.70</td>\n",
1231
  " <td>5.0</td>\n",
1232
  " <td>4.50</td>\n",
1233
  " <td>1.0</td>\n",
 
 
 
 
1234
  " </tr>\n",
1235
  " <tr>\n",
1236
  " <th>3</th>\n",
@@ -1238,14 +1095,16 @@
1238
  " <td>Chennai</td>\n",
1239
  " <td>2012</td>\n",
1240
  " <td>87000</td>\n",
1241
- " <td>Diesel</td>\n",
1242
- " <td>Manual</td>\n",
1243
  " <td>20.77</td>\n",
1244
  " <td>1248.0</td>\n",
1245
  " <td>88.76</td>\n",
1246
  " <td>7.0</td>\n",
1247
  " <td>6.00</td>\n",
1248
  " <td>1.0</td>\n",
 
 
 
 
1249
  " </tr>\n",
1250
  " <tr>\n",
1251
  " <th>4</th>\n",
@@ -1253,208 +1112,16 @@
1253
  " <td>Coimbatore</td>\n",
1254
  " <td>2013</td>\n",
1255
  " <td>40670</td>\n",
1256
- " <td>Diesel</td>\n",
1257
- " <td>Automatic</td>\n",
1258
  " <td>15.20</td>\n",
1259
  " <td>1968.0</td>\n",
1260
  " <td>140.80</td>\n",
1261
  " <td>5.0</td>\n",
1262
  " <td>17.74</td>\n",
1263
  " <td>2.0</td>\n",
1264
- " </tr>\n",
1265
- " <tr>\n",
1266
- " <th>6</th>\n",
1267
- " <td>Nissan Micra Diesel XV</td>\n",
1268
- " <td>Jaipur</td>\n",
1269
- " <td>2013</td>\n",
1270
- " <td>86999</td>\n",
1271
- " <td>Diesel</td>\n",
1272
- " <td>Manual</td>\n",
1273
- " <td>23.08</td>\n",
1274
- " <td>1461.0</td>\n",
1275
- " <td>63.10</td>\n",
1276
- " <td>5.0</td>\n",
1277
- " <td>3.50</td>\n",
1278
- " <td>1.0</td>\n",
1279
- " </tr>\n",
1280
- " </tbody>\n",
1281
- "</table>\n",
1282
- "</div>"
1283
- ],
1284
- "text/plain": [
1285
- " Name Location Year Kilometers_Driven \\\n",
1286
- "1 Hyundai Creta 1.6 CRDi SX Option Pune 2015 41000 \n",
1287
- "2 Honda Jazz V Chennai 2011 46000 \n",
1288
- "3 Maruti Ertiga VDI Chennai 2012 87000 \n",
1289
- "4 Audi A4 New 2.0 TDI Multitronic Coimbatore 2013 40670 \n",
1290
- "6 Nissan Micra Diesel XV Jaipur 2013 86999 \n",
1291
- "\n",
1292
- " Fuel_Type Transmission Mileage Engine Power Seats Price No_of_owners \n",
1293
- "1 Diesel Manual 19.67 1582.0 126.20 5.0 12.50 1.0 \n",
1294
- "2 Petrol Manual 18.20 1199.0 88.70 5.0 4.50 1.0 \n",
1295
- "3 Diesel Manual 20.77 1248.0 88.76 7.0 6.00 1.0 \n",
1296
- "4 Diesel Automatic 15.20 1968.0 140.80 5.0 17.74 2.0 \n",
1297
- "6 Diesel Manual 23.08 1461.0 63.10 5.0 3.50 1.0 "
1298
- ]
1299
- },
1300
- "execution_count": 13,
1301
- "metadata": {},
1302
- "output_type": "execute_result"
1303
- }
1304
- ],
1305
- "source": [
1306
- "df.head()"
1307
- ]
1308
- },
1309
- {
1310
- "cell_type": "code",
1311
- "execution_count": 14,
1312
- "metadata": {
1313
- "execution": {
1314
- "iopub.execute_input": "2023-10-25T11:24:34.997968Z",
1315
- "iopub.status.busy": "2023-10-25T11:24:34.997587Z",
1316
- "iopub.status.idle": "2023-10-25T11:24:35.008472Z",
1317
- "shell.execute_reply": "2023-10-25T11:24:35.006926Z",
1318
- "shell.execute_reply.started": "2023-10-25T11:24:34.997937Z"
1319
- }
1320
- },
1321
- "outputs": [
1322
- {
1323
- "data": {
1324
- "text/plain": [
1325
- "Transmission\n",
1326
- "Manual 4105\n",
1327
- "Automatic 1702\n",
1328
- "Name: count, dtype: int64"
1329
- ]
1330
- },
1331
- "execution_count": 14,
1332
- "metadata": {},
1333
- "output_type": "execute_result"
1334
- }
1335
- ],
1336
- "source": [
1337
- "df.Transmission.value_counts()"
1338
- ]
1339
- },
1340
- {
1341
- "cell_type": "code",
1342
- "execution_count": 15,
1343
- "metadata": {
1344
- "execution": {
1345
- "iopub.execute_input": "2023-10-25T11:24:35.010363Z",
1346
- "iopub.status.busy": "2023-10-25T11:24:35.009965Z",
1347
- "iopub.status.idle": "2023-10-25T11:24:35.050378Z",
1348
- "shell.execute_reply": "2023-10-25T11:24:35.048962Z",
1349
- "shell.execute_reply.started": "2023-10-25T11:24:35.010325Z"
1350
- }
1351
- },
1352
- "outputs": [
1353
- {
1354
- "data": {
1355
- "text/html": [
1356
- "<div>\n",
1357
- "<style scoped>\n",
1358
- " .dataframe tbody tr th:only-of-type {\n",
1359
- " vertical-align: middle;\n",
1360
- " }\n",
1361
- "\n",
1362
- " .dataframe tbody tr th {\n",
1363
- " vertical-align: top;\n",
1364
- " }\n",
1365
- "\n",
1366
- " .dataframe thead th {\n",
1367
- " text-align: right;\n",
1368
- " }\n",
1369
- "</style>\n",
1370
- "<table border=\"1\" class=\"dataframe\">\n",
1371
- " <thead>\n",
1372
- " <tr style=\"text-align: right;\">\n",
1373
- " <th></th>\n",
1374
- " <th>Name</th>\n",
1375
- " <th>Location</th>\n",
1376
- " <th>Year</th>\n",
1377
- " <th>Kilometers_Driven</th>\n",
1378
- " <th>Mileage</th>\n",
1379
- " <th>Engine</th>\n",
1380
- " <th>Power</th>\n",
1381
- " <th>Seats</th>\n",
1382
- " <th>Price</th>\n",
1383
- " <th>No_of_owners</th>\n",
1384
- " <th>Transmission_Automatic</th>\n",
1385
- " <th>Transmission_Manual</th>\n",
1386
- " <th>Fuel_Type_Diesel</th>\n",
1387
- " <th>Fuel_Type_Petrol</th>\n",
1388
- " </tr>\n",
1389
- " </thead>\n",
1390
- " <tbody>\n",
1391
- " <tr>\n",
1392
- " <th>1</th>\n",
1393
- " <td>Hyundai Creta 1.6 CRDi SX Option</td>\n",
1394
- " <td>Pune</td>\n",
1395
- " <td>2015</td>\n",
1396
- " <td>41000</td>\n",
1397
- " <td>19.67</td>\n",
1398
- " <td>1582.0</td>\n",
1399
- " <td>126.20</td>\n",
1400
- " <td>5.0</td>\n",
1401
- " <td>12.50</td>\n",
1402
- " <td>1.0</td>\n",
1403
- " <td>False</td>\n",
1404
- " <td>True</td>\n",
1405
- " <td>True</td>\n",
1406
- " <td>False</td>\n",
1407
- " </tr>\n",
1408
- " <tr>\n",
1409
- " <th>2</th>\n",
1410
- " <td>Honda Jazz V</td>\n",
1411
- " <td>Chennai</td>\n",
1412
- " <td>2011</td>\n",
1413
- " <td>46000</td>\n",
1414
- " <td>18.20</td>\n",
1415
- " <td>1199.0</td>\n",
1416
- " <td>88.70</td>\n",
1417
- " <td>5.0</td>\n",
1418
- " <td>4.50</td>\n",
1419
- " <td>1.0</td>\n",
1420
- " <td>False</td>\n",
1421
- " <td>True</td>\n",
1422
- " <td>False</td>\n",
1423
- " <td>True</td>\n",
1424
- " </tr>\n",
1425
- " <tr>\n",
1426
- " <th>3</th>\n",
1427
- " <td>Maruti Ertiga VDI</td>\n",
1428
- " <td>Chennai</td>\n",
1429
- " <td>2012</td>\n",
1430
- " <td>87000</td>\n",
1431
- " <td>20.77</td>\n",
1432
- " <td>1248.0</td>\n",
1433
- " <td>88.76</td>\n",
1434
- " <td>7.0</td>\n",
1435
- " <td>6.00</td>\n",
1436
- " <td>1.0</td>\n",
1437
- " <td>False</td>\n",
1438
- " <td>True</td>\n",
1439
- " <td>True</td>\n",
1440
- " <td>False</td>\n",
1441
- " </tr>\n",
1442
- " <tr>\n",
1443
- " <th>4</th>\n",
1444
- " <td>Audi A4 New 2.0 TDI Multitronic</td>\n",
1445
- " <td>Coimbatore</td>\n",
1446
- " <td>2013</td>\n",
1447
- " <td>40670</td>\n",
1448
- " <td>15.20</td>\n",
1449
- " <td>1968.0</td>\n",
1450
- " <td>140.80</td>\n",
1451
- " <td>5.0</td>\n",
1452
- " <td>17.74</td>\n",
1453
- " <td>2.0</td>\n",
1454
- " <td>True</td>\n",
1455
- " <td>False</td>\n",
1456
- " <td>True</td>\n",
1457
- " <td>False</td>\n",
1458
  " </tr>\n",
1459
  " <tr>\n",
1460
  " <th>6</th>\n",
@@ -1507,7 +1174,7 @@
1507
  "6 False "
1508
  ]
1509
  },
1510
- "execution_count": 15,
1511
  "metadata": {},
1512
  "output_type": "execute_result"
1513
  }
@@ -1519,7 +1186,7 @@
1519
  },
1520
  {
1521
  "cell_type": "code",
1522
- "execution_count": 16,
1523
  "metadata": {
1524
  "execution": {
1525
  "iopub.execute_input": "2023-10-25T11:24:35.052577Z",
@@ -1680,7 +1347,7 @@
1680
  "6 True True False 10 "
1681
  ]
1682
  },
1683
- "execution_count": 16,
1684
  "metadata": {},
1685
  "output_type": "execute_result"
1686
  }
@@ -1693,7 +1360,7 @@
1693
  },
1694
  {
1695
  "cell_type": "code",
1696
- "execution_count": 17,
1697
  "metadata": {
1698
  "execution": {
1699
  "iopub.execute_input": "2023-10-25T11:24:35.092736Z",
@@ -1703,37 +1370,14 @@
1703
  "shell.execute_reply.started": "2023-10-25T11:24:35.092700Z"
1704
  }
1705
  },
1706
- "outputs": [
1707
- {
1708
- "data": {
1709
- "text/plain": [
1710
- "Name\n",
1711
- "Mahindra XUV500 W8 2WD 49\n",
1712
- "Maruti Swift VDI 45\n",
1713
- "Honda City 1.5 S MT 34\n",
1714
- "Maruti Swift Dzire VDI 34\n",
1715
- "Hyundai i10 Sportz 30\n",
1716
- " ..\n",
1717
- "Skoda Rapid 1.6 MPI AT Ambition 1\n",
1718
- "Hyundai i20 2015-2017 1.4 Magna ABS 1\n",
1719
- "Ford EcoSport 1.5 Petrol Trend 1\n",
1720
- "Volvo XC90 2007-2015 D5 AWD 1\n",
1721
- "Mahindra Xylo D4 BSIV 1\n",
1722
- "Name: count, Length: 1785, dtype: int64"
1723
- ]
1724
- },
1725
- "execution_count": 17,
1726
- "metadata": {},
1727
- "output_type": "execute_result"
1728
- }
1729
- ],
1730
  "source": [
1731
  "df.Name.value_counts()"
1732
  ]
1733
  },
1734
  {
1735
  "cell_type": "code",
1736
- "execution_count": 18,
1737
  "metadata": {
1738
  "execution": {
1739
  "iopub.execute_input": "2023-10-25T11:24:35.109327Z",
@@ -1751,7 +1395,7 @@
1751
  },
1752
  {
1753
  "cell_type": "code",
1754
- "execution_count": 19,
1755
  "metadata": {
1756
  "execution": {
1757
  "iopub.execute_input": "2023-10-25T11:24:35.119797Z",
@@ -1761,163 +1405,14 @@
1761
  "shell.execute_reply.started": "2023-10-25T11:24:35.119754Z"
1762
  }
1763
  },
1764
- "outputs": [
1765
- {
1766
- "data": {
1767
- "text/html": [
1768
- "<div>\n",
1769
- "<style scoped>\n",
1770
- " .dataframe tbody tr th:only-of-type {\n",
1771
- " vertical-align: middle;\n",
1772
- " }\n",
1773
- "\n",
1774
- " .dataframe tbody tr th {\n",
1775
- " vertical-align: top;\n",
1776
- " }\n",
1777
- "\n",
1778
- " .dataframe thead th {\n",
1779
- " text-align: right;\n",
1780
- " }\n",
1781
- "</style>\n",
1782
- "<table border=\"1\" class=\"dataframe\">\n",
1783
- " <thead>\n",
1784
- " <tr style=\"text-align: right;\">\n",
1785
- " <th></th>\n",
1786
- " <th>Location</th>\n",
1787
- " <th>Kilometers_Driven</th>\n",
1788
- " <th>Mileage</th>\n",
1789
- " <th>Engine</th>\n",
1790
- " <th>Power</th>\n",
1791
- " <th>Seats</th>\n",
1792
- " <th>Price</th>\n",
1793
- " <th>No_of_owners</th>\n",
1794
- " <th>Transmission_Automatic</th>\n",
1795
- " <th>Transmission_Manual</th>\n",
1796
- " <th>Fuel_Type_Diesel</th>\n",
1797
- " <th>Fuel_Type_Petrol</th>\n",
1798
- " <th>Age</th>\n",
1799
- " </tr>\n",
1800
- " </thead>\n",
1801
- " <tbody>\n",
1802
- " <tr>\n",
1803
- " <th>1</th>\n",
1804
- " <td>Pune</td>\n",
1805
- " <td>41000</td>\n",
1806
- " <td>19.67</td>\n",
1807
- " <td>1582.0</td>\n",
1808
- " <td>126.20</td>\n",
1809
- " <td>5.0</td>\n",
1810
- " <td>12.50</td>\n",
1811
- " <td>1.0</td>\n",
1812
- " <td>False</td>\n",
1813
- " <td>True</td>\n",
1814
- " <td>True</td>\n",
1815
- " <td>False</td>\n",
1816
- " <td>8</td>\n",
1817
- " </tr>\n",
1818
- " <tr>\n",
1819
- " <th>2</th>\n",
1820
- " <td>Chennai</td>\n",
1821
- " <td>46000</td>\n",
1822
- " <td>18.20</td>\n",
1823
- " <td>1199.0</td>\n",
1824
- " <td>88.70</td>\n",
1825
- " <td>5.0</td>\n",
1826
- " <td>4.50</td>\n",
1827
- " <td>1.0</td>\n",
1828
- " <td>False</td>\n",
1829
- " <td>True</td>\n",
1830
- " <td>False</td>\n",
1831
- " <td>True</td>\n",
1832
- " <td>12</td>\n",
1833
- " </tr>\n",
1834
- " <tr>\n",
1835
- " <th>3</th>\n",
1836
- " <td>Chennai</td>\n",
1837
- " <td>87000</td>\n",
1838
- " <td>20.77</td>\n",
1839
- " <td>1248.0</td>\n",
1840
- " <td>88.76</td>\n",
1841
- " <td>7.0</td>\n",
1842
- " <td>6.00</td>\n",
1843
- " <td>1.0</td>\n",
1844
- " <td>False</td>\n",
1845
- " <td>True</td>\n",
1846
- " <td>True</td>\n",
1847
- " <td>False</td>\n",
1848
- " <td>11</td>\n",
1849
- " </tr>\n",
1850
- " <tr>\n",
1851
- " <th>4</th>\n",
1852
- " <td>Coimbatore</td>\n",
1853
- " <td>40670</td>\n",
1854
- " <td>15.20</td>\n",
1855
- " <td>1968.0</td>\n",
1856
- " <td>140.80</td>\n",
1857
- " <td>5.0</td>\n",
1858
- " <td>17.74</td>\n",
1859
- " <td>2.0</td>\n",
1860
- " <td>True</td>\n",
1861
- " <td>False</td>\n",
1862
- " <td>True</td>\n",
1863
- " <td>False</td>\n",
1864
- " <td>10</td>\n",
1865
- " </tr>\n",
1866
- " <tr>\n",
1867
- " <th>6</th>\n",
1868
- " <td>Jaipur</td>\n",
1869
- " <td>86999</td>\n",
1870
- " <td>23.08</td>\n",
1871
- " <td>1461.0</td>\n",
1872
- " <td>63.10</td>\n",
1873
- " <td>5.0</td>\n",
1874
- " <td>3.50</td>\n",
1875
- " <td>1.0</td>\n",
1876
- " <td>False</td>\n",
1877
- " <td>True</td>\n",
1878
- " <td>True</td>\n",
1879
- " <td>False</td>\n",
1880
- " <td>10</td>\n",
1881
- " </tr>\n",
1882
- " </tbody>\n",
1883
- "</table>\n",
1884
- "</div>"
1885
- ],
1886
- "text/plain": [
1887
- " Location Kilometers_Driven Mileage Engine Power Seats Price \\\n",
1888
- "1 Pune 41000 19.67 1582.0 126.20 5.0 12.50 \n",
1889
- "2 Chennai 46000 18.20 1199.0 88.70 5.0 4.50 \n",
1890
- "3 Chennai 87000 20.77 1248.0 88.76 7.0 6.00 \n",
1891
- "4 Coimbatore 40670 15.20 1968.0 140.80 5.0 17.74 \n",
1892
- "6 Jaipur 86999 23.08 1461.0 63.10 5.0 3.50 \n",
1893
- "\n",
1894
- " No_of_owners Transmission_Automatic Transmission_Manual \\\n",
1895
- "1 1.0 False True \n",
1896
- "2 1.0 False True \n",
1897
- "3 1.0 False True \n",
1898
- "4 2.0 True False \n",
1899
- "6 1.0 False True \n",
1900
- "\n",
1901
- " Fuel_Type_Diesel Fuel_Type_Petrol Age \n",
1902
- "1 True False 8 \n",
1903
- "2 False True 12 \n",
1904
- "3 True False 11 \n",
1905
- "4 True False 10 \n",
1906
- "6 True False 10 "
1907
- ]
1908
- },
1909
- "execution_count": 19,
1910
- "metadata": {},
1911
- "output_type": "execute_result"
1912
- }
1913
- ],
1914
  "source": [
1915
  "df.head()"
1916
  ]
1917
  },
1918
  {
1919
  "cell_type": "code",
1920
- "execution_count": 20,
1921
  "metadata": {
1922
  "execution": {
1923
  "iopub.execute_input": "2023-10-25T11:24:35.156223Z",
@@ -1927,37 +1422,14 @@
1927
  "shell.execute_reply.started": "2023-10-25T11:24:35.156187Z"
1928
  }
1929
  },
1930
- "outputs": [
1931
- {
1932
- "data": {
1933
- "text/plain": [
1934
- "Location\n",
1935
- "Mumbai 757\n",
1936
- "Hyderabad 709\n",
1937
- "Kochi 637\n",
1938
- "Coimbatore 629\n",
1939
- "Pune 581\n",
1940
- "Delhi 535\n",
1941
- "Kolkata 521\n",
1942
- "Chennai 474\n",
1943
- "Jaipur 400\n",
1944
- "Bangalore 347\n",
1945
- "Ahmedabad 217\n",
1946
- "Name: count, dtype: int64"
1947
- ]
1948
- },
1949
- "execution_count": 20,
1950
- "metadata": {},
1951
- "output_type": "execute_result"
1952
- }
1953
- ],
1954
  "source": [
1955
  "df.Location.value_counts()"
1956
  ]
1957
  },
1958
  {
1959
  "cell_type": "code",
1960
- "execution_count": 21,
1961
  "metadata": {
1962
  "execution": {
1963
  "iopub.execute_input": "2023-10-25T11:24:35.169687Z",
@@ -2177,7 +1649,7 @@
2177
  "[5 rows x 23 columns]"
2178
  ]
2179
  },
2180
- "execution_count": 21,
2181
  "metadata": {},
2182
  "output_type": "execute_result"
2183
  }
@@ -2190,7 +1662,7 @@
2190
  },
2191
  {
2192
  "cell_type": "code",
2193
- "execution_count": 22,
2194
  "metadata": {
2195
  "execution": {
2196
  "iopub.execute_input": "2023-10-25T11:24:35.219105Z",
@@ -2208,7 +1680,7 @@
2208
  },
2209
  {
2210
  "cell_type": "code",
2211
- "execution_count": 23,
2212
  "metadata": {
2213
  "execution": {
2214
  "iopub.execute_input": "2023-10-25T11:24:36.364741Z",
@@ -2218,25 +1690,14 @@
2218
  "shell.execute_reply.started": "2023-10-25T11:24:36.364696Z"
2219
  }
2220
  },
2221
- "outputs": [
2222
- {
2223
- "data": {
2224
- "text/plain": [
2225
- "(5807, 23)"
2226
- ]
2227
- },
2228
- "execution_count": 23,
2229
- "metadata": {},
2230
- "output_type": "execute_result"
2231
- }
2232
- ],
2233
  "source": [
2234
  "df.shape"
2235
  ]
2236
  },
2237
  {
2238
  "cell_type": "code",
2239
- "execution_count": 24,
2240
  "metadata": {
2241
  "execution": {
2242
  "iopub.execute_input": "2023-10-25T11:24:36.376612Z",
@@ -2254,7 +1715,7 @@
2254
  },
2255
  {
2256
  "cell_type": "code",
2257
- "execution_count": 25,
2258
  "metadata": {
2259
  "execution": {
2260
  "iopub.execute_input": "2023-10-25T11:24:36.403139Z",
@@ -2272,7 +1733,7 @@
2272
  },
2273
  {
2274
  "cell_type": "code",
2275
- "execution_count": 26,
2276
  "metadata": {
2277
  "execution": {
2278
  "iopub.execute_input": "2023-10-25T11:24:36.423402Z",
@@ -2292,7 +1753,7 @@
2292
  "DecisionTreeRegressor()"
2293
  ]
2294
  },
2295
- "execution_count": 26,
2296
  "metadata": {},
2297
  "output_type": "execute_result"
2298
  }
@@ -2303,26 +1764,26 @@
2303
  },
2304
  {
2305
  "cell_type": "code",
2306
- "execution_count": 27,
2307
  "metadata": {},
2308
  "outputs": [
2309
  {
2310
  "name": "stdout",
2311
  "output_type": "stream",
2312
  "text": [
2313
- "[ 6. 5.1 11.52 ... 4.3 29. 2.6 ]\n"
2314
  ]
2315
  }
2316
  ],
2317
  "source": [
2318
- "# fix --------- changed the format of this cell from NBConvert to Code\n",
2319
  "y_pred = model.predict(X_test)\n",
2320
  "print(y_pred)"
2321
  ]
2322
  },
2323
  {
2324
  "cell_type": "code",
2325
- "execution_count": 28,
2326
  "metadata": {
2327
  "execution": {
2328
  "iopub.execute_input": "2023-10-25T11:24:36.479677Z",
@@ -2336,10 +1797,10 @@
2336
  {
2337
  "data": {
2338
  "text/plain": [
2339
- "1.9310499139414803"
2340
  ]
2341
  },
2342
- "execution_count": 28,
2343
  "metadata": {},
2344
  "output_type": "execute_result"
2345
  }
 
212
  },
213
  {
214
  "cell_type": "code",
215
+ "execution_count": null,
216
  "metadata": {
217
  "execution": {
218
  "iopub.execute_input": "2023-10-25T11:24:34.724205Z",
 
222
  "shell.execute_reply.started": "2023-10-25T11:24:34.724137Z"
223
  }
224
  },
225
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
226
  "source": [
227
  "df.isna().sum()"
228
  ]
229
  },
230
  {
231
  "cell_type": "code",
232
+ "execution_count": 3,
233
  "metadata": {
234
  "execution": {
235
  "iopub.execute_input": "2023-10-25T11:24:34.747718Z",
 
246
  },
247
  {
248
  "cell_type": "code",
249
+ "execution_count": 4,
250
  "metadata": {
251
  "execution": {
252
  "iopub.execute_input": "2023-10-25T11:24:34.759838Z",
 
395
  "6 3.50 "
396
  ]
397
  },
398
+ "execution_count": 4,
399
  "metadata": {},
400
  "output_type": "execute_result"
401
  }
 
407
  },
408
  {
409
  "cell_type": "code",
410
+ "execution_count": 5,
411
  "metadata": {
412
  "execution": {
413
  "iopub.execute_input": "2023-10-25T11:24:34.797282Z",
 
425
  },
426
  {
427
  "cell_type": "code",
428
+ "execution_count": null,
429
  "metadata": {
430
  "execution": {
431
  "iopub.execute_input": "2023-10-25T11:24:34.811483Z",
 
435
  "shell.execute_reply.started": "2023-10-25T11:24:34.811433Z"
436
  }
437
  },
438
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
439
  "source": [
440
  "df.head()"
441
  ]
442
  },
443
  {
444
  "cell_type": "code",
445
+ "execution_count": 6,
446
  "metadata": {
447
  "execution": {
448
  "iopub.execute_input": "2023-10-25T11:24:34.845806Z",
 
584
  "6 Diesel Manual First 23.08 1461.0 63.1 bhp 5.0 3.50 "
585
  ]
586
  },
587
+ "execution_count": 6,
588
  "metadata": {},
589
  "output_type": "execute_result"
590
  }
 
605
  },
606
  {
607
  "cell_type": "code",
608
+ "execution_count": null,
609
  "metadata": {
610
  "execution": {
611
  "iopub.execute_input": "2023-10-25T11:24:34.884529Z",
 
615
  "shell.execute_reply.started": "2023-10-25T11:24:34.884478Z"
616
  }
617
  },
618
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
619
  "source": [
620
  "df.Owner_Type.value_counts()"
621
  ]
622
  },
623
  {
624
  "cell_type": "code",
625
+ "execution_count": 7,
626
  "metadata": {
627
  "execution": {
628
  "iopub.execute_input": "2023-10-25T11:24:34.901170Z",
 
777
  "6 1.0 "
778
  ]
779
  },
780
+ "execution_count": 7,
781
  "metadata": {},
782
  "output_type": "execute_result"
783
  }
 
793
  },
794
  {
795
  "cell_type": "code",
796
+ "execution_count": 8,
797
  "metadata": {
798
  "execution": {
799
  "iopub.execute_input": "2023-10-25T11:24:34.933045Z",
 
942
  "6 1.0 "
943
  ]
944
  },
945
+ "execution_count": 8,
946
  "metadata": {},
947
  "output_type": "execute_result"
948
  }
 
954
  },
955
  {
956
  "cell_type": "code",
957
+ "execution_count": 9,
958
  "metadata": {
959
  "execution": {
960
  "iopub.execute_input": "2023-10-25T11:24:34.960194Z",
 
972
  },
973
  {
974
  "cell_type": "code",
975
+ "execution_count": null,
976
  "metadata": {
977
  "execution": {
978
  "iopub.execute_input": "2023-10-25T11:24:34.974289Z",
 
982
  "shell.execute_reply.started": "2023-10-25T11:24:34.974246Z"
983
  }
984
  },
985
+ "outputs": [],
986
+ "source": [
987
+ "df.head()"
988
+ ]
989
+ },
990
+ {
991
+ "cell_type": "code",
992
+ "execution_count": null,
993
+ "metadata": {
994
+ "execution": {
995
+ "iopub.execute_input": "2023-10-25T11:24:34.997968Z",
996
+ "iopub.status.busy": "2023-10-25T11:24:34.997587Z",
997
+ "iopub.status.idle": "2023-10-25T11:24:35.008472Z",
998
+ "shell.execute_reply": "2023-10-25T11:24:35.006926Z",
999
+ "shell.execute_reply.started": "2023-10-25T11:24:34.997937Z"
1000
+ }
1001
+ },
1002
+ "outputs": [],
1003
+ "source": [
1004
+ "df.Transmission.value_counts()"
1005
+ ]
1006
+ },
1007
+ {
1008
+ "cell_type": "code",
1009
+ "execution_count": 10,
1010
+ "metadata": {
1011
+ "execution": {
1012
+ "iopub.execute_input": "2023-10-25T11:24:35.010363Z",
1013
+ "iopub.status.busy": "2023-10-25T11:24:35.009965Z",
1014
+ "iopub.status.idle": "2023-10-25T11:24:35.050378Z",
1015
+ "shell.execute_reply": "2023-10-25T11:24:35.048962Z",
1016
+ "shell.execute_reply.started": "2023-10-25T11:24:35.010325Z"
1017
+ }
1018
+ },
1019
  "outputs": [
1020
  {
1021
  "data": {
 
1042
  " <th>Location</th>\n",
1043
  " <th>Year</th>\n",
1044
  " <th>Kilometers_Driven</th>\n",
 
 
1045
  " <th>Mileage</th>\n",
1046
  " <th>Engine</th>\n",
1047
  " <th>Power</th>\n",
1048
  " <th>Seats</th>\n",
1049
  " <th>Price</th>\n",
1050
  " <th>No_of_owners</th>\n",
1051
+ " <th>Transmission_Automatic</th>\n",
1052
+ " <th>Transmission_Manual</th>\n",
1053
+ " <th>Fuel_Type_Diesel</th>\n",
1054
+ " <th>Fuel_Type_Petrol</th>\n",
1055
  " </tr>\n",
1056
  " </thead>\n",
1057
  " <tbody>\n",
 
1061
  " <td>Pune</td>\n",
1062
  " <td>2015</td>\n",
1063
  " <td>41000</td>\n",
 
 
1064
  " <td>19.67</td>\n",
1065
  " <td>1582.0</td>\n",
1066
  " <td>126.20</td>\n",
1067
  " <td>5.0</td>\n",
1068
  " <td>12.50</td>\n",
1069
  " <td>1.0</td>\n",
1070
+ " <td>False</td>\n",
1071
+ " <td>True</td>\n",
1072
+ " <td>True</td>\n",
1073
+ " <td>False</td>\n",
1074
  " </tr>\n",
1075
  " <tr>\n",
1076
  " <th>2</th>\n",
 
1078
  " <td>Chennai</td>\n",
1079
  " <td>2011</td>\n",
1080
  " <td>46000</td>\n",
 
 
1081
  " <td>18.20</td>\n",
1082
  " <td>1199.0</td>\n",
1083
  " <td>88.70</td>\n",
1084
  " <td>5.0</td>\n",
1085
  " <td>4.50</td>\n",
1086
  " <td>1.0</td>\n",
1087
+ " <td>False</td>\n",
1088
+ " <td>True</td>\n",
1089
+ " <td>False</td>\n",
1090
+ " <td>True</td>\n",
1091
  " </tr>\n",
1092
  " <tr>\n",
1093
  " <th>3</th>\n",
 
1095
  " <td>Chennai</td>\n",
1096
  " <td>2012</td>\n",
1097
  " <td>87000</td>\n",
 
 
1098
  " <td>20.77</td>\n",
1099
  " <td>1248.0</td>\n",
1100
  " <td>88.76</td>\n",
1101
  " <td>7.0</td>\n",
1102
  " <td>6.00</td>\n",
1103
  " <td>1.0</td>\n",
1104
+ " <td>False</td>\n",
1105
+ " <td>True</td>\n",
1106
+ " <td>True</td>\n",
1107
+ " <td>False</td>\n",
1108
  " </tr>\n",
1109
  " <tr>\n",
1110
  " <th>4</th>\n",
 
1112
  " <td>Coimbatore</td>\n",
1113
  " <td>2013</td>\n",
1114
  " <td>40670</td>\n",
 
 
1115
  " <td>15.20</td>\n",
1116
  " <td>1968.0</td>\n",
1117
  " <td>140.80</td>\n",
1118
  " <td>5.0</td>\n",
1119
  " <td>17.74</td>\n",
1120
  " <td>2.0</td>\n",
1121
+ " <td>True</td>\n",
1122
+ " <td>False</td>\n",
1123
+ " <td>True</td>\n",
1124
+ " <td>False</td>\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1125
  " </tr>\n",
1126
  " <tr>\n",
1127
  " <th>6</th>\n",
 
1174
  "6 False "
1175
  ]
1176
  },
1177
+ "execution_count": 10,
1178
  "metadata": {},
1179
  "output_type": "execute_result"
1180
  }
 
1186
  },
1187
  {
1188
  "cell_type": "code",
1189
+ "execution_count": 11,
1190
  "metadata": {
1191
  "execution": {
1192
  "iopub.execute_input": "2023-10-25T11:24:35.052577Z",
 
1347
  "6 True True False 10 "
1348
  ]
1349
  },
1350
+ "execution_count": 11,
1351
  "metadata": {},
1352
  "output_type": "execute_result"
1353
  }
 
1360
  },
1361
  {
1362
  "cell_type": "code",
1363
+ "execution_count": null,
1364
  "metadata": {
1365
  "execution": {
1366
  "iopub.execute_input": "2023-10-25T11:24:35.092736Z",
 
1370
  "shell.execute_reply.started": "2023-10-25T11:24:35.092700Z"
1371
  }
1372
  },
1373
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1374
  "source": [
1375
  "df.Name.value_counts()"
1376
  ]
1377
  },
1378
  {
1379
  "cell_type": "code",
1380
+ "execution_count": 12,
1381
  "metadata": {
1382
  "execution": {
1383
  "iopub.execute_input": "2023-10-25T11:24:35.109327Z",
 
1395
  },
1396
  {
1397
  "cell_type": "code",
1398
+ "execution_count": null,
1399
  "metadata": {
1400
  "execution": {
1401
  "iopub.execute_input": "2023-10-25T11:24:35.119797Z",
 
1405
  "shell.execute_reply.started": "2023-10-25T11:24:35.119754Z"
1406
  }
1407
  },
1408
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1409
  "source": [
1410
  "df.head()"
1411
  ]
1412
  },
1413
  {
1414
  "cell_type": "code",
1415
+ "execution_count": null,
1416
  "metadata": {
1417
  "execution": {
1418
  "iopub.execute_input": "2023-10-25T11:24:35.156223Z",
 
1422
  "shell.execute_reply.started": "2023-10-25T11:24:35.156187Z"
1423
  }
1424
  },
1425
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1426
  "source": [
1427
  "df.Location.value_counts()"
1428
  ]
1429
  },
1430
  {
1431
  "cell_type": "code",
1432
+ "execution_count": 13,
1433
  "metadata": {
1434
  "execution": {
1435
  "iopub.execute_input": "2023-10-25T11:24:35.169687Z",
 
1649
  "[5 rows x 23 columns]"
1650
  ]
1651
  },
1652
+ "execution_count": 13,
1653
  "metadata": {},
1654
  "output_type": "execute_result"
1655
  }
 
1662
  },
1663
  {
1664
  "cell_type": "code",
1665
+ "execution_count": 14,
1666
  "metadata": {
1667
  "execution": {
1668
  "iopub.execute_input": "2023-10-25T11:24:35.219105Z",
 
1680
  },
1681
  {
1682
  "cell_type": "code",
1683
+ "execution_count": null,
1684
  "metadata": {
1685
  "execution": {
1686
  "iopub.execute_input": "2023-10-25T11:24:36.364741Z",
 
1690
  "shell.execute_reply.started": "2023-10-25T11:24:36.364696Z"
1691
  }
1692
  },
1693
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
1694
  "source": [
1695
  "df.shape"
1696
  ]
1697
  },
1698
  {
1699
  "cell_type": "code",
1700
+ "execution_count": 15,
1701
  "metadata": {
1702
  "execution": {
1703
  "iopub.execute_input": "2023-10-25T11:24:36.376612Z",
 
1715
  },
1716
  {
1717
  "cell_type": "code",
1718
+ "execution_count": 16,
1719
  "metadata": {
1720
  "execution": {
1721
  "iopub.execute_input": "2023-10-25T11:24:36.403139Z",
 
1733
  },
1734
  {
1735
  "cell_type": "code",
1736
+ "execution_count": 17,
1737
  "metadata": {
1738
  "execution": {
1739
  "iopub.execute_input": "2023-10-25T11:24:36.423402Z",
 
1753
  "DecisionTreeRegressor()"
1754
  ]
1755
  },
1756
+ "execution_count": 17,
1757
  "metadata": {},
1758
  "output_type": "execute_result"
1759
  }
 
1764
  },
1765
  {
1766
  "cell_type": "code",
1767
+ "execution_count": 18,
1768
  "metadata": {},
1769
  "outputs": [
1770
  {
1771
  "name": "stdout",
1772
  "output_type": "stream",
1773
  "text": [
1774
+ "[39.45 2.5 4.9 ... 8.3 4. 27. ]\n"
1775
  ]
1776
  }
1777
  ],
1778
  "source": [
1779
+ "# fix --------- changed the format of this cell from NBConvert to Code, and execute it\n",
1780
  "y_pred = model.predict(X_test)\n",
1781
  "print(y_pred)"
1782
  ]
1783
  },
1784
  {
1785
  "cell_type": "code",
1786
+ "execution_count": 19,
1787
  "metadata": {
1788
  "execution": {
1789
  "iopub.execute_input": "2023-10-25T11:24:36.479677Z",
 
1797
  {
1798
  "data": {
1799
  "text/plain": [
1800
+ "1.8813339070567983"
1801
  ]
1802
  },
1803
+ "execution_count": 19,
1804
  "metadata": {},
1805
  "output_type": "execute_result"
1806
  }
benchmark/NBspecific_18/NBspecific_18_reproduced.ipynb CHANGED
@@ -212,7 +212,7 @@
212
  },
213
  {
214
  "cell_type": "code",
215
- "execution_count": 3,
216
  "metadata": {
217
  "execution": {
218
  "iopub.execute_input": "2023-10-25T11:24:34.724205Z",
@@ -222,38 +222,14 @@
222
  "shell.execute_reply.started": "2023-10-25T11:24:34.724137Z"
223
  }
224
  },
225
- "outputs": [
226
- {
227
- "data": {
228
- "text/plain": [
229
- "Name 0\n",
230
- "Location 0\n",
231
- "Year 0\n",
232
- "Kilometers_Driven 0\n",
233
- "Fuel_Type 0\n",
234
- "Transmission 0\n",
235
- "Owner_Type 0\n",
236
- "Mileage 2\n",
237
- "Engine 36\n",
238
- "Power 36\n",
239
- "Seats 38\n",
240
- "New_Price 5032\n",
241
- "Price 0\n",
242
- "dtype: int64"
243
- ]
244
- },
245
- "execution_count": 3,
246
- "metadata": {},
247
- "output_type": "execute_result"
248
- }
249
- ],
250
  "source": [
251
  "df.isna().sum()"
252
  ]
253
  },
254
  {
255
  "cell_type": "code",
256
- "execution_count": 4,
257
  "metadata": {
258
  "execution": {
259
  "iopub.execute_input": "2023-10-25T11:24:34.747718Z",
@@ -270,7 +246,7 @@
270
  },
271
  {
272
  "cell_type": "code",
273
- "execution_count": 5,
274
  "metadata": {
275
  "execution": {
276
  "iopub.execute_input": "2023-10-25T11:24:34.759838Z",
@@ -419,7 +395,7 @@
419
  "6 3.50 "
420
  ]
421
  },
422
- "execution_count": 5,
423
  "metadata": {},
424
  "output_type": "execute_result"
425
  }
@@ -431,7 +407,7 @@
431
  },
432
  {
433
  "cell_type": "code",
434
- "execution_count": 6,
435
  "metadata": {
436
  "execution": {
437
  "iopub.execute_input": "2023-10-25T11:24:34.797282Z",
@@ -449,7 +425,7 @@
449
  },
450
  {
451
  "cell_type": "code",
452
- "execution_count": 7,
453
  "metadata": {
454
  "execution": {
455
  "iopub.execute_input": "2023-10-25T11:24:34.811483Z",
@@ -459,157 +435,14 @@
459
  "shell.execute_reply.started": "2023-10-25T11:24:34.811433Z"
460
  }
461
  },
462
- "outputs": [
463
- {
464
- "data": {
465
- "text/html": [
466
- "<div>\n",
467
- "<style scoped>\n",
468
- " .dataframe tbody tr th:only-of-type {\n",
469
- " vertical-align: middle;\n",
470
- " }\n",
471
- "\n",
472
- " .dataframe tbody tr th {\n",
473
- " vertical-align: top;\n",
474
- " }\n",
475
- "\n",
476
- " .dataframe thead th {\n",
477
- " text-align: right;\n",
478
- " }\n",
479
- "</style>\n",
480
- "<table border=\"1\" class=\"dataframe\">\n",
481
- " <thead>\n",
482
- " <tr style=\"text-align: right;\">\n",
483
- " <th></th>\n",
484
- " <th>Name</th>\n",
485
- " <th>Location</th>\n",
486
- " <th>Year</th>\n",
487
- " <th>Kilometers_Driven</th>\n",
488
- " <th>Fuel_Type</th>\n",
489
- " <th>Transmission</th>\n",
490
- " <th>Owner_Type</th>\n",
491
- " <th>Mileage</th>\n",
492
- " <th>Engine</th>\n",
493
- " <th>Power</th>\n",
494
- " <th>Seats</th>\n",
495
- " <th>Price</th>\n",
496
- " </tr>\n",
497
- " </thead>\n",
498
- " <tbody>\n",
499
- " <tr>\n",
500
- " <th>1</th>\n",
501
- " <td>Hyundai Creta 1.6 CRDi SX Option</td>\n",
502
- " <td>Pune</td>\n",
503
- " <td>2015</td>\n",
504
- " <td>41000</td>\n",
505
- " <td>Diesel</td>\n",
506
- " <td>Manual</td>\n",
507
- " <td>First</td>\n",
508
- " <td>19.67 kmpl</td>\n",
509
- " <td>1582.0</td>\n",
510
- " <td>126.2 bhp</td>\n",
511
- " <td>5.0</td>\n",
512
- " <td>12.50</td>\n",
513
- " </tr>\n",
514
- " <tr>\n",
515
- " <th>2</th>\n",
516
- " <td>Honda Jazz V</td>\n",
517
- " <td>Chennai</td>\n",
518
- " <td>2011</td>\n",
519
- " <td>46000</td>\n",
520
- " <td>Petrol</td>\n",
521
- " <td>Manual</td>\n",
522
- " <td>First</td>\n",
523
- " <td>13 km/kg</td>\n",
524
- " <td>1199.0</td>\n",
525
- " <td>88.7 bhp</td>\n",
526
- " <td>5.0</td>\n",
527
- " <td>4.50</td>\n",
528
- " </tr>\n",
529
- " <tr>\n",
530
- " <th>3</th>\n",
531
- " <td>Maruti Ertiga VDI</td>\n",
532
- " <td>Chennai</td>\n",
533
- " <td>2012</td>\n",
534
- " <td>87000</td>\n",
535
- " <td>Diesel</td>\n",
536
- " <td>Manual</td>\n",
537
- " <td>First</td>\n",
538
- " <td>20.77 kmpl</td>\n",
539
- " <td>1248.0</td>\n",
540
- " <td>88.76 bhp</td>\n",
541
- " <td>7.0</td>\n",
542
- " <td>6.00</td>\n",
543
- " </tr>\n",
544
- " <tr>\n",
545
- " <th>4</th>\n",
546
- " <td>Audi A4 New 2.0 TDI Multitronic</td>\n",
547
- " <td>Coimbatore</td>\n",
548
- " <td>2013</td>\n",
549
- " <td>40670</td>\n",
550
- " <td>Diesel</td>\n",
551
- " <td>Automatic</td>\n",
552
- " <td>Second</td>\n",
553
- " <td>15.2 kmpl</td>\n",
554
- " <td>1968.0</td>\n",
555
- " <td>140.8 bhp</td>\n",
556
- " <td>5.0</td>\n",
557
- " <td>17.74</td>\n",
558
- " </tr>\n",
559
- " <tr>\n",
560
- " <th>6</th>\n",
561
- " <td>Nissan Micra Diesel XV</td>\n",
562
- " <td>Jaipur</td>\n",
563
- " <td>2013</td>\n",
564
- " <td>86999</td>\n",
565
- " <td>Diesel</td>\n",
566
- " <td>Manual</td>\n",
567
- " <td>First</td>\n",
568
- " <td>23.08 kmpl</td>\n",
569
- " <td>1461.0</td>\n",
570
- " <td>63.1 bhp</td>\n",
571
- " <td>5.0</td>\n",
572
- " <td>3.50</td>\n",
573
- " </tr>\n",
574
- " </tbody>\n",
575
- "</table>\n",
576
- "</div>"
577
- ],
578
- "text/plain": [
579
- " Name Location Year Kilometers_Driven \\\n",
580
- "1 Hyundai Creta 1.6 CRDi SX Option Pune 2015 41000 \n",
581
- "2 Honda Jazz V Chennai 2011 46000 \n",
582
- "3 Maruti Ertiga VDI Chennai 2012 87000 \n",
583
- "4 Audi A4 New 2.0 TDI Multitronic Coimbatore 2013 40670 \n",
584
- "6 Nissan Micra Diesel XV Jaipur 2013 86999 \n",
585
- "\n",
586
- " Fuel_Type Transmission Owner_Type Mileage Engine Power Seats \\\n",
587
- "1 Diesel Manual First 19.67 kmpl 1582.0 126.2 bhp 5.0 \n",
588
- "2 Petrol Manual First 13 km/kg 1199.0 88.7 bhp 5.0 \n",
589
- "3 Diesel Manual First 20.77 kmpl 1248.0 88.76 bhp 7.0 \n",
590
- "4 Diesel Automatic Second 15.2 kmpl 1968.0 140.8 bhp 5.0 \n",
591
- "6 Diesel Manual First 23.08 kmpl 1461.0 63.1 bhp 5.0 \n",
592
- "\n",
593
- " Price \n",
594
- "1 12.50 \n",
595
- "2 4.50 \n",
596
- "3 6.00 \n",
597
- "4 17.74 \n",
598
- "6 3.50 "
599
- ]
600
- },
601
- "execution_count": 7,
602
- "metadata": {},
603
- "output_type": "execute_result"
604
- }
605
- ],
606
  "source": [
607
  "df.head()"
608
  ]
609
  },
610
  {
611
  "cell_type": "code",
612
- "execution_count": 8,
613
  "metadata": {
614
  "execution": {
615
  "iopub.execute_input": "2023-10-25T11:24:34.845806Z",
@@ -751,7 +584,7 @@
751
  "6 Diesel Manual First 23.08 1461.0 63.1 bhp 5.0 3.50 "
752
  ]
753
  },
754
- "execution_count": 8,
755
  "metadata": {},
756
  "output_type": "execute_result"
757
  }
@@ -772,7 +605,7 @@
772
  },
773
  {
774
  "cell_type": "code",
775
- "execution_count": 9,
776
  "metadata": {
777
  "execution": {
778
  "iopub.execute_input": "2023-10-25T11:24:34.884529Z",
@@ -782,30 +615,14 @@
782
  "shell.execute_reply.started": "2023-10-25T11:24:34.884478Z"
783
  }
784
  },
785
- "outputs": [
786
- {
787
- "data": {
788
- "text/plain": [
789
- "Owner_Type\n",
790
- "First 4786\n",
791
- "Second 913\n",
792
- "Third 101\n",
793
- "Fourth & Above 7\n",
794
- "Name: count, dtype: int64"
795
- ]
796
- },
797
- "execution_count": 9,
798
- "metadata": {},
799
- "output_type": "execute_result"
800
- }
801
- ],
802
  "source": [
803
  "df.Owner_Type.value_counts()"
804
  ]
805
  },
806
  {
807
  "cell_type": "code",
808
- "execution_count": 10,
809
  "metadata": {
810
  "execution": {
811
  "iopub.execute_input": "2023-10-25T11:24:34.901170Z",
@@ -960,7 +777,7 @@
960
  "6 1.0 "
961
  ]
962
  },
963
- "execution_count": 10,
964
  "metadata": {},
965
  "output_type": "execute_result"
966
  }
@@ -976,7 +793,7 @@
976
  },
977
  {
978
  "cell_type": "code",
979
- "execution_count": 11,
980
  "metadata": {
981
  "execution": {
982
  "iopub.execute_input": "2023-10-25T11:24:34.933045Z",
@@ -1125,7 +942,7 @@
1125
  "6 1.0 "
1126
  ]
1127
  },
1128
- "execution_count": 11,
1129
  "metadata": {},
1130
  "output_type": "execute_result"
1131
  }
@@ -1137,7 +954,7 @@
1137
  },
1138
  {
1139
  "cell_type": "code",
1140
- "execution_count": 12,
1141
  "metadata": {
1142
  "execution": {
1143
  "iopub.execute_input": "2023-10-25T11:24:34.960194Z",
@@ -1155,7 +972,7 @@
1155
  },
1156
  {
1157
  "cell_type": "code",
1158
- "execution_count": 13,
1159
  "metadata": {
1160
  "execution": {
1161
  "iopub.execute_input": "2023-10-25T11:24:34.974289Z",
@@ -1165,6 +982,40 @@
1165
  "shell.execute_reply.started": "2023-10-25T11:24:34.974246Z"
1166
  }
1167
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1168
  "outputs": [
1169
  {
1170
  "data": {
@@ -1191,14 +1042,16 @@
1191
  " <th>Location</th>\n",
1192
  " <th>Year</th>\n",
1193
  " <th>Kilometers_Driven</th>\n",
1194
- " <th>Fuel_Type</th>\n",
1195
- " <th>Transmission</th>\n",
1196
  " <th>Mileage</th>\n",
1197
  " <th>Engine</th>\n",
1198
  " <th>Power</th>\n",
1199
  " <th>Seats</th>\n",
1200
  " <th>Price</th>\n",
1201
  " <th>No_of_owners</th>\n",
 
 
 
 
1202
  " </tr>\n",
1203
  " </thead>\n",
1204
  " <tbody>\n",
@@ -1208,14 +1061,16 @@
1208
  " <td>Pune</td>\n",
1209
  " <td>2015</td>\n",
1210
  " <td>41000</td>\n",
1211
- " <td>Diesel</td>\n",
1212
- " <td>Manual</td>\n",
1213
  " <td>19.67</td>\n",
1214
  " <td>1582.0</td>\n",
1215
  " <td>126.20</td>\n",
1216
  " <td>5.0</td>\n",
1217
  " <td>12.50</td>\n",
1218
  " <td>1.0</td>\n",
 
 
 
 
1219
  " </tr>\n",
1220
  " <tr>\n",
1221
  " <th>2</th>\n",
@@ -1223,14 +1078,16 @@
1223
  " <td>Chennai</td>\n",
1224
  " <td>2011</td>\n",
1225
  " <td>46000</td>\n",
1226
- " <td>Petrol</td>\n",
1227
- " <td>Manual</td>\n",
1228
  " <td>18.20</td>\n",
1229
  " <td>1199.0</td>\n",
1230
  " <td>88.70</td>\n",
1231
  " <td>5.0</td>\n",
1232
  " <td>4.50</td>\n",
1233
  " <td>1.0</td>\n",
 
 
 
 
1234
  " </tr>\n",
1235
  " <tr>\n",
1236
  " <th>3</th>\n",
@@ -1238,14 +1095,16 @@
1238
  " <td>Chennai</td>\n",
1239
  " <td>2012</td>\n",
1240
  " <td>87000</td>\n",
1241
- " <td>Diesel</td>\n",
1242
- " <td>Manual</td>\n",
1243
  " <td>20.77</td>\n",
1244
  " <td>1248.0</td>\n",
1245
  " <td>88.76</td>\n",
1246
  " <td>7.0</td>\n",
1247
  " <td>6.00</td>\n",
1248
  " <td>1.0</td>\n",
 
 
 
 
1249
  " </tr>\n",
1250
  " <tr>\n",
1251
  " <th>4</th>\n",
@@ -1253,208 +1112,16 @@
1253
  " <td>Coimbatore</td>\n",
1254
  " <td>2013</td>\n",
1255
  " <td>40670</td>\n",
1256
- " <td>Diesel</td>\n",
1257
- " <td>Automatic</td>\n",
1258
  " <td>15.20</td>\n",
1259
  " <td>1968.0</td>\n",
1260
  " <td>140.80</td>\n",
1261
  " <td>5.0</td>\n",
1262
  " <td>17.74</td>\n",
1263
  " <td>2.0</td>\n",
1264
- " </tr>\n",
1265
- " <tr>\n",
1266
- " <th>6</th>\n",
1267
- " <td>Nissan Micra Diesel XV</td>\n",
1268
- " <td>Jaipur</td>\n",
1269
- " <td>2013</td>\n",
1270
- " <td>86999</td>\n",
1271
- " <td>Diesel</td>\n",
1272
- " <td>Manual</td>\n",
1273
- " <td>23.08</td>\n",
1274
- " <td>1461.0</td>\n",
1275
- " <td>63.10</td>\n",
1276
- " <td>5.0</td>\n",
1277
- " <td>3.50</td>\n",
1278
- " <td>1.0</td>\n",
1279
- " </tr>\n",
1280
- " </tbody>\n",
1281
- "</table>\n",
1282
- "</div>"
1283
- ],
1284
- "text/plain": [
1285
- " Name Location Year Kilometers_Driven \\\n",
1286
- "1 Hyundai Creta 1.6 CRDi SX Option Pune 2015 41000 \n",
1287
- "2 Honda Jazz V Chennai 2011 46000 \n",
1288
- "3 Maruti Ertiga VDI Chennai 2012 87000 \n",
1289
- "4 Audi A4 New 2.0 TDI Multitronic Coimbatore 2013 40670 \n",
1290
- "6 Nissan Micra Diesel XV Jaipur 2013 86999 \n",
1291
- "\n",
1292
- " Fuel_Type Transmission Mileage Engine Power Seats Price No_of_owners \n",
1293
- "1 Diesel Manual 19.67 1582.0 126.20 5.0 12.50 1.0 \n",
1294
- "2 Petrol Manual 18.20 1199.0 88.70 5.0 4.50 1.0 \n",
1295
- "3 Diesel Manual 20.77 1248.0 88.76 7.0 6.00 1.0 \n",
1296
- "4 Diesel Automatic 15.20 1968.0 140.80 5.0 17.74 2.0 \n",
1297
- "6 Diesel Manual 23.08 1461.0 63.10 5.0 3.50 1.0 "
1298
- ]
1299
- },
1300
- "execution_count": 13,
1301
- "metadata": {},
1302
- "output_type": "execute_result"
1303
- }
1304
- ],
1305
- "source": [
1306
- "df.head()"
1307
- ]
1308
- },
1309
- {
1310
- "cell_type": "code",
1311
- "execution_count": 14,
1312
- "metadata": {
1313
- "execution": {
1314
- "iopub.execute_input": "2023-10-25T11:24:34.997968Z",
1315
- "iopub.status.busy": "2023-10-25T11:24:34.997587Z",
1316
- "iopub.status.idle": "2023-10-25T11:24:35.008472Z",
1317
- "shell.execute_reply": "2023-10-25T11:24:35.006926Z",
1318
- "shell.execute_reply.started": "2023-10-25T11:24:34.997937Z"
1319
- }
1320
- },
1321
- "outputs": [
1322
- {
1323
- "data": {
1324
- "text/plain": [
1325
- "Transmission\n",
1326
- "Manual 4105\n",
1327
- "Automatic 1702\n",
1328
- "Name: count, dtype: int64"
1329
- ]
1330
- },
1331
- "execution_count": 14,
1332
- "metadata": {},
1333
- "output_type": "execute_result"
1334
- }
1335
- ],
1336
- "source": [
1337
- "df.Transmission.value_counts()"
1338
- ]
1339
- },
1340
- {
1341
- "cell_type": "code",
1342
- "execution_count": 15,
1343
- "metadata": {
1344
- "execution": {
1345
- "iopub.execute_input": "2023-10-25T11:24:35.010363Z",
1346
- "iopub.status.busy": "2023-10-25T11:24:35.009965Z",
1347
- "iopub.status.idle": "2023-10-25T11:24:35.050378Z",
1348
- "shell.execute_reply": "2023-10-25T11:24:35.048962Z",
1349
- "shell.execute_reply.started": "2023-10-25T11:24:35.010325Z"
1350
- }
1351
- },
1352
- "outputs": [
1353
- {
1354
- "data": {
1355
- "text/html": [
1356
- "<div>\n",
1357
- "<style scoped>\n",
1358
- " .dataframe tbody tr th:only-of-type {\n",
1359
- " vertical-align: middle;\n",
1360
- " }\n",
1361
- "\n",
1362
- " .dataframe tbody tr th {\n",
1363
- " vertical-align: top;\n",
1364
- " }\n",
1365
- "\n",
1366
- " .dataframe thead th {\n",
1367
- " text-align: right;\n",
1368
- " }\n",
1369
- "</style>\n",
1370
- "<table border=\"1\" class=\"dataframe\">\n",
1371
- " <thead>\n",
1372
- " <tr style=\"text-align: right;\">\n",
1373
- " <th></th>\n",
1374
- " <th>Name</th>\n",
1375
- " <th>Location</th>\n",
1376
- " <th>Year</th>\n",
1377
- " <th>Kilometers_Driven</th>\n",
1378
- " <th>Mileage</th>\n",
1379
- " <th>Engine</th>\n",
1380
- " <th>Power</th>\n",
1381
- " <th>Seats</th>\n",
1382
- " <th>Price</th>\n",
1383
- " <th>No_of_owners</th>\n",
1384
- " <th>Transmission_Automatic</th>\n",
1385
- " <th>Transmission_Manual</th>\n",
1386
- " <th>Fuel_Type_Diesel</th>\n",
1387
- " <th>Fuel_Type_Petrol</th>\n",
1388
- " </tr>\n",
1389
- " </thead>\n",
1390
- " <tbody>\n",
1391
- " <tr>\n",
1392
- " <th>1</th>\n",
1393
- " <td>Hyundai Creta 1.6 CRDi SX Option</td>\n",
1394
- " <td>Pune</td>\n",
1395
- " <td>2015</td>\n",
1396
- " <td>41000</td>\n",
1397
- " <td>19.67</td>\n",
1398
- " <td>1582.0</td>\n",
1399
- " <td>126.20</td>\n",
1400
- " <td>5.0</td>\n",
1401
- " <td>12.50</td>\n",
1402
- " <td>1.0</td>\n",
1403
- " <td>False</td>\n",
1404
- " <td>True</td>\n",
1405
- " <td>True</td>\n",
1406
- " <td>False</td>\n",
1407
- " </tr>\n",
1408
- " <tr>\n",
1409
- " <th>2</th>\n",
1410
- " <td>Honda Jazz V</td>\n",
1411
- " <td>Chennai</td>\n",
1412
- " <td>2011</td>\n",
1413
- " <td>46000</td>\n",
1414
- " <td>18.20</td>\n",
1415
- " <td>1199.0</td>\n",
1416
- " <td>88.70</td>\n",
1417
- " <td>5.0</td>\n",
1418
- " <td>4.50</td>\n",
1419
- " <td>1.0</td>\n",
1420
- " <td>False</td>\n",
1421
- " <td>True</td>\n",
1422
- " <td>False</td>\n",
1423
- " <td>True</td>\n",
1424
- " </tr>\n",
1425
- " <tr>\n",
1426
- " <th>3</th>\n",
1427
- " <td>Maruti Ertiga VDI</td>\n",
1428
- " <td>Chennai</td>\n",
1429
- " <td>2012</td>\n",
1430
- " <td>87000</td>\n",
1431
- " <td>20.77</td>\n",
1432
- " <td>1248.0</td>\n",
1433
- " <td>88.76</td>\n",
1434
- " <td>7.0</td>\n",
1435
- " <td>6.00</td>\n",
1436
- " <td>1.0</td>\n",
1437
- " <td>False</td>\n",
1438
- " <td>True</td>\n",
1439
- " <td>True</td>\n",
1440
- " <td>False</td>\n",
1441
- " </tr>\n",
1442
- " <tr>\n",
1443
- " <th>4</th>\n",
1444
- " <td>Audi A4 New 2.0 TDI Multitronic</td>\n",
1445
- " <td>Coimbatore</td>\n",
1446
- " <td>2013</td>\n",
1447
- " <td>40670</td>\n",
1448
- " <td>15.20</td>\n",
1449
- " <td>1968.0</td>\n",
1450
- " <td>140.80</td>\n",
1451
- " <td>5.0</td>\n",
1452
- " <td>17.74</td>\n",
1453
- " <td>2.0</td>\n",
1454
- " <td>True</td>\n",
1455
- " <td>False</td>\n",
1456
- " <td>True</td>\n",
1457
- " <td>False</td>\n",
1458
  " </tr>\n",
1459
  " <tr>\n",
1460
  " <th>6</th>\n",
@@ -1507,7 +1174,7 @@
1507
  "6 False "
1508
  ]
1509
  },
1510
- "execution_count": 15,
1511
  "metadata": {},
1512
  "output_type": "execute_result"
1513
  }
@@ -1519,7 +1186,7 @@
1519
  },
1520
  {
1521
  "cell_type": "code",
1522
- "execution_count": 16,
1523
  "metadata": {
1524
  "execution": {
1525
  "iopub.execute_input": "2023-10-25T11:24:35.052577Z",
@@ -1680,7 +1347,7 @@
1680
  "6 True True False 10 "
1681
  ]
1682
  },
1683
- "execution_count": 16,
1684
  "metadata": {},
1685
  "output_type": "execute_result"
1686
  }
@@ -1693,7 +1360,7 @@
1693
  },
1694
  {
1695
  "cell_type": "code",
1696
- "execution_count": 17,
1697
  "metadata": {
1698
  "execution": {
1699
  "iopub.execute_input": "2023-10-25T11:24:35.092736Z",
@@ -1703,37 +1370,14 @@
1703
  "shell.execute_reply.started": "2023-10-25T11:24:35.092700Z"
1704
  }
1705
  },
1706
- "outputs": [
1707
- {
1708
- "data": {
1709
- "text/plain": [
1710
- "Name\n",
1711
- "Mahindra XUV500 W8 2WD 49\n",
1712
- "Maruti Swift VDI 45\n",
1713
- "Honda City 1.5 S MT 34\n",
1714
- "Maruti Swift Dzire VDI 34\n",
1715
- "Hyundai i10 Sportz 30\n",
1716
- " ..\n",
1717
- "Skoda Rapid 1.6 MPI AT Ambition 1\n",
1718
- "Hyundai i20 2015-2017 1.4 Magna ABS 1\n",
1719
- "Ford EcoSport 1.5 Petrol Trend 1\n",
1720
- "Volvo XC90 2007-2015 D5 AWD 1\n",
1721
- "Mahindra Xylo D4 BSIV 1\n",
1722
- "Name: count, Length: 1785, dtype: int64"
1723
- ]
1724
- },
1725
- "execution_count": 17,
1726
- "metadata": {},
1727
- "output_type": "execute_result"
1728
- }
1729
- ],
1730
  "source": [
1731
  "df.Name.value_counts()"
1732
  ]
1733
  },
1734
  {
1735
  "cell_type": "code",
1736
- "execution_count": 18,
1737
  "metadata": {
1738
  "execution": {
1739
  "iopub.execute_input": "2023-10-25T11:24:35.109327Z",
@@ -1751,7 +1395,7 @@
1751
  },
1752
  {
1753
  "cell_type": "code",
1754
- "execution_count": 19,
1755
  "metadata": {
1756
  "execution": {
1757
  "iopub.execute_input": "2023-10-25T11:24:35.119797Z",
@@ -1761,163 +1405,14 @@
1761
  "shell.execute_reply.started": "2023-10-25T11:24:35.119754Z"
1762
  }
1763
  },
1764
- "outputs": [
1765
- {
1766
- "data": {
1767
- "text/html": [
1768
- "<div>\n",
1769
- "<style scoped>\n",
1770
- " .dataframe tbody tr th:only-of-type {\n",
1771
- " vertical-align: middle;\n",
1772
- " }\n",
1773
- "\n",
1774
- " .dataframe tbody tr th {\n",
1775
- " vertical-align: top;\n",
1776
- " }\n",
1777
- "\n",
1778
- " .dataframe thead th {\n",
1779
- " text-align: right;\n",
1780
- " }\n",
1781
- "</style>\n",
1782
- "<table border=\"1\" class=\"dataframe\">\n",
1783
- " <thead>\n",
1784
- " <tr style=\"text-align: right;\">\n",
1785
- " <th></th>\n",
1786
- " <th>Location</th>\n",
1787
- " <th>Kilometers_Driven</th>\n",
1788
- " <th>Mileage</th>\n",
1789
- " <th>Engine</th>\n",
1790
- " <th>Power</th>\n",
1791
- " <th>Seats</th>\n",
1792
- " <th>Price</th>\n",
1793
- " <th>No_of_owners</th>\n",
1794
- " <th>Transmission_Automatic</th>\n",
1795
- " <th>Transmission_Manual</th>\n",
1796
- " <th>Fuel_Type_Diesel</th>\n",
1797
- " <th>Fuel_Type_Petrol</th>\n",
1798
- " <th>Age</th>\n",
1799
- " </tr>\n",
1800
- " </thead>\n",
1801
- " <tbody>\n",
1802
- " <tr>\n",
1803
- " <th>1</th>\n",
1804
- " <td>Pune</td>\n",
1805
- " <td>41000</td>\n",
1806
- " <td>19.67</td>\n",
1807
- " <td>1582.0</td>\n",
1808
- " <td>126.20</td>\n",
1809
- " <td>5.0</td>\n",
1810
- " <td>12.50</td>\n",
1811
- " <td>1.0</td>\n",
1812
- " <td>False</td>\n",
1813
- " <td>True</td>\n",
1814
- " <td>True</td>\n",
1815
- " <td>False</td>\n",
1816
- " <td>8</td>\n",
1817
- " </tr>\n",
1818
- " <tr>\n",
1819
- " <th>2</th>\n",
1820
- " <td>Chennai</td>\n",
1821
- " <td>46000</td>\n",
1822
- " <td>18.20</td>\n",
1823
- " <td>1199.0</td>\n",
1824
- " <td>88.70</td>\n",
1825
- " <td>5.0</td>\n",
1826
- " <td>4.50</td>\n",
1827
- " <td>1.0</td>\n",
1828
- " <td>False</td>\n",
1829
- " <td>True</td>\n",
1830
- " <td>False</td>\n",
1831
- " <td>True</td>\n",
1832
- " <td>12</td>\n",
1833
- " </tr>\n",
1834
- " <tr>\n",
1835
- " <th>3</th>\n",
1836
- " <td>Chennai</td>\n",
1837
- " <td>87000</td>\n",
1838
- " <td>20.77</td>\n",
1839
- " <td>1248.0</td>\n",
1840
- " <td>88.76</td>\n",
1841
- " <td>7.0</td>\n",
1842
- " <td>6.00</td>\n",
1843
- " <td>1.0</td>\n",
1844
- " <td>False</td>\n",
1845
- " <td>True</td>\n",
1846
- " <td>True</td>\n",
1847
- " <td>False</td>\n",
1848
- " <td>11</td>\n",
1849
- " </tr>\n",
1850
- " <tr>\n",
1851
- " <th>4</th>\n",
1852
- " <td>Coimbatore</td>\n",
1853
- " <td>40670</td>\n",
1854
- " <td>15.20</td>\n",
1855
- " <td>1968.0</td>\n",
1856
- " <td>140.80</td>\n",
1857
- " <td>5.0</td>\n",
1858
- " <td>17.74</td>\n",
1859
- " <td>2.0</td>\n",
1860
- " <td>True</td>\n",
1861
- " <td>False</td>\n",
1862
- " <td>True</td>\n",
1863
- " <td>False</td>\n",
1864
- " <td>10</td>\n",
1865
- " </tr>\n",
1866
- " <tr>\n",
1867
- " <th>6</th>\n",
1868
- " <td>Jaipur</td>\n",
1869
- " <td>86999</td>\n",
1870
- " <td>23.08</td>\n",
1871
- " <td>1461.0</td>\n",
1872
- " <td>63.10</td>\n",
1873
- " <td>5.0</td>\n",
1874
- " <td>3.50</td>\n",
1875
- " <td>1.0</td>\n",
1876
- " <td>False</td>\n",
1877
- " <td>True</td>\n",
1878
- " <td>True</td>\n",
1879
- " <td>False</td>\n",
1880
- " <td>10</td>\n",
1881
- " </tr>\n",
1882
- " </tbody>\n",
1883
- "</table>\n",
1884
- "</div>"
1885
- ],
1886
- "text/plain": [
1887
- " Location Kilometers_Driven Mileage Engine Power Seats Price \\\n",
1888
- "1 Pune 41000 19.67 1582.0 126.20 5.0 12.50 \n",
1889
- "2 Chennai 46000 18.20 1199.0 88.70 5.0 4.50 \n",
1890
- "3 Chennai 87000 20.77 1248.0 88.76 7.0 6.00 \n",
1891
- "4 Coimbatore 40670 15.20 1968.0 140.80 5.0 17.74 \n",
1892
- "6 Jaipur 86999 23.08 1461.0 63.10 5.0 3.50 \n",
1893
- "\n",
1894
- " No_of_owners Transmission_Automatic Transmission_Manual \\\n",
1895
- "1 1.0 False True \n",
1896
- "2 1.0 False True \n",
1897
- "3 1.0 False True \n",
1898
- "4 2.0 True False \n",
1899
- "6 1.0 False True \n",
1900
- "\n",
1901
- " Fuel_Type_Diesel Fuel_Type_Petrol Age \n",
1902
- "1 True False 8 \n",
1903
- "2 False True 12 \n",
1904
- "3 True False 11 \n",
1905
- "4 True False 10 \n",
1906
- "6 True False 10 "
1907
- ]
1908
- },
1909
- "execution_count": 19,
1910
- "metadata": {},
1911
- "output_type": "execute_result"
1912
- }
1913
- ],
1914
  "source": [
1915
  "df.head()"
1916
  ]
1917
  },
1918
  {
1919
  "cell_type": "code",
1920
- "execution_count": 20,
1921
  "metadata": {
1922
  "execution": {
1923
  "iopub.execute_input": "2023-10-25T11:24:35.156223Z",
@@ -1927,37 +1422,14 @@
1927
  "shell.execute_reply.started": "2023-10-25T11:24:35.156187Z"
1928
  }
1929
  },
1930
- "outputs": [
1931
- {
1932
- "data": {
1933
- "text/plain": [
1934
- "Location\n",
1935
- "Mumbai 757\n",
1936
- "Hyderabad 709\n",
1937
- "Kochi 637\n",
1938
- "Coimbatore 629\n",
1939
- "Pune 581\n",
1940
- "Delhi 535\n",
1941
- "Kolkata 521\n",
1942
- "Chennai 474\n",
1943
- "Jaipur 400\n",
1944
- "Bangalore 347\n",
1945
- "Ahmedabad 217\n",
1946
- "Name: count, dtype: int64"
1947
- ]
1948
- },
1949
- "execution_count": 20,
1950
- "metadata": {},
1951
- "output_type": "execute_result"
1952
- }
1953
- ],
1954
  "source": [
1955
  "df.Location.value_counts()"
1956
  ]
1957
  },
1958
  {
1959
  "cell_type": "code",
1960
- "execution_count": 21,
1961
  "metadata": {
1962
  "execution": {
1963
  "iopub.execute_input": "2023-10-25T11:24:35.169687Z",
@@ -2177,7 +1649,7 @@
2177
  "[5 rows x 23 columns]"
2178
  ]
2179
  },
2180
- "execution_count": 21,
2181
  "metadata": {},
2182
  "output_type": "execute_result"
2183
  }
@@ -2190,7 +1662,7 @@
2190
  },
2191
  {
2192
  "cell_type": "code",
2193
- "execution_count": 22,
2194
  "metadata": {
2195
  "execution": {
2196
  "iopub.execute_input": "2023-10-25T11:24:35.219105Z",
@@ -2208,7 +1680,7 @@
2208
  },
2209
  {
2210
  "cell_type": "code",
2211
- "execution_count": 23,
2212
  "metadata": {
2213
  "execution": {
2214
  "iopub.execute_input": "2023-10-25T11:24:36.364741Z",
@@ -2218,25 +1690,14 @@
2218
  "shell.execute_reply.started": "2023-10-25T11:24:36.364696Z"
2219
  }
2220
  },
2221
- "outputs": [
2222
- {
2223
- "data": {
2224
- "text/plain": [
2225
- "(5807, 23)"
2226
- ]
2227
- },
2228
- "execution_count": 23,
2229
- "metadata": {},
2230
- "output_type": "execute_result"
2231
- }
2232
- ],
2233
  "source": [
2234
  "df.shape"
2235
  ]
2236
  },
2237
  {
2238
  "cell_type": "code",
2239
- "execution_count": 24,
2240
  "metadata": {
2241
  "execution": {
2242
  "iopub.execute_input": "2023-10-25T11:24:36.376612Z",
@@ -2254,7 +1715,7 @@
2254
  },
2255
  {
2256
  "cell_type": "code",
2257
- "execution_count": 25,
2258
  "metadata": {
2259
  "execution": {
2260
  "iopub.execute_input": "2023-10-25T11:24:36.403139Z",
@@ -2272,7 +1733,7 @@
2272
  },
2273
  {
2274
  "cell_type": "code",
2275
- "execution_count": 26,
2276
  "metadata": {
2277
  "execution": {
2278
  "iopub.execute_input": "2023-10-25T11:24:36.423402Z",
@@ -2292,7 +1753,7 @@
2292
  "DecisionTreeRegressor()"
2293
  ]
2294
  },
2295
- "execution_count": 26,
2296
  "metadata": {},
2297
  "output_type": "execute_result"
2298
  }
@@ -2311,7 +1772,7 @@
2311
  },
2312
  {
2313
  "cell_type": "code",
2314
- "execution_count": 27,
2315
  "metadata": {
2316
  "execution": {
2317
  "iopub.execute_input": "2023-10-25T11:24:36.479677Z",
@@ -2329,7 +1790,7 @@
2329
  "traceback": [
2330
  "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
2331
  "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
2332
- "\u001b[0;32m<ipython-input-27-f778b0ff9eb9>\u001b[0m in \u001b[0;36m<cell line: 2>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0msklearn\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmetrics\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mmean_absolute_error\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mmae\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmean_absolute_error\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0my_test\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_pred\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0mmae\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
2333
  "\u001b[0;31mNameError\u001b[0m: name 'y_pred' is not defined"
2334
  ]
2335
  }
 
212
  },
213
  {
214
  "cell_type": "code",
215
+ "execution_count": null,
216
  "metadata": {
217
  "execution": {
218
  "iopub.execute_input": "2023-10-25T11:24:34.724205Z",
 
222
  "shell.execute_reply.started": "2023-10-25T11:24:34.724137Z"
223
  }
224
  },
225
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
226
  "source": [
227
  "df.isna().sum()"
228
  ]
229
  },
230
  {
231
  "cell_type": "code",
232
+ "execution_count": 3,
233
  "metadata": {
234
  "execution": {
235
  "iopub.execute_input": "2023-10-25T11:24:34.747718Z",
 
246
  },
247
  {
248
  "cell_type": "code",
249
+ "execution_count": 4,
250
  "metadata": {
251
  "execution": {
252
  "iopub.execute_input": "2023-10-25T11:24:34.759838Z",
 
395
  "6 3.50 "
396
  ]
397
  },
398
+ "execution_count": 4,
399
  "metadata": {},
400
  "output_type": "execute_result"
401
  }
 
407
  },
408
  {
409
  "cell_type": "code",
410
+ "execution_count": 5,
411
  "metadata": {
412
  "execution": {
413
  "iopub.execute_input": "2023-10-25T11:24:34.797282Z",
 
425
  },
426
  {
427
  "cell_type": "code",
428
+ "execution_count": null,
429
  "metadata": {
430
  "execution": {
431
  "iopub.execute_input": "2023-10-25T11:24:34.811483Z",
 
435
  "shell.execute_reply.started": "2023-10-25T11:24:34.811433Z"
436
  }
437
  },
438
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
439
  "source": [
440
  "df.head()"
441
  ]
442
  },
443
  {
444
  "cell_type": "code",
445
+ "execution_count": 6,
446
  "metadata": {
447
  "execution": {
448
  "iopub.execute_input": "2023-10-25T11:24:34.845806Z",
 
584
  "6 Diesel Manual First 23.08 1461.0 63.1 bhp 5.0 3.50 "
585
  ]
586
  },
587
+ "execution_count": 6,
588
  "metadata": {},
589
  "output_type": "execute_result"
590
  }
 
605
  },
606
  {
607
  "cell_type": "code",
608
+ "execution_count": null,
609
  "metadata": {
610
  "execution": {
611
  "iopub.execute_input": "2023-10-25T11:24:34.884529Z",
 
615
  "shell.execute_reply.started": "2023-10-25T11:24:34.884478Z"
616
  }
617
  },
618
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
619
  "source": [
620
  "df.Owner_Type.value_counts()"
621
  ]
622
  },
623
  {
624
  "cell_type": "code",
625
+ "execution_count": 7,
626
  "metadata": {
627
  "execution": {
628
  "iopub.execute_input": "2023-10-25T11:24:34.901170Z",
 
777
  "6 1.0 "
778
  ]
779
  },
780
+ "execution_count": 7,
781
  "metadata": {},
782
  "output_type": "execute_result"
783
  }
 
793
  },
794
  {
795
  "cell_type": "code",
796
+ "execution_count": 8,
797
  "metadata": {
798
  "execution": {
799
  "iopub.execute_input": "2023-10-25T11:24:34.933045Z",
 
942
  "6 1.0 "
943
  ]
944
  },
945
+ "execution_count": 8,
946
  "metadata": {},
947
  "output_type": "execute_result"
948
  }
 
954
  },
955
  {
956
  "cell_type": "code",
957
+ "execution_count": 9,
958
  "metadata": {
959
  "execution": {
960
  "iopub.execute_input": "2023-10-25T11:24:34.960194Z",
 
972
  },
973
  {
974
  "cell_type": "code",
975
+ "execution_count": null,
976
  "metadata": {
977
  "execution": {
978
  "iopub.execute_input": "2023-10-25T11:24:34.974289Z",
 
982
  "shell.execute_reply.started": "2023-10-25T11:24:34.974246Z"
983
  }
984
  },
985
+ "outputs": [],
986
+ "source": [
987
+ "df.head()"
988
+ ]
989
+ },
990
+ {
991
+ "cell_type": "code",
992
+ "execution_count": null,
993
+ "metadata": {
994
+ "execution": {
995
+ "iopub.execute_input": "2023-10-25T11:24:34.997968Z",
996
+ "iopub.status.busy": "2023-10-25T11:24:34.997587Z",
997
+ "iopub.status.idle": "2023-10-25T11:24:35.008472Z",
998
+ "shell.execute_reply": "2023-10-25T11:24:35.006926Z",
999
+ "shell.execute_reply.started": "2023-10-25T11:24:34.997937Z"
1000
+ }
1001
+ },
1002
+ "outputs": [],
1003
+ "source": [
1004
+ "df.Transmission.value_counts()"
1005
+ ]
1006
+ },
1007
+ {
1008
+ "cell_type": "code",
1009
+ "execution_count": 10,
1010
+ "metadata": {
1011
+ "execution": {
1012
+ "iopub.execute_input": "2023-10-25T11:24:35.010363Z",
1013
+ "iopub.status.busy": "2023-10-25T11:24:35.009965Z",
1014
+ "iopub.status.idle": "2023-10-25T11:24:35.050378Z",
1015
+ "shell.execute_reply": "2023-10-25T11:24:35.048962Z",
1016
+ "shell.execute_reply.started": "2023-10-25T11:24:35.010325Z"
1017
+ }
1018
+ },
1019
  "outputs": [
1020
  {
1021
  "data": {
 
1042
  " <th>Location</th>\n",
1043
  " <th>Year</th>\n",
1044
  " <th>Kilometers_Driven</th>\n",
 
 
1045
  " <th>Mileage</th>\n",
1046
  " <th>Engine</th>\n",
1047
  " <th>Power</th>\n",
1048
  " <th>Seats</th>\n",
1049
  " <th>Price</th>\n",
1050
  " <th>No_of_owners</th>\n",
1051
+ " <th>Transmission_Automatic</th>\n",
1052
+ " <th>Transmission_Manual</th>\n",
1053
+ " <th>Fuel_Type_Diesel</th>\n",
1054
+ " <th>Fuel_Type_Petrol</th>\n",
1055
  " </tr>\n",
1056
  " </thead>\n",
1057
  " <tbody>\n",
 
1061
  " <td>Pune</td>\n",
1062
  " <td>2015</td>\n",
1063
  " <td>41000</td>\n",
 
 
1064
  " <td>19.67</td>\n",
1065
  " <td>1582.0</td>\n",
1066
  " <td>126.20</td>\n",
1067
  " <td>5.0</td>\n",
1068
  " <td>12.50</td>\n",
1069
  " <td>1.0</td>\n",
1070
+ " <td>False</td>\n",
1071
+ " <td>True</td>\n",
1072
+ " <td>True</td>\n",
1073
+ " <td>False</td>\n",
1074
  " </tr>\n",
1075
  " <tr>\n",
1076
  " <th>2</th>\n",
 
1078
  " <td>Chennai</td>\n",
1079
  " <td>2011</td>\n",
1080
  " <td>46000</td>\n",
 
 
1081
  " <td>18.20</td>\n",
1082
  " <td>1199.0</td>\n",
1083
  " <td>88.70</td>\n",
1084
  " <td>5.0</td>\n",
1085
  " <td>4.50</td>\n",
1086
  " <td>1.0</td>\n",
1087
+ " <td>False</td>\n",
1088
+ " <td>True</td>\n",
1089
+ " <td>False</td>\n",
1090
+ " <td>True</td>\n",
1091
  " </tr>\n",
1092
  " <tr>\n",
1093
  " <th>3</th>\n",
 
1095
  " <td>Chennai</td>\n",
1096
  " <td>2012</td>\n",
1097
  " <td>87000</td>\n",
 
 
1098
  " <td>20.77</td>\n",
1099
  " <td>1248.0</td>\n",
1100
  " <td>88.76</td>\n",
1101
  " <td>7.0</td>\n",
1102
  " <td>6.00</td>\n",
1103
  " <td>1.0</td>\n",
1104
+ " <td>False</td>\n",
1105
+ " <td>True</td>\n",
1106
+ " <td>True</td>\n",
1107
+ " <td>False</td>\n",
1108
  " </tr>\n",
1109
  " <tr>\n",
1110
  " <th>4</th>\n",
 
1112
  " <td>Coimbatore</td>\n",
1113
  " <td>2013</td>\n",
1114
  " <td>40670</td>\n",
 
 
1115
  " <td>15.20</td>\n",
1116
  " <td>1968.0</td>\n",
1117
  " <td>140.80</td>\n",
1118
  " <td>5.0</td>\n",
1119
  " <td>17.74</td>\n",
1120
  " <td>2.0</td>\n",
1121
+ " <td>True</td>\n",
1122
+ " <td>False</td>\n",
1123
+ " <td>True</td>\n",
1124
+ " <td>False</td>\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1125
  " </tr>\n",
1126
  " <tr>\n",
1127
  " <th>6</th>\n",
 
1174
  "6 False "
1175
  ]
1176
  },
1177
+ "execution_count": 10,
1178
  "metadata": {},
1179
  "output_type": "execute_result"
1180
  }
 
1186
  },
1187
  {
1188
  "cell_type": "code",
1189
+ "execution_count": 11,
1190
  "metadata": {
1191
  "execution": {
1192
  "iopub.execute_input": "2023-10-25T11:24:35.052577Z",
 
1347
  "6 True True False 10 "
1348
  ]
1349
  },
1350
+ "execution_count": 11,
1351
  "metadata": {},
1352
  "output_type": "execute_result"
1353
  }
 
1360
  },
1361
  {
1362
  "cell_type": "code",
1363
+ "execution_count": null,
1364
  "metadata": {
1365
  "execution": {
1366
  "iopub.execute_input": "2023-10-25T11:24:35.092736Z",
 
1370
  "shell.execute_reply.started": "2023-10-25T11:24:35.092700Z"
1371
  }
1372
  },
1373
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1374
  "source": [
1375
  "df.Name.value_counts()"
1376
  ]
1377
  },
1378
  {
1379
  "cell_type": "code",
1380
+ "execution_count": 12,
1381
  "metadata": {
1382
  "execution": {
1383
  "iopub.execute_input": "2023-10-25T11:24:35.109327Z",
 
1395
  },
1396
  {
1397
  "cell_type": "code",
1398
+ "execution_count": null,
1399
  "metadata": {
1400
  "execution": {
1401
  "iopub.execute_input": "2023-10-25T11:24:35.119797Z",
 
1405
  "shell.execute_reply.started": "2023-10-25T11:24:35.119754Z"
1406
  }
1407
  },
1408
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1409
  "source": [
1410
  "df.head()"
1411
  ]
1412
  },
1413
  {
1414
  "cell_type": "code",
1415
+ "execution_count": null,
1416
  "metadata": {
1417
  "execution": {
1418
  "iopub.execute_input": "2023-10-25T11:24:35.156223Z",
 
1422
  "shell.execute_reply.started": "2023-10-25T11:24:35.156187Z"
1423
  }
1424
  },
1425
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1426
  "source": [
1427
  "df.Location.value_counts()"
1428
  ]
1429
  },
1430
  {
1431
  "cell_type": "code",
1432
+ "execution_count": 13,
1433
  "metadata": {
1434
  "execution": {
1435
  "iopub.execute_input": "2023-10-25T11:24:35.169687Z",
 
1649
  "[5 rows x 23 columns]"
1650
  ]
1651
  },
1652
+ "execution_count": 13,
1653
  "metadata": {},
1654
  "output_type": "execute_result"
1655
  }
 
1662
  },
1663
  {
1664
  "cell_type": "code",
1665
+ "execution_count": 14,
1666
  "metadata": {
1667
  "execution": {
1668
  "iopub.execute_input": "2023-10-25T11:24:35.219105Z",
 
1680
  },
1681
  {
1682
  "cell_type": "code",
1683
+ "execution_count": null,
1684
  "metadata": {
1685
  "execution": {
1686
  "iopub.execute_input": "2023-10-25T11:24:36.364741Z",
 
1690
  "shell.execute_reply.started": "2023-10-25T11:24:36.364696Z"
1691
  }
1692
  },
1693
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
1694
  "source": [
1695
  "df.shape"
1696
  ]
1697
  },
1698
  {
1699
  "cell_type": "code",
1700
+ "execution_count": 15,
1701
  "metadata": {
1702
  "execution": {
1703
  "iopub.execute_input": "2023-10-25T11:24:36.376612Z",
 
1715
  },
1716
  {
1717
  "cell_type": "code",
1718
+ "execution_count": 16,
1719
  "metadata": {
1720
  "execution": {
1721
  "iopub.execute_input": "2023-10-25T11:24:36.403139Z",
 
1733
  },
1734
  {
1735
  "cell_type": "code",
1736
+ "execution_count": 17,
1737
  "metadata": {
1738
  "execution": {
1739
  "iopub.execute_input": "2023-10-25T11:24:36.423402Z",
 
1753
  "DecisionTreeRegressor()"
1754
  ]
1755
  },
1756
+ "execution_count": 17,
1757
  "metadata": {},
1758
  "output_type": "execute_result"
1759
  }
 
1772
  },
1773
  {
1774
  "cell_type": "code",
1775
+ "execution_count": 18,
1776
  "metadata": {
1777
  "execution": {
1778
  "iopub.execute_input": "2023-10-25T11:24:36.479677Z",
 
1790
  "traceback": [
1791
  "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
1792
  "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
1793
+ "\u001b[0;32m<ipython-input-18-f778b0ff9eb9>\u001b[0m in \u001b[0;36m<cell line: 2>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0msklearn\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmetrics\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mmean_absolute_error\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mmae\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmean_absolute_error\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0my_test\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_pred\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0mmae\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
1794
  "\u001b[0;31mNameError\u001b[0m: name 'y_pred' is not defined"
1795
  ]
1796
  }
benchmark/NBspecific_19/NBspecific_19_fixed.ipynb CHANGED
@@ -14,8 +14,173 @@
14
  "shell.execute_reply.started": "2023-10-03T10:17:38.056796Z"
15
  }
16
  },
17
- "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  "source": [
 
19
  "# This Python 3 environment comes with many helpful analytics libraries installed\n",
20
  "# It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python\n",
21
  "# For example, here's several helpful packages to load\n",
@@ -198,6 +363,7 @@
198
  }
199
  ],
200
  "source": [
 
201
  "# Load train labels\n",
202
  "train_labels_df = pd.read_csv('data_small/trainLabels.csv')\n",
203
  "train_labels_df"
@@ -226,6 +392,7 @@
226
  }
227
  ],
228
  "source": [
 
229
  "# Preprocess the Data\n",
230
  "from sklearn.preprocessing import OneHotEncoder\n",
231
  "from PIL import Image\n",
@@ -286,6 +453,7 @@
286
  }
287
  ],
288
  "source": [
 
289
  "# Build the MLP Model in PyTorch\n",
290
  "import torch\n",
291
  "import torch.nn as nn\n",
@@ -326,7 +494,7 @@
326
  "outputs": [
327
  {
328
  "data": {
329
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABvlklEQVR4nO3dd1gU59oG8HsWlqUtXaQq2LuiInZNgtgSxdh7iZoomHBMcozJ0agxQQ3JMVGDxhoLliT2KIoFjb0bK7GCioiNupSFne8PP/YEQZrAbLl/18UVZ3bed5+HAb0zMzsjiKIogoiIiMiIyKQugIiIiKiyMQARERGR0WEAIiIiIqPDAERERERGhwGIiIiIjA4DEBERERkdBiAiIiIyOgxAREREZHQYgIiIiMjoMAARGaBRo0bBy8urTGNnzJgBQRDKtyDSaa/z80KkrxiAiCqRIAgl+oqOjpa6VEmMGjUK1tbWUpdhEPizRlQ0gc8CI6o8a9euzbe8evVqREVFYc2aNfnWd+nSBVWrVi3z+6jVamg0GigUilKPzcnJQU5ODszNzcv8/mU1atQo/Pbbb0hLS6v09zY0pflZc3BwKPPPC5G+YgAiklBwcDAWLVqE4n4NVSoVLC0tK6kq6TAAlV56ejqsrKyK3a6kP2tExoKnwIh0TOfOndGoUSOcPXsWHTt2hKWlJT7//HMAwLZt29CzZ0+4ublBoVCgZs2a+Oqrr5Cbm5tvjpev6bh79y4EQUBYWBh+/vln1KxZEwqFAr6+vjh9+nS+sYVdAyQIAoKDg7F161Y0atQICoUCDRs2RGRkZIH6o6Oj0bJlS5ibm6NmzZpYsmRJuV9X9Ouvv6JFixawsLCAk5MThg0bhgcPHuTbJiEhAaNHj4aHhwcUCgVcXV3Ru3dv3L17V7vNmTNn0LVrVzg5OcHCwgLe3t4YM2ZMiWr46aef0LBhQygUCri5uSEoKAhJSUna14ODg2FtbQ2VSlVg7ODBg+Hi4pJvv+3evRsdOnSAlZUVlEolevbsiStXruQbl3eK8NatW+jRoweUSiWGDh1aonqLUtTPy6JFi1CjRg1YWloiICAA9+7dgyiK+Oqrr+Dh4QELCwv07t0bz549KzBvSXoikoqp1AUQUUFPnz5F9+7dMWjQIAwbNkx7OmzVqlWwtrbG5MmTYW1tjQMHDmD69OlISUnBt99+W+y8ERERSE1Nxfvvvw9BEDBv3jy8++67uH37NuRyeZFjjxw5gs2bN2PixIlQKpX48ccf0bdvX8TFxcHR0REAcP78eXTr1g2urq6YOXMmcnNzMWvWLFSpUuX1vyn/b9WqVRg9ejR8fX0RGhqKR48e4YcffsDRo0dx/vx52NnZAQD69u2LK1euYNKkSfDy8kJiYiKioqIQFxenXQ4ICECVKlXw2Wefwc7ODnfv3sXmzZuLrWHGjBmYOXMm/P39MWHCBMTExCA8PBynT5/G0aNHIZfLMXDgQCxatAh//PEH+vfvrx2rUqmwY8cOjBo1CiYmJgCANWvWYOTIkejatSvmzp0LlUqF8PBwtG/fHufPn88XTnJyctC1a1e0b98eYWFhFXpkcN26dcjOzsakSZPw7NkzzJs3DwMGDMCbb76J6OhoTJkyBTdv3sSCBQvwySefYMWKFdqxpemJSBIiEUkmKChIfPnXsFOnTiIAcfHixQW2V6lUBda9//77oqWlpZiZmaldN3LkSLF69era5Tt37ogAREdHR/HZs2fa9du2bRMBiDt27NCu+/LLLwvUBEA0MzMTb968qV138eJFEYC4YMEC7bp33nlHtLS0FB88eKBdd+PGDdHU1LTAnIUZOXKkaGVl9crXs7OzRWdnZ7FRo0ZiRkaGdv3OnTtFAOL06dNFURTF58+fiwDEb7/99pVzbdmyRQQgnj59uti6/ikxMVE0MzMTAwICxNzcXO36hQsXigDEFStWiKIoihqNRnR3dxf79u2bb/ymTZtEAOLhw4dFURTF1NRU0c7OThw3bly+7RISEkRbW9t860eOHCkCED/77LNS1SyKhf+s/XPewn5eqlSpIiYlJWnXT506VQQgNm3aVFSr1dr1gwcPFs3MzLQ/g6XpiUgqPAVGpIMUCgVGjx5dYL2FhYX2z6mpqXjy5Ak6dOgAlUqF69evFzvvwIEDYW9vr13u0KEDAOD27dvFjvX390fNmjW1y02aNIGNjY12bG5uLvbt24fAwEC4ublpt6tVqxa6d+9e7PwlcebMGSQmJmLixIn5LtLu2bMn6tWrhz/++APAi++TmZkZoqOj8fz580LnyjtStHPnTqjV6hLXsG/fPmRnZyMkJAQy2f/+Ch03bhxsbGy0NQiCgP79+2PXrl35rmnauHEj3N3d0b59ewBAVFQUkpKSMHjwYDx58kT7ZWJiAj8/Pxw8eLBADRMmTChxva+jf//+sLW11S77+fkBAIYNGwZTU9N867Ozs7WnIcvSE1FlYwAi0kHu7u4wMzMrsP7KlSvo06cPbG1tYWNjgypVqmDYsGEAgOTk5GLnrVatWr7lvDD0qpBQ1Ni88XljExMTkZGRgVq1ahXYrrB1ZREbGwsAqFu3boHX6tWrp31doVBg7ty52L17N6pWrYqOHTti3rx5SEhI0G7fqVMn9O3bFzNnzoSTkxN69+6NlStXIisrq0w1mJmZoUaNGtrXgReBMyMjA9u3bwcApKWlYdeuXejfv7/2mqgbN24AAN58801UqVIl39fevXuRmJiY731MTU3h4eFR/DerHLy8z/PCkKenZ6Hr834WStsTkRR4DRCRDvrnkZ48SUlJ6NSpE2xsbDBr1izUrFkT5ubmOHfuHKZMmQKNRlPsvHnXnLxMLMEng15nrBRCQkLwzjvvYOvWrdizZw+mTZuG0NBQHDhwAD4+PhAEAb/99htOnDiBHTt2YM+ePRgzZgy+++47nDhxolzuR9S6dWt4eXlh06ZNGDJkCHbs2IGMjAwMHDhQu03efluzZg1cXFwKzPHPIy3Ai3D3zyNPFelV+7y4n4XS9kQkBf4UEumJ6OhoPH36FJs3b0bHjh216+/cuSNhVf/j7OwMc3Nz3Lx5s8Brha0ri+rVqwMAYmJi8Oabb+Z7LSYmRvt6npo1a+Ljjz/Gxx9/jBs3bqBZs2b47rvv8t0jp3Xr1mjdujW+/vprREREYOjQodiwYQPGjh1bbA01atTQrs/OzsadO3fg7++fb/sBAwbghx9+QEpKCjZu3AgvLy+0bt06X43Ai+/fy2P1lSH2RIaHp8CI9ETe/3X/84hLdnY2fvrpJ6lKysfExAT+/v7YunUr4uPjtetv3ryJ3bt3l8t7tGzZEs7Ozli8eHG+U1W7d+/GtWvX0LNnTwAvPmmVmZmZb2zNmjWhVCq1454/f17g6FWzZs0AoMjTYP7+/jAzM8OPP/6Yb/zy5cuRnJysrSHPwIEDkZWVhV9++QWRkZEYMGBAvte7du0KGxsbfPPNN4Vei/T48eNX1qKrDLEnMjw8AkSkJ9q2bQt7e3uMHDkSH374IQRBwJo1a3TqFNSMGTOwd+9etGvXDhMmTEBubi4WLlyIRo0a4cKFCyWaQ61WY/bs2QXWOzg4YOLEiZg7dy5Gjx6NTp06YfDgwdqPwXt5eeFf//oXAODvv//GW2+9hQEDBqBBgwYwNTXFli1b8OjRIwwaNAgA8Msvv+Cnn35Cnz59ULNmTaSmpmLp0qWwsbFBjx49XllflSpVMHXqVMycORPdunVDr169EBMTg59++gm+vr7aa7LyNG/eHLVq1cIXX3yBrKysfKe/AMDGxgbh4eEYPnw4mjdvjkGDBqFKlSqIi4vDH3/8gXbt2mHhwoUl+t7pCkPsiQwPAxCRnnB0dMTOnTvx8ccf4z//+Q/s7e0xbNgwvPXWW+jatavU5QEAWrRogd27d+OTTz7BtGnT4OnpiVmzZuHatWsl+pQa8OKo1rRp0wqsr1mzJiZOnIhRo0bB0tISc+bMwZQpU2BlZYU+ffpg7ty52k92eXp6YvDgwdi/fz/WrFkDU1NT1KtXD5s2bULfvn0BvLgI+tSpU9iwYQMePXoEW1tbtGrVCuvWrYO3t3eRNc6YMQNVqlTBwoUL8a9//QsODg4YP348vvnmm0LvpzRw4EB8/fXXqFWrFpo3b17g9SFDhsDNzQ1z5szBt99+i6ysLLi7u6NDhw6FfhpQHxhiT2RY+CgMIqpwgYGBuHLlivbTQUREUuM1QERUrjIyMvIt37hxA7t27ULnzp2lKYiIqBA8AkRE5crV1RWjRo3S3hMnPDwcWVlZOH/+PGrXri11eUREAHgNEBGVs27dumH9+vVISEiAQqFAmzZt8M033zD8EJFO4REgIiIiMjq8BoiIiIiMDgMQERERGR1eA1QIjUaD+Ph4KJVK7QMLiYiISLeJoojU1FS4ubkV+8w8BqBCxMfHF3jaMREREemHe/fuwcPDo8htGIAKoVQqAbz4BtrY2JTr3Gq1Gnv37kVAQEChd4w1JOzVcBlTv+zVcBlTv8bSa0pKCjw9PbX/jheFAagQeae9bGxsKiQAWVpawsbGxqB/CAH2asiMqV/2ariMqV9j6hVAiS5f4UXQREREZHQYgIiIiMjoMAARERGR0eE1QEREpDM0Gg2ys7Mr5b3UajVMTU2RmZmJ3NzcSnlPqRhKr3K5HCYmJuUyFwMQERHphOzsbNy5cwcajaZS3k8URbi4uODevXsGf883Q+rVzs4OLi4ur90HAxAREUlOFEU8fPgQJiYm8PT0LPYmduVBo9EgLS0N1tbWlfJ+UjKEXkVRhEqlQmJiIgDA1dX1teZjACIiIsnl5ORApVLBzc0NlpaWlfKeeafbzM3N9TYUlJSh9GphYQEASExMhLOz82udDtPf7wIRERmMvOtSzMzMJK6EdF1eQFar1a81DwMQERHpDH2/PoUqXnn9jDAAERERkdFhACIiItIhXl5emD9/fom3j46OhiAISEpKqrCaDBEDEBERURkIglDk14wZM8o07+nTpzF+/PgSb9+2bVs8fPgQtra2ZXq/kjK0oMVPgVUijUbE8dtPoRGlroSIiF7Xw4cPtX/euHEjpk+fjpiYGO06a2tr7Z9FUURubi5MTYv/Z7dKlSqlqsPMzAwuLi6lGkM8AlSpTtx+ihErz2LWORP8sP8m7j1TSV0SERGVkYuLi/bL1tYWgiBol69fvw6lUondu3ejRYsWUCgUOHLkCG7duoXevXujatWqsLa2hq+vL/bt25dv3pdPgQmCgGXLlqFPnz6wtLRE7dq1sX37du3rLx+ZWbVqFezs7LBnzx7Ur18f1tbW6N69OxISErRjcnJy8OGHH8LOzg6Ojo6YMmUKRo4cicDAwDJ/P54/f44RI0bA3t4elpaW6N69O27cuKF9PTY2Fu+88w7s7e1hZWWFhg0bYteuXdqxQ4cORZUqVWBhYYHatWtj5cqVZa6lJBiAKtHD5EzYmJviebaAhdG30WHeQQxddgLbLjxAplp/b01ORFTeRFGEKjunwr8ysnMLrBPF8jtM/9lnn2HOnDm4du0amjRpgrS0NPTo0QP79+/H+fPn0a1bN7zzzjuIi4srcp6ZM2diwIAB+Ouvv9CjRw8MHToUz549e+X2KpUKYWFhWLNmDQ4fPox79+5h2rRp2tfnzp2LdevWYeXKlTh69ChSUlKwdevW1+p11KhROHPmDLZv347jx49DFEX06NFD+3H1oKAgZGVl4fDhw7h06RLmzp2rPUo2bdo0XL16Fbt378a1a9cQHh4OJyen16qnODwFVon6tvBA1/pOmLd+L25qquDYrWc4evMpjt58CqW5KXo3c8OAlp5o7G7Lj4ISkVHLUOeiwfQ9krz31VldYWlWPv88zpo1C126dNEuOzg4oGnTptrlr776Clu2bMH27dsRHBz8ynlGjRqFwYMHAwC++eYb/Pjjjzh16hS6detW6PZqtRqLFy9GzZo1AbwIH7NmzdK+vmDBAkydOhV9+vQBACxcuFB7NKYsbty4ge3bt+Po0aNo27YtAGDdunXw9PTE1q1b0b9/f8TFxaFv375o3LgxAKBGjRra8XFxcfDx8UHLli0BvDgKVtEYgCqZQm6CFk4ipvVoiYRUNX4/dx+/nrmPB0kZWHsiDmtPxKGeixIDWnoi0McdDla8KRgRkb7K+wc9T1paGmbMmIE//vgDDx8+RE5ODjIyMoo9AtSkSRPtn62srGBjY6N9JERhLC0tteEHeHG67vHjxwCA5ORkPHr0CK1atdK+bmJighYtWpT5OWzXrl2Dqakp/Pz8tOscHR1Rt25dXLt2DQDw4YcfYsKECdi7dy/8/f3Rt29fbV8TJkxA3759ce7cOQQEBCAwMFAbpCqKpAEoNDQUmzdvxvXr12FhYYG2bdti7ty5qFu37ivHbN68Gd988w1u3rwJtVqN2rVr4+OPP8bw4cO124iiiC+//BJLly5FUlIS2rVrh/DwcNSuXbsy2ioxTwdLhPjXwYdv1sbx20+x6cw97L6cgOsJqZi18ypCd19DlwZV0b+lJzrWrgITGY8KEZFxsJCb4OqsrhX6HhqNBqkpqVDaKPM9HsJCXj5PGwdehJV/+uSTTxAVFYWwsDDUqlULFhYW6NevH7Kzs4ucRy6X51sWBKHIsFLY9uV5aq8sxo4di65du+KPP/7A3r17ERoaiu+++w6TJk1C9+7dERsbi127diEqKgpvvfUWgoKCEBYWVmH1SHoN0KFDhxAUFIQTJ04gKioKarUaAQEBSE9Pf+UYBwcHfPHFFzh+/Dj++usvjB49GqNHj8aePf87VDpv3jz8+OOPWLx4MU6ePAkrKyt07doVmZmZldFWqclkAtrVcsIPg3xw+nN/fNW7IRq720KdK2LXpQSMXnka7eYcwLd7ruPuk1d/b4iIDIUgCLA0M63wLwszkwLrKvIShKNHj2LUqFHo06cPGjduDBcXF9y9e7fC3q8wtra2qFq1Kk6fPq1dl5ubi3PnzpV5zvr16yMnJwcnT57Urnv69CliYmLQoEED7TpPT0988MEH2Lx5Mz7++GMsXbpU+1qVKlUwcuRIrF27FvPnz8fPP/9c5npKQtIjQJGRkfmWV61aBWdnZ5w9exYdO3YsdEznzp3zLX/00Uf45ZdfcOTIEXTt2hWiKGL+/Pn4z3/+g969ewMAVq9ejapVq2Lr1q0YNGhQhfRSXmwt5RjexgvD23jhanwKfj17D1vOP0BCSiYWHbyFRQdvwc/bAQNaeqJ7Y5dyO09NREQVr3bt2ti8eTPeeecdCIKAadOmlfm00+uYNGkSQkNDUatWLdSrVw8LFizA8+fPSxT+Ll26BKVSqV0WBAFNmzZF7969MW7cOCxZsgRKpRKfffYZ3N3dtf8Wh4SEoHv37qhTpw6eP3+OgwcPon79+gCA6dOno0WLFmjYsCGysrKwc+dO7WsVRaf+9UxOTgbw4ihPSYiiiAMHDiAmJgZz584FANy5cwcJCQnw9/fXbmdraws/Pz8cP3680ACUlZWFrKws7XJKSgqAFxeRve7D1l6WN19J5q1dxQKfd6uDj/1r4cD1RPx27gH+vPkUJ+88w8k7zzB9+2W83dgFfZu7o5mH7l04XZpe9Z0x9QoYV7/stfLeWxRFaDSaSgsEeaeE8t73deSNL+y//5w7LCwMY8eORdu2beHk5IR///vfSElJKVDDy8uFfV/y1r38Xi/X8HLPGo0Gn376KR4+fIgRI0bAxMQE48aNQ0BAAExMTF75vchb//IBChMTE2RnZ2P58uUICQnB22+/jezsbHTo0AE7d+7UzpmTk4OgoCDcv38fNjY26Nq1K77//ntoNBrI5XJMnToVd+/ehYWFBdq3b4+IiIhCa9FoNBBFEWq1usDT4EvzsyuIUp8U/H8ajQa9evVCUlISjhw5UuS2ycnJcHd3R1ZWFkxMTPDTTz9hzJgxAIBjx46hXbt2iI+Ph6urq3bMgAEDIAgCNm7cWGC+GTNmYObMmQXWR0REaJ86qyueZwGnHws4kSjD06z/BZ6qFiJaO2vQ0kmEDa+bJiI9Y2pqChcXF3h6evKJ8BLQaDTw8/NDYGAgvvjiC6nLKVJ2djbu3buHhIQE5OTk5HtNpVJhyJAhSE5Oho2NTZHz6MwRoKCgIFy+fLnY8AMASqUSFy5cQFpaGvbv34/JkyejRo0aBU6PldTUqVMxefJk7XJKSgo8PT0REBBQ7DewtNRqNaKiotClS5cCF6mV1FC8uKv06djn+O3sA0RefYRHGRpsizXBrvsCvu7dEH183Mq17rIoj171hTH1ChhXv+y1cmRmZuLevXuwtraGubl5pbynKIpITU2FUqnUuSPo5e3lXmNjY7F371506tQJWVlZWLRoEWJjYzFq1Khy/3evvGVmZsLCwgIdO3Ys8LOSdwanJHQiAAUHB2Pnzp04fPgwPDw8it1eJpOhVq1aAIBmzZrh2rVrCA0NRefOnbW3A3/06FG+I0CPHj1Cs2bNCp1PoVBAoVAUWC+XyyvsL4HymLt9napoX6cqUjLV2HnxITaejsPF+8n4bMtl2FiaoVsj1+InqQQV+X3UNcbUK2Bc/bLXipWbmwtBECCTyfJ9Iqsi5Z1eyXtfQ/Zyr6ampli9ejX+/e9/QxRFNGrUCPv27UPDhg0lrrR4MpkMgiAU+nNamp9bSfe4KIoIDg7Gli1bcODAAXh7e5dpHo1Go72Gx9vbGy4uLti/f7/29ZSUFJw8eRJt2rQpl7p1jY25HEP8qmFrUDv0b+EBjQh8uP4Cjtx4InVpRESkgzw9PXH06FEkJycjJSUFx44de+WHjwyVpEeAgoKCEBERgW3btkGpVGqfU2JrawsLCwsAwIgRI+Du7o7Q0FAAL+4d1LJlS9SsWRNZWVnYtWsX1qxZg/DwcAAv0m1ISAhmz56N2rVrw9vbG9OmTYObm9trPeNEHwiCgNB3GyMtKwe7Lydg/JozWDvWD82r2UtdGhERkU6RNADlhZaXr91ZuXIlRo0aBeDF7bH/eWgyPT0dEydOxP3792FhYYF69eph7dq1GDhwoHabf//730hPT8f48eORlJSE9u3bIzIystLOK0vJ1ESG+YOaIe2XM/jzxhOMWnEKG99vg/quun1Ol4gIgOQ36yPdV14/I5IGoJI0ER0dnW959uzZmD17dpFjBEHArFmz8j33xJgoTE2wZHgLDF9+Cmdjn2P48lP47YM28HKyKn4wEZEE8j7OnJ2drT0DQFQYlUoFoHTX+xRGJy6CpvJnaWaKFSN9MfDn47iekIqhy07itwlt4GrLv1iISPeYmprC0tISjx8/hlwur5SLkjUaDbKzs5GZmWkUF0Hre6+iKEKlUiExMRF2dnYF7gFUWgxABszWUo417/mh/+JjuPtUheHLT2HT+234gFUi0jmCIMDV1RV37txBbGxspbynKIrIyMiAhYWFUXwM3lB6tbOz037i+3UwABm4KkoF1o71Q//Fx3EzMQ0jV5xCxDg/KM2N4+O8RKQ/zMzMULt27WIfDFpe1Go1Dh8+jI4dOxr8LQ4MpVe5XP7aR37yMAAZAQ97S6x5zw8DlhzHpQfJGPvLGfwyphXMy/GJx0RE5UEmk1XaB1ZMTEyQk5MDc3NzvQ4FJWFMvZaUfp4IpFKr5WyN1WNaQakwxck7zzBx3Tmocyv/AXxERES6gAHIiDRyt8WykS2hMJXhwPVEfLzpInI1/MgpEREZHwYgI+NXwxGLh7WAqUzA9ovxmL7tMu+7QURERocByAi9Uc8Z/x3YDIIArDsZh2/3xEhdEhERUaViADJS7zR1w9eBjQEAP0XfwuJDtySuiIiIqPIwABmxIX7V8Fn3egCAObuvI+JknMQVERERVQ4GICP3QaeamNC5JgDgi62XsONivMQVERERVTwGIMK/u9bFUL9qEEXgXxsv4OD1RKlLIiIiqlAMQARBEPBV70bo1dQNORoRH6w9i1N3nkldFhERUYVhACIAgEwm4LsBTfFmPWdk5Wjw3qrTuPwgWeqyiIiIKgQDEGnJTWT4aWhztPJ2QGpWDkasOIWbiWlSl0VERFTuGIAoH3O5CZaPbInG7rZ4lp6N4ctP4v5zldRlERERlSsGICpAaS7HL2NaoZazNR4mZ2LYspN4nJoldVlERETlhgGICuVgZYY177WCu50F7j5VYcSKU0jOUEtdFhERUblgAKJXcrW1wLqxfnCyVuDawxSMWXUaquwcqcsiIiJ6bQxAVCQvJyusea8VbMxNcTb2OcatPoNHKZlSl0VERPRaGICoWPVdbbBydCtYyE1w9OZTdPr2IL7dcx0pmTwlRkRE+okBiEqkRXV7bHq/DVpUt0emWoNFB2+h07yDWHHkDrJycqUuj4iIqFQYgKjEGnvY4rcP2mDJ8BaoUcUKz1VqzNp5Ff7fH8K2Cw+g0YhSl0hERFQiDEBUKoIgoGtDF+wN6Yhv+jRGFaUC955l4KMNF9Br0REcufFE6hKJiIiKxQBEZWJqIsMQv2o49GlnfNylDqwVprj8IAXDlp/E8OUncSWej9EgIiLdZSp1AaTfLM1MMemt2hjiVw0LDtzEupOx+PPGExy5eQS9mriiKSM2ERHpIP7zROXC0VqBGb0aYt/kTninqRtEEdh28SG+vmCC0N0xeJ6eLXWJREREWgxAVK6qO1phwWAfbA9uhzY1HJArClhxLBYdvz2In6JvIlPNT4wREZH0GICoQjTxsMMvo1rgg3q5qFfVGqmZOZgXGYPO30Zj4+k45PITY0REJCEGIKowgiCgvr2IbRPb4PsBTeFuZ4GElExM+f0Sus0/jH1XH0EUGYSIiKjySRqAQkND4evrC6VSCWdnZwQGBiImJqbIMUuXLkWHDh1gb28Pe3t7+Pv749SpU/m2SUtLQ3BwMDw8PGBhYYEGDRpg8eLFFdkKFUEmE/Bucw/s/7gTvuhRH7YWctxITMPY1WcwcMkJnIt7LnWJRERkZCQNQIcOHUJQUBBOnDiBqKgoqNVqBAQEID09/ZVjoqOjMXjwYBw8eBDHjx+Hp6cnAgIC8ODBA+02kydPRmRkJNauXYtr164hJCQEwcHB2L59e2W0Ra9gLjfBuI41cPjTN/B+pxowM5Xh1N1nePenY5iw9ixuP06TukQiIjISkgagyMhIjBo1Cg0bNkTTpk2xatUqxMXF4ezZs68cs27dOkycOBHNmjVDvXr1sGzZMmg0Guzfv1+7zbFjxzBy5Eh07twZXl5eGD9+PJo2bVrgSBFJw9ZSjqnd6yP6k87o38IDggDsvpyALv89jDm7r/O0GBERVTidugYoOfnFzfMcHBxKPEalUkGtVucb07ZtW2zfvh0PHjyAKIo4ePAg/v77bwQEBJR7zVR2bnYW+LZ/U0R+1BFv1nNGrkbE4kO3MHPHVYYgIiKqUDpzI0SNRoOQkBC0a9cOjRo1KvG4KVOmwM3NDf7+/tp1CxYswPjx4+Hh4QFTU1PIZDIsXboUHTt2LHSOrKwsZGVlaZdTUlIAAGq1Gmp1+T7xPG++8p5XF5W01xqO5lgytBl+O/cAU7dcwapjd2EiiJjStQ4EQaiMUl+bMe1XwLj6Za+Gy5j6NZZeS9OfIOrI/2pPmDABu3fvxpEjR+Dh4VGiMXPmzMG8efMQHR2NJk2aaNeHhYVh6dKlCAsLQ/Xq1XH48GFMnToVW7ZsyReU8syYMQMzZ84ssD4iIgKWlpZlb4pK7dgjARtvmwAA/N01eNtTAz3JQEREJDGVSoUhQ4YgOTkZNjY2RW6rEwEoODgY27Ztw+HDh+Ht7V2iMWFhYZg9ezb27duHli1batdnZGTA1tYWW7ZsQc+ePbXrx44di/v37yMyMrLAXIUdAfL09MSTJ0+K/QaWllqtRlRUFLp06QK5XF6uc+uasva69mQcZu68DgD48I2amPRmzYoqsdwY034FjKtf9mq4jKlfY+k1JSUFTk5OJQpAkp4CE0URkyZNwpYtWxAdHV3i8DNv3jx8/fXX2LNnT77wA/zvtJVMlv/yJhMTE2g0mkLnUygUUCgUBdbL5fIK+0GpyLl1TWl7Hd2+JnJFAbP/uIYfD96CwswUQW/UqsAKy48x7VfAuPplr4bLmPo19F5L05ukASgoKAgRERHYtm0blEolEhISAAC2trawsLAAAIwYMQLu7u4IDQ0FAMydOxfTp09HREQEvLy8tGOsra1hbW0NGxsbdOrUCZ9++iksLCxQvXp1HDp0CKtXr8b3338vTaNUamM71IA6V8TcyOv4dk8MzExkGNexhtRlERGRgZD0U2Dh4eFITk5G586d4erqqv3auHGjdpu4uDg8fPgw35js7Gz069cv35iwsDDtNhs2bICvry+GDh2KBg0aYM6cOfj666/xwQcfVGp/9HomdK6JyV3qAAC+3nUNq47ekbgiIiIyFJKfAitOdHR0vuW7d+8WO8bFxQUrV64sY1WkSz58qzbUuRosOHATM3ZchamJDMNaV5e6LCIi0nM6dR8gosJM7lIH73d6cfrrP1svY9PpexJXRERE+o4BiHSeIAj4rFs9jG7nBQCYsvkvbD53X9qiiIhIrzEAkV4QBAHT326AYa2rQRSBT369iB0X46Uui4iI9BQDEOkNQRAwq1cjDPL1hEYEQjZeQOTlh8UPJCIiegkDEOkVmUzAN30ao29zD+RqRARHnMe+q4+kLouIiPQMAxDpHZlMwLx+TdC7mRtyNCImrjuHgzGJUpdFRER6hAGI9JKJTMB3/ZuiR2MXZOdq8P6aszhy44nUZRERkZ5gACK9ZWoiww+DfNClQVVk52gwdvVpnLj9VOqyiIhIDzAAkV6Tm8iwcIgP3qhbBZlqDcasOo0zd59JXRYREek4BiDSewpTE4QPa4EOtZ2gys7FqJWncT7uudRlERGRDmMAIoNgLjfBz8Nbok0NR6Rl5WDEilO4dD9Z6rKIiEhHMQCRwbAwM8HyUS3RyssBqZk5GLb8JK7Gp0hdFhER6SAGIDIolmamWDHaFz7V7JCcocaw5Sfx96NUqcsiIiIdwwBEBsdaYYpVo1uhiYctnqVnY8jSk7iZmCZ1WUREpEMYgMgg2VrIsXpMKzRwtcGTtCwMWXoCd56kS10WERHpCAYgMlh2lmZYO9YPdasqkZj6IgTFPVVJXRYREekABiAyaA5WZlg3zg+1nK3xMDkTA38+ziNBRETEAESGz8lagYixfqhZxQoPkzMxYMlxXhhNRGTkGIDIKDjbmGPj+21Qz0WJx6lZGPTzCVx+wPsEEREZKwYgMhpO1gpsGN/6H58OO8E7RhMRGSkGIDIqeRdGt6xuj5TMHAxbdhIn+QBVIiKjwwBERsfGXI5fxrRC25qOSM/OxciVp3DkxhOpyyIiokrEAERGyUphihWjfNE57ynyv5zGgeuPpC6LiIgqCQMQGS1zuQmWDG+Brg2rIjtHg/fXnMXuSw+lLouIiCoBAxAZNYWpCRYOaY5eTd2gzhURvP48tp5/IHVZRERUwRiAyOjJTWT478Bm6N/CA7kaEf/adAEbT8dJXRYREVUgBiAiACYyAXP7NsHw1tUhisCU3y/hl2N3pS6LiIgqCAMQ0f+TyQTM6t0Q4zp4AwC+3H4FSw7dkrgqIiKqCAxARP8gCAI+71EfH75ZCwAQuvs65u/7G6IoSlwZERGVJwYgopcIgoDJAXXxade6AID5+25gbmQMQxARkQFhACJ6haA3amH62w0AAIsP3cLMHVeh0TAEEREZAkkDUGhoKHx9faFUKuHs7IzAwEDExMQUOWbp0qXo0KED7O3tYW9vD39/f5w6darAdteuXUOvXr1ga2sLKysr+Pr6Ii6On+yh0hnT3hvf9GkMQQBWHbuLz7dcQi5DEBGR3pM0AB06dAhBQUE4ceIEoqKioFarERAQgPT09FeOiY6OxuDBg3Hw4EEcP34cnp6eCAgIwIMH/7t3y61bt9C+fXvUq1cP0dHR+OuvvzBt2jSYm5tXRltkYIb4VUNYv6aQCcCG0/fwya8XkZOrkbosIiJ6DaZSvnlkZGS+5VWrVsHZ2Rlnz55Fx44dCx2zbt26fMvLli3D77//jv3792PEiBEAgC+++AI9evTAvHnztNvVrFmznKsnY9K3hQfM5Sb4aMN5bDn/AJnqXPwwyAdmpjyLTESkjyQNQC9LTk4GADg4OJR4jEqlglqt1o7RaDT4448/8O9//xtdu3bF+fPn4e3tjalTpyIwMLDQObKyspCVlaVdTklJAQCo1Wqo1eoydlO4vPnKe15dZGi9BtR3wsJBTTFp40XsvpyAzDWnsWBgUyjkJgbXa3GMqV/2ariMqV9j6bU0/Qmijny0RaPRoFevXkhKSsKRI0dKPG7ixInYs2cPrly5AnNzcyQkJMDV1RWWlpaYPXs23njjDURGRuLzzz/HwYMH0alTpwJzzJgxAzNnziywPiIiApaWlq/VFxme60kClsXIoNYIqGurwdi6GpiZSF0VERGpVCoMGTIEycnJsLGxKXJbnQlAEyZMwO7du3HkyBF4eHiUaMycOXMwb948REdHo0mTJgCA+Ph4uLu7Y/DgwYiIiNBu26tXL1hZWWH9+vUF5insCJCnpyeePHlS7DewtNRqNaKiotClSxfI5fJynVvXGHKvJ+88w/i156HKzoWvlz1+GtgIxw4fNMheC2PI+/Zl7NVwGVO/xtJrSkoKnJycShSAdOIUWHBwMHbu3InDhw+XOPyEhYVhzpw52Ldvnzb8AICTkxNMTU3RoEGDfNvXr1//lUeWFAoFFApFgfVyubzCflAqcm5dY4i9tq9TFWve88Ooladw+u5zjF33Fwa5GmavRTGmftmr4TKmfg2919L0JukVnKIoIjg4GFu2bMGBAwfg7e1donHz5s3DV199hcjISLRs2TLfa2ZmZvD19S3wcfq///4b1atXL7faiVpUt8f6ca1hbynHxfvJWHTVBAkpmVKXRUREJSBpAAoKCsLatWsREREBpVKJhIQEJCQkICMjQ7vNiBEjMHXqVO3y3LlzMW3aNKxYsQJeXl7aMWlpadptPv30U2zcuBFLly7FzZs3sXDhQuzYsQMTJ06s1P7I8DVyt8WG8W3gZG2G++kC3l54DDsuxktdFhERFUPSABQeHo7k5GR07twZrq6u2q+NGzdqt4mLi8PDhw/zjcnOzka/fv3yjQkLC9Nu06dPHyxevBjz5s1D48aNtR+Vb9++faX2R8ahrosSG8a1QjUrEckZOZi0/jw+2nAeySrD/rQFEZE+k/QaoJJcfx0dHZ1v+e7duyWae8yYMRgzZkwZqiIqveoOlghplIs7lnXw06E72HYhHqfuPENY/6ZoV8tJ6vKIiOglvIsbUTkxkQEfvlkLv33QBt5OVniYnImhy07iq51XkanOlbo8IiL6BwYgonLmU80ef3zYHsNaVwMALD9yB+8sOILLD5IlroyIiPIwABFVAEszU8wObIyVo31RRanAjcQ09PnpKBYdvMmHqRIR6QAGIKIK9EZdZ+wJ6YhuDV2gzhXx7Z4YDFxyHHFPVVKXRkRk1BiAiCqYg5UZwoc1x3f9m8JaYYozsc/R/YfD2Hg6rkQfBCAiovLHAERUCQRBQN8WHtj9UQe08nZAenYupvx+CePXnMWTtKziJyAionLFAERUiTwdLLF+XGt83qMezExkiLr6CN3mH0bU1UdSl0ZEZFQYgIgqmYlMwPiONbEtuB3quSjxJC0b41afwWe//4W0rBypyyMiMgoMQEQSqe9qg23B7fB+xxoQBGDD6Xvo8cOfOBv7TOrSiIgMHgMQkYQUpiaY2qM+1o9rDXc7C8Q9U6H/4uP4ds91ZOdopC6PiMhgMQAR6YDWNRyxO6QD+jb3gEYEFh28hT4/HcWNR6lSl0ZEZJAYgIh0hI25HN8NaIrwoc1hbynHlfgU9FxwBCuO3IGGN08kIipXDEBEOqZ7Y1fsCemIznWrIDtHg1k7r2L4ipN4mJwhdWlERAaDAYhIBznbmGPlKF98FdgI5nIZjt58iu4//Ilzcc+lLo2IyCAwABHpKEEQMLx1dez6sAMau9siSaXGsGUnceTGE6lLIyLSewxARDquRhVrbHy/NTrUdoIqOxdjVp1G5OUEqcsiItJrDEBEesDSzBTLRrZE90YuyM7VYOK6s/j1zD2pyyIi0lsMQER6QmFqggWDfTCg5YuPyn/6219YfuSO1GUREeklBiAiPWJqIsPcvk0wtr03AOCrnVfxfdTffKo8EVEpMQAR6RlBEPBFz/r4JKAOAODH/Tcwc8dV3iuIiKgUGICI9JAgCAh+szZm9W4IAFh17C4++fUicnL5+AwiopJgACLSYyPaeGH+wGYwkQnYfP4BPlh7DpnqXKnLIiLSeQxARHou0McdS4a1gJmpDPuuPcLolaeRlpUjdVlERDqNAYjIAPg3qIpfRreCtcIUx28/xdClJ/A8PVvqsoiIdBYDEJGBaFPTERHj/GBvKcfF+8kYsOQ4EpIzpS6LiEgnMQARGZAmHnbY9H4buNiY40ZiGvotPobYp+lSl0VEpHMYgIgMTO2qSvz6QRt4OVri/vMM9Ft8HNcepkhdFhGRTmEAIjJAng6W2PRBG9RzUeJxahYGLjmOs7F8kjwRUR4GICID5aw0x8bxbdC8mh1SMnMwbNlJ/HnjsdRlERHpBAYgIgNmaynH2rF+6FDbCRnqXLy36gwiLz+UuiwiIskxABEZuLwnyfdonPck+XPYxCfJE5GRkzQAhYaGwtfXF0qlEs7OzggMDERMTEyRY5YuXYoOHTrA3t4e9vb28Pf3x6lTp165/QcffABBEDB//vxyrp5If7x4knxzDGzpCY0I/Pu3v7Dsz9tSl0VEJBlJA9ChQ4cQFBSEEydOICoqCmq1GgEBAUhPf/XHdqOjozF48GAcPHgQx48fh6enJwICAvDgwYMC227ZsgUnTpyAm5tbRbZBpBdMZALm9G2M8R1rAABm/3EN3++N4ZPkicgomUr55pGRkfmWV61aBWdnZ5w9exYdO3YsdMy6devyLS9btgy///479u/fjxEjRmjXP3jwAJMmTcKePXvQs2fP8i+eSA8JgoCp3evB1kKOb/fE4McDN5GcocaX7zSETCZIXR4RUaWRNAC9LDk5GQDg4OBQ4jEqlQpqtTrfGI1Gg+HDh+PTTz9Fw4YNi50jKysLWVlZ2uWUlBf3TFGr1VCr1SWupSTy5ivveXURe9Vd49tXh5VcwMw/ruOX47FIUmUjtE9DyE1KdlBY3/p9HezVcBlTv8bSa2n6E0QdOf6t0WjQq1cvJCUl4ciRIyUeN3HiROzZswdXrlyBubk5gBfXFh08eBB79uyBIAjw8vJCSEgIQkJCCp1jxowZmDlzZoH1ERERsLS0LFM/RPrgzGMB627KoIEAH0cNRtbWQOCBICLSUyqVCkOGDEFycjJsbGyK3FZnjgAFBQXh8uXLpQo/c+bMwYYNGxAdHa0NP2fPnsUPP/yAc+fOQSjh3+RTp07F5MmTtcspKSnaa4uK+waWllqtRlRUFLp06QK5XF6uc+sa9qr7egBoH/MYwesv4PxTGd5u3QAjWlcrdpy+9lsW7NVwGVO/xtJr3hmcktCJABQcHIydO3fi8OHD8PDwKNGYsLAwzJkzB/v27UOTJk206//8808kJiaiWrX//SWem5uLjz/+GPPnz8fdu3cLzKVQKKBQKAqsl8vlFfaDUpFz6xr2qtu6NnLDFz2yMGPHVcyN/ButvJ3Q2MO2RGP1sd+yYq+Gy5j6NfReS9ObpJ8CE0URwcHB2LJlCw4cOABvb+8SjZs3bx6++uorREZGomXLlvleGz58OP766y9cuHBB++Xm5oZPP/0Ue/bsqYg2iPTeyLZeCGhQFdm5GgSvP4fUTMO+ToCISNIjQEFBQYiIiMC2bdugVCqRkJAAALC1tYWFhQUAYMSIEXB3d0doaCgAYO7cuZg+fToiIiLg5eWlHWNtbQ1ra2s4OjrC0dEx3/vI5XK4uLigbt26ldgdkf4QBAHf9muKKz/+idinKkzdfAkLBvuU+DQyEZG+kfQIUHh4OJKTk9G5c2e4urpqvzZu3KjdJi4uDg8fPsw3Jjs7G/369cs3JiwsTIoWiAyGraUcC4b4wFQmYOdfD7H+FO8WTUSGS9IjQCX5AFp0dHS+5cKu4SlOWcYQGaPm1ezxade6CN19HTN3XIFPNTvUdy3fDwIQEekCPguMiPIZ16EGOtetgqwcDYIjziE9K0fqkoiIyh0DEBHlI5MJ+K5/U1S1UeDW43RM33ZF6pKIiModAxARFeBorcCPg3wgE4Dfz93Hb2fvS10SEVG5YgAiokL51XDEv/zrAACmbb2Mm4lpEldERFR+GICI6JUmvlEL7Wo5IkOdi+CIc8hU50pdEhFRuWAAIqJXMpEJ+O/AZnCyNsP1hFTM2nlV6pKIiMoFAxARFclZaY75A30gCEDEyTjsuBgvdUlERK+NAYiIitW+thOCOtcCAEzdfAmxz1QSV0RE9HoYgIioREL8a8PXyx5pWTkI2fgXcjRSV0REVHYMQERUIqYmMvw42Af2lnJcjk/B9lj+9UFE+ot/gxFRibnaWuC7AU0BAIcSZIi6mihxRUREZcMARESl8ma9qnivXXUAwGdbLuP+c14PRET6hwGIiEptsn9tVLcWkZKZg0nrz0OdywuCiEi/MAARUamZmcowsnYulOamOB+XhLC9MVKXRERUKgxARFQmjubAN4ENAQBLDt3GwRheD0RE+oMBiIjKrFvDqhjR5sX1QB9vuoiE5EyJKyIiKhkGICJ6LZ/3qI8GrjZ4lp6NDzecRw6vByIiPVCmAHTv3j3cv39fu3zq1CmEhITg559/LrfCiEg/mMtNsHCID6zMTHDqzjP8eOCm1CURERWrTAFoyJAhOHjwIAAgISEBXbp0walTp/DFF19g1qxZ5VogEem+GlWs8c27jQEACw7cwLGbTySuiIioaGUKQJcvX0arVq0AAJs2bUKjRo1w7NgxrFu3DqtWrSrP+ohIT/Ru5o6BLT0hisBHGy/gcWqW1CUREb1SmQKQWq2GQqEAAOzbtw+9evUCANSrVw8PHz4sv+qISK/M6NUQdapa43FqFiZvugCNRpS6JCKiQpUpADVs2BCLFy/Gn3/+iaioKHTr1g0AEB8fD0dHx3ItkIj0h4WZCRYNaQ5zuQx/3niC8EO3pC6JiKhQZQpAc+fOxZIlS9C5c2cMHjwYTZu+eDbQ9u3btafGiMg41a6qxKzejQAA30f9jdN3n0lcERFRQaZlGdS5c2c8efIEKSkpsLe3164fP348LC0ty604ItJP/Vt44Pitp9hy/gE+XH8euz7sAHsrM6nLIiLSKtMRoIyMDGRlZWnDT2xsLObPn4+YmBg4OzuXa4FEpH8EQcBXgY1Qw8kKD5Mz8fGvFyGKvB6IiHRHmQJQ7969sXr1agBAUlIS/Pz88N133yEwMBDh4eHlWiAR6SdrhSkWDPGBmakMB64nYvYf15DLi6KJSEeUKQCdO3cOHTp0AAD89ttvqFq1KmJjY7F69Wr8+OOP5VogEemvhm62mPHOi+eFLT9yB6NXnUaySi1xVUREZQxAKpUKSqUSALB37168++67kMlkaN26NWJjY8u1QCLSb0P8quGHQc1gLpfh8N+P0WvREfz9KFXqsojIyJUpANWqVQtbt27FvXv3sGfPHgQEBAAAEhMTYWNjU64FEpH+693MHb9PaAt3OwvEPlUhcNFRRF7mPcOISDplCkDTp0/HJ598Ai8vL7Rq1Qpt2rQB8OJokI+PT7kWSESGoaGbLXZMao82NRyhys7FB2vP4bu9MbxZIhFJokwBqF+/foiLi8OZM2ewZ88e7fq33noL//3vf0s8T2hoKHx9faFUKuHs7IzAwEDExMQUOWbp0qXo0KED7O3tYW9vD39/f5w6dUr7ulqtxpQpU9C4cWNYWVnBzc0NI0aMQHx8fOkbJaJy5WBlhjXvtcKYdt4AgAUHbmLc6jNIyeR1QURUucoUgADAxcUFPj4+iI+P1z4ZvlWrVqhXr16J5zh06BCCgoJw4sQJREVFQa1WIyAgAOnp6a8cEx0djcGDB+PgwYM4fvw4PD09ERAQgAcPHgB4cX3SuXPnMG3aNJw7dw6bN29GTEyM9nEdRCQtUxMZpr/TAN8PaAozUxn2X09E4KKjuJmYJnVpRGREynQjRI1Gg9mzZ+O7775DWtqLv7SUSiU+/vhjfPHFF5DJSparIiMj8y2vWrUKzs7OOHv2LDp27FjomHXr1uVbXrZsGX7//Xfs378fI0aMgK2tLaKiovJts3DhQrRq1QpxcXGoVq1aSdskogr0bnMP1HK2xvtrzuL243QELjqK+QObwb9BValLIyIjUKYjQF988QUWLlyIOXPm4Pz58zh//jy++eYbLFiwANOmTStzMcnJyQAABweHEo9RqVRQq9VFjklOToYgCLCzsytzbURU/pp42GF7cHu08nJAWlYOxq4+gx/23eB1QURU4cp0BOiXX37BsmXL8p1WatKkCdzd3TFx4kR8/fXXpZ5To9EgJCQE7dq1Q6NGjUo8bsqUKXBzc4O/v3+hr2dmZmLKlCkYPHjwKz+hlpWVhaysLO1ySkoKgBfXE6nV5XttQt585T2vLmKvhqs8+7Uzl2HVqOYI3R2DNSfv4b/7/sblB0mY17cRrBVl+iuqXBnTvjWmXgHj6tdYei1Nf4JYhvvTm5ub46+//kKdOnXyrY+JiUGzZs2QkZFR2ikxYcIE7N69G0eOHIGHh0eJxsyZMwfz5s1DdHQ0mjRpUuB1tVqNvn374v79+4iOjn5lAJoxYwZmzpxZYH1ERASfbUZUiU4kCth0W4ZcUYCLhYj36ubC2ULqqohIX6hUKgwZMgTJycnF3panTAHIz88Pfn5+Be76PGnSJJw6dQonT54s1XzBwcHYtm0bDh8+DG9v7xKNCQsLw+zZs7Fv3z60bNmywOtqtRoDBgzA7du3ceDAATg6Or5yrsKOAHl6euLJkyflfl8jtVqNqKgodOnSBXK5vFzn1jXs1XBVZL8X7iUheP1FPErNgtLcFN/3b4zOdaqU63uUhjHtW2PqFTCufo2l15SUFDg5OZUoAJXp+PK8efPQs2dP7Nu3T3sPoOPHj+PevXvYtWtXiecRRRGTJk3Cli1bEB0dXeLwM2/ePHz99dfYs2dPkeHnxo0bOHjwYJHhBwAUCgUUCkWB9XK5vMJ+UCpybl3DXg1XRfTrW6MKdnzYHhPWnsPZ2OcYv/Y8Pgmoi4mda0IQhHJ9r9Iwpn1rTL0CxtWvofdamt7KdBF0p06d8Pfff6NPnz5ISkpCUlIS3n33XVy5cgVr1qwp8TxBQUFYu3YtIiIioFQqkZCQgISEhHyn0EaMGIGpU6dql+fOnYtp06ZhxYoV8PLy0o7J+zSaWq1Gv379cObMGaxbtw65ubnabbKzs8vSLhFVMmelOdaPa40hftUgisC3e2IQFHEO6Vk5UpdGRAaizFcYurm5FbjY+eLFi1i+fDl+/vnnEs2R9+T4zp0751u/cuVKjBo1CgAQFxeX72P14eHhyM7ORr9+/fKN+fLLLzFjxgw8ePAA27dvBwA0a9Ys3zYHDx4s8F5EpJvMTGX4pk9jNHSzwYztV7DrUgJuP07Hz8Nbopojr80jotcj6UcsSnL5UXR0dL7lu3fvFrm9l5dXieYlIv0w1K866lZVYsK6c7iekIp3Fh7BwiE+6FBbuuuCiEj/lflO0ERElaWllwN2BLdHU087JGeoMXLFKfx8+Bb/Z4eIyowBiIj0goutOTaOb40BLT2gEYFvdl3HRxsuICM7V+rSiEgPleoU2Lvvvlvk60lJSa9TCxFRkczlJpjbtwkaudti1o6r2H4xHjcT0/DziBbwsOd1QURUcqUKQLa2tsW+PmLEiNcqiIioKIIgYEQbL9StqsTEdedw9WEK3llwBFO61UP/lp4wkUn3UXki0h+lCkArV66sqDqIiErFr4Yjdkxqj/fXnMWlB8n4bPMlrDp2F//p2QDtaztJXR4R6TheA0REesvNzgK/T2iLaW83gI25Ka4npGLY8pN4b9Vp3ExMk7o8ItJhDEBEpNfMTGV4r703Dn36Bka384KpTMD+64noOv8wvtx2Gc/SeQNUIiqIAYiIDIK9lRm+fKch9v6rI7o0qIpcjYhfjsei07cHsfTwbWTl8NNiRPQ/DEBEZFBqVLHG0hEtETHODw1cbZCamYOvd11Dl+8PY/elh7x3EBEBYAAiIgPVtqYTdkxqj2/7NYGzUoG4ZypMWHcOA5Ycx8V7SVKXR0QSYwAiIoNlIhPQv6UnDn7SGR+9VRvmchlO332O3ouO4l8bLyA+KaP4SYjIIDEAEZHBs1KY4l9d6uDgJ53Rt7kHAGDL+Qd4Iywa3+2N4VPmiYwQAxARGQ1XWwt8N6ApdgS3RytvB2TlaLDgwE10DovGxtNxyNXw+iAiY8EARERGp7GHLTaOb43Fw1qguqMlHqdmYcrvl9Dzxz9x9OYTqcsjokrAAERERkkQBHRr5IKof3XCf3rW195Icegy3kiRyBgwABGRUTMzlWFshxo49OkbGNWWN1IkMhYMQEREeHEjxRm9GmLPvzrCv/7/bqToP/8IDj8UeP8gIgPDAERE9A81q1hj2ciWiBj7vxsp/n7XBHMi/2YIIjIgDEBERIVoW+vFjRSndK0DAFhxLBafb7nMT4oRGQgGICKiVzCRCRjb3guDa+ZCJgDrT8Vh8qYLUOdqpC6NiF4TAxARUTFaO4v4b/8mMJUJ2HYhHhPXnePDVYn0HAMQEVEJ9Gjsgp9HtICZqQxRVx9h7C9noMrmHaSJ9BUDEBFRCb1ZrypWjfKFpZkJ/rzxBCNXnEJKplrqsoioDBiAiIhKoW0tJ6wd6wcbc1OcvvscQ5ee5L2CiPQQAxARUSk1r2aP9eNbw9HKDJceJGPQz8eRmJIpdVlEVAoMQEREZdDQzRYb328DFxtz/P0oDf2XHMf95yqpyyKiEmIAIiIqo1rO1vj1gzbwdLBA7FMVBiw+jtuP+QwxIn3AAERE9Bo8HSzx6/ttUbOKFeKTMzFgyQlcT0iRuiwiKgYDEBHRa3KxNcem99uggasNnqRlYeCSE7hwL0nqsoioCAxARETlwNFagfXjW6N5NTskZ6gxdOkJnLz9VOqyiOgVGICIiMqJrYUca97zQ9uajkjPzsXIlacQHZModVlEVAhJA1BoaCh8fX2hVCrh7OyMwMBAxMTEFDlm6dKl6NChA+zt7WFvbw9/f3+cOnUq3zaiKGL69OlwdXWFhYUF/P39cePGjYpshYgIAGClMMWKUb54q54zMtUajFt9BpGXH0pdFhG9RNIAdOjQIQQFBeHEiROIioqCWq1GQEAA0tPTXzkmOjoagwcPxsGDB3H8+HF4enoiICAADx480G4zb948/Pjjj1i8eDFOnjwJKysrdO3aFZmZvE8HEVU8c7kJFg9vgbebuEKdKyIo4jw2n7svdVlE9A+mUr55ZGRkvuVVq1bB2dkZZ8+eRceOHQsds27dunzLy5Ytw++//479+/djxIgREEUR8+fPx3/+8x/07t0bALB69WpUrVoVW7duxaBBgyqmGSKif5CbyPDDIB9Ymplg05n7mLzpItKzczG8dXWpSyMiSByAXpacnAwAcHBwKPEYlUoFtVqtHXPnzh0kJCTA399fu42trS38/Pxw/PjxQgNQVlYWsrKytMspKS8+wqpWq6FWl+9zfvLmK+95dRF7NVzG1O/r9vrVO/VhbirD6hNxmLb1MlIzsjCuvXd5llhujGm/AsbVr7H0Wpr+BFEUxQqspcQ0Gg169eqFpKQkHDlypMTjJk6ciD179uDKlSswNzfHsWPH0K5dO8THx8PV1VW73YABAyAIAjZu3FhgjhkzZmDmzJkF1kdERMDS0rJsDRER/T9RBHbdk2HvgxdXHXR116C7pwaCIHFhRAZGpVJhyJAhSE5Oho2NTZHb6swRoKCgIFy+fLlU4WfOnDnYsGEDoqOjYW5uXub3njp1KiZPnqxdTklJ0V5bVNw3sLTUajWioqLQpUsXyOXycp1b17BXw2VM/ZZXrz0BLDl8B2FRN7DngQxu1b0xtVsdCDqUgoxpvwLG1a+x9Jp3BqckdCIABQcHY+fOnTh8+DA8PDxKNCYsLAxz5szBvn370KRJE+16FxcXAMCjR4/yHQF69OgRmjVrVuhcCoUCCoWiwHq5XF5hPygVObeuYa+Gy5j6LY9eg9+qAxtLM0zfdgUrj8UiQ63B130aw0SmOyEIMK79ChhXv4bea2l6k/RTYKIoIjg4GFu2bMGBAwfg7V2y8+Lz5s3DV199hcjISLRs2TLfa97e3nBxccH+/fu161JSUnDy5Em0adOmXOsnIiqtEW28ENa/KWQCsOH0Pfxr4wWoczVSl0VkdCQ9AhQUFISIiAhs27YNSqUSCQkJAF5ctGxhYQEAGDFiBNzd3REaGgoAmDt3LqZPn46IiAh4eXlpx1hbW8Pa2hqCICAkJASzZ89G7dq14e3tjWnTpsHNzQ2BgYGS9ElE9E/9WnjA0swEH204j+0X45GSqcaPg31gY264/2dOpGskPQIUHh6O5ORkdO7cGa6urtqvf16oHBcXh4cPH+Ybk52djX79+uUbExYWpt3m3//+NyZNmoTx48fD19cXaWlpiIyMfK3rhIiIylOPxq74eXhLmMtliI55jMBFR3GLT5InqjSSHgEqyQfQoqOj8y3fvXu32DGCIGDWrFmYNWtWGSsjIqp4b9Rzxm8ftMX41Wdw+3E6AhcdxY+DffBGXWepSyMyeHwWGBGRhBq522JbcHv4etkjNTMHY1adxuJDt0r0P4hEVHYMQEREEquiVGDd2NYY3KoaRBGYs/s6QjZeQKY6V+rSiAwWAxARkQ4wM5Uh9N3G+CqwEUxlArZdiEe/xccQn5QhdWlEBokBiIhIhwxvXR1rx/rBwcoMlx+koNfCIzhz95nUZREZHAYgIiId07qGI7YFtUN9Vxs8ScvG4KUnsOFUnNRlERkUBiAiIh3k6WCJ3ye0Qc/GrlDnivhs8yVM33aZN00kKicMQEREOsrSzBQLh/jgk4A6AIDVx2MxfPlJPEvPlrgyIv3HAEREpMMEQUDwm7WxdERLWJmZ4MTtZ+i18Aiuxpf8oY9EVBADEBGRHujSoCq2BLVDdUdL3H+egb7hx7D70sPiBxJRoRiAiIj0RJ2qSmwLaocOtZ2Qoc7FhHXn8P3eGGg0vGkiUWkxABER6RE7SzOsHOWLse29AQA/HriJ99eeRVpWjsSVEekXBiAiIj1jaiLDf95ugO/6N4WZqQxRVx/h3Z+OIvZputSlEekNBiAiIj3Vt4UHNo5vDWelAn8/SkOvhUfx543HUpdFpBcYgIiI9JhPNXvsmNQezTztkJyhxsgVp7Dsz9t8mCpRMRiAiIj0XFUbc2wY3xp9m3tAIwKz/7iGT379iw9TJSoCAxARkQEwl5sgrH8TTHu7AWQC8Pu5+xj08wk8SsmUujQincQARERkIARBwHvtvbF6jB9sLeS4cC8J7yw4gov3kqQujUjnMAARERmY9rWdsC2oHWo7WyMxNQsDfz6OvVcSpC6LSKcwABERGSAvJytsntgWnepUQaZag/fXnsXKo3ekLotIZzAAEREZKKW5HMtGtsTgVp4QRWDmjquYueMKcnnnaCIGICIiQyY3keGbPo0xpVs9AMDKo3cxYe1ZZGTzE2Jk3BiAiIgMnCAImNC5JhYM9oGZiQx7rz7CoKUn8Dg1S+rSiCTDAEREZCTeaeqGdeP8YGcpx8V7SXg3/ChuJqZJXRaRJBiAiIiMiK+XAzZPaIvqjpa49ywD7/50FCduP5W6LKJKxwBERGRkalSxxuYJbdG8mh1SMnMwfPlJbD3/QOqyiCoVAxARkRFytFYgYlxr9GjsAnWuiJCNF7Ao+jb4CDEyFgxARERGylxugoWDm2N8xxoAgPn7b2L9LRnUuRqJKyOqeAxARERGTCYT8HmP+viqd0PIBODkYxnGrjmHlEy11KURVSgGICIiwvA2Xggf6gMzmYhjt56hf/hxPEjKkLosogrDAERERACAN+tWwYcNc1HF2gwxj1LRZ9FRXH6QLHVZRBWCAYiIiLQ8rYHf3vdDnaovHqQ6YMlxHLj+SOqyiMqdpAEoNDQUvr6+UCqVcHZ2RmBgIGJiYoocc+XKFfTt2xdeXl4QBAHz588vsE1ubi6mTZsGb29vWFhYoGbNmvjqq68g8uMNRETFcrOzwG8T2qJdLUeosnMx9pczWHMiVuqyiMqVpAHo0KFDCAoKwokTJxAVFQW1Wo2AgACkp6e/coxKpUKNGjUwZ84cuLi4FLrN3LlzER4ejoULF+LatWuYO3cu5s2bhwULFlRUK0REBsXGXI6Vo1qhXwsPaERg2tbL+GbXNWj4IFUyEKZSvnlkZGS+5VWrVsHZ2Rlnz55Fx44dCx3j6+sLX19fAMBnn31W6DbHjh1D79690bNnTwCAl5cX1q9fj1OnTpVj9UREhs3MVIZv+zVBNQdLfB/1N34+fBv3n6vw/YBmMJebSF0e0WuRNAC9LDn5xcV2Dg4OrzVP27Zt8fPPP+Pvv/9GnTp1cPHiRRw5cgTff/99odtnZWUhK+t/DwVMSUkBAKjVaqjV5ftR0Lz5ynteXcReDZcx9ctegQkdveBmY4apW69g16UEPEw6jvChPnC0MpOizHLDfWt4StOfIOrIhTEajQa9evVCUlISjhw5UqIxXl5eCAkJQUhISIG5Pv/8c8ybNw8mJibIzc3F119/jalTpxY6z4wZMzBz5swC6yMiImBpaVnqXoiIDNGNZAHLY2TIyBXgpBDxfv1cOFtIXRXR/6hUKgwZMgTJycmwsbEpcludOQIUFBSEy5cvlzj8FGXTpk1Yt24dIiIi0LBhQ1y4cAEhISFwc3PDyJEjC2w/depUTJ48WbuckpICT09PBAQEFPsNLC21Wo2oqCh06dIFcrm8XOfWNezVcBlTv+w1v56JaRi35hzuJ2ViUYwFFg1pCt/q9hAEoZKrfX3ct4Yn7wxOSehEAAoODsbOnTtx+PBheHh4vPZ8n376KT777DMMGjQIANC4cWPExsYiNDS00ACkUCigUCgKrJfL5RX2g1KRc+sa9mq4jKlf9vpCfXd7bA5qh7G/nMFf95MxdPkZKM1N4e1kheqOVvB2tISXk9WLL0cr2FvKdT4ccd8ajtL0JmkAEkURkyZNwpYtWxAdHQ1vb+9ymVelUkEmy/8BNxMTE2g0fL4NEdHrclaaY8P41pjy+yXsuBiP1Mwc/HU/GX/dL3jTRJv/D0deeQHJyRJejlbwdrKCnaV+X0NE+k3SABQUFISIiAhs27YNSqUSCQkJAABbW1tYWLw4sTxixAi4u7sjNDQUAJCdnY2rV69q//zgwQNcuHAB1tbWqFWrFgDgnXfewddff41q1aqhYcOGOH/+PL7//nuMGTNGgi6JiAyPpZkpFgz2wbf9miD2qQp3n6bj7pN03H2ajjtP0nH3iQoJKZlIyczBxfvJuFhIOLK1kMPL6R9HjRyt/n/ZCraWhnuUgnSDpAEoPDwcANC5c+d861euXIlRo0YBAOLi4vIdzYmPj4ePj492OSwsDGFhYejUqROio6MBAAsWLMC0adMwceJEJCYmws3NDe+//z6mT59eof0QERkbc7kJ6rooUddFWeC1jOxcxD57EYzuPFEhNi8cPU3Ho5QsJGeocfFeEi7eSyow1t5SjuqOVnirnjMmdK4JUxM+uIDKl+SnwIqTF2ryeHl5FTtOqVRi/vz5hd4lmoiIKoeFmQnqudignkvBD5OosnNeHDl6ko47eUePnrw4kpSYmoXnKjWeq5Jw4V4SzsQ+x4IhPrAx51EhKj86cRE0EREZF0szU9R3tUF914LhKD0rB3efpuNc7HN8vesaDv39GH0WHcXykb7wcrKSoFoyRDymSEREOsVKYYqGbrYY3sYLv77fFi425rj1OB29Fx3FsZtPpC6PDAQDEBER6azGHrbYHtwOTT3tkJyhxvAVp/hgVioXDEBERKTTnG3MsXF8awQ2c0OuRsS0rZcxbetlqHN5axMqOwYgIiLSeeZyE/x3YDN82rUuAGDNiViMWnkKSapsiSsjfcUAREREekEQBAS9UQs/D28BSzMTHL35FIGLjuJmYprUpZEeYgAiIiK9EtDQBb990Bbudha4+1SFPj8dxaG/H0tdFukZBiAiItI7DdxssC24HVpWt0dqZg5GrzyFFUfulOj+ckQAAxAREekpJ2sF1o3zQ/8WHtCIwKydVzF18yVk5/DiaCoeAxAREekthakJ5vVrgi961IcgABtO38Ow5SfxLJ0XR1PRGICIiEivCYKAcR1rYMVIX1grTHHqzjP0XnQEMQmpUpdGOowBiIiIDMIb9ZyxZWJbVHOwxL1nGXj3p6PYf+2R1GWRjmIAIiIig1G7qhLbgtqhdQ0HpGfnYuzqM1hy6BYvjqYCGICIiMig2FuZYc17fhjiVw2iCITuvo5Pfv0LWTm5UpdGOoQBiIiIDI7cRIavAxthZq+GMJEJ+P3cfQz++QQep2ZJXRrpCAYgIiIySIIgYGRbL6wa7Qsbc1Oci0tC74VHcCU+WerSSAcwABERkUHrULsKtga1Qw0nK8QnZ6Jf+HFEXk6QuiySGAMQEREZvBpVrLFlYjt0qO2EDHUuPlh7Fj9F3wavjTZeplIXQEREVBlsLeVYOcoXs/+4hlXH7uK/+2/CytQEK++fhLeTFao5WsHL0RLVHS1R3dEKjlZmEARB6rKpgjAAERGR0TA1kWFGr4aoU1WJmTuuID1Hg4v3k3HxfsHrgqzMTFDd0QrVHS1RzdESXo5WqO5giepOVnC1MYdMxnCkzxiAiIjI6Azxq4YeDatg3fa9qNagBe4nZSHuWTruPlEh7pkK8ckZSM/OxdWHKbj6MKXAeDMTGTwdLLQBKS8YVXewhIe9JcxMeYWJrmMAIiIio2SlMIWHFdCtYVXI5fJ8r2Wqc3H/eQZin6Yj9qnqxX+fqRD3VIV7z1XIztXg1uN03HqcXmBemQC42VmgnosSU3vUR80q1pXVEpUCAxAREdFLzOUmqOVsjVrOBcNLrkZEfFLGi2D07B8B6akKsU9VyPj/8HT/eQauxKfg9wlt4WZnIUEXVBQGICIiolIwkQnwdLCEp4Ml2sMp32uiKOJxWhbuPE7H51su4dbjdAxffhK/fdAW9lZmElVMheFJSiIionIiCAKclebwq+GI1e/5wdXWHLcep2P0qtNQZedIXR79AwMQERFRBXC3s8DqMa1gZynHhXtJ+GDtOWTnaKQui/4fAxAREVEFqV1VieUjfWEhN8Hhvx/j098uQqPh3Rd1AQMQERFRBWpR3R4/DWsOU5mAbRfiMWvnVYi8BbXkGICIiIgq2Bt1nRHWvykAYNWxu/gp+pbEFREDEBERUSUI9HHH9LcbAAC+3ROD9afiJK7IuEkagEJDQ+Hr6wulUglnZ2cEBgYiJiamyDFXrlxB37594eXlBUEQMH/+/EK3e/DgAYYNGwZHR0dYWFigcePGOHPmTAV0QUREVDJj2nsj6I2aAIAvtlziU+klJGkAOnToEIKCgnDixAlERUVBrVYjICAA6ekF76yZR6VSoUaNGpgzZw5cXFwK3eb58+do164d5HI5du/ejatXr+K7776Dvb19RbVCRERUIp8E1MUgX09oRODDDedx/NZTqUsySpLeCDEyMjLf8qpVq+Ds7IyzZ8+iY8eOhY7x9fWFr68vAOCzzz4rdJu5c+fC09MTK1eu1K7z9vYup6qJiIjKThAEzA5shOeqbOy58gjjVp/BhvGt0cjdVurSjIpOXQOUnPziabwODg6vNc/27dvRsmVL9O/fH87OzvDx8cHSpUvLo0QiIqLXZmoiww+DfODn7YC0rByMWnkKd5+8+uwHlT+deRSGRqNBSEgI2rVrh0aNGr3WXLdv30Z4eDgmT56Mzz//HKdPn8aHH34IMzMzjBw5ssD2WVlZyMrK0i6npLx48q9arYZarX6tWl6WN195z6uL2KvhMqZ+2avhkrpfEwDhQ5piyPIzuJ6QiuHLT2LDuFZwVirK/b2k7rWylKY/QdSRmxFMmDABu3fvxpEjR+Dh4VGiMV5eXggJCUFISEi+9WZmZmjZsiWOHTumXffhhx/i9OnTOH78eIF5ZsyYgZkzZxZYHxERAUtLy9I1QkREVAop2cD8yyZ4miXA3VJEcMNcWOrM4Qn9olKpMGTIECQnJ8PGxqbIbXXiWxwcHIydO3fi8OHDJQ4/RXF1dUWDBg3yratfvz5+//33QrefOnUqJk+erF1OSUmBp6cnAgICiv0GlpZarUZUVBS6dOkCuVxernPrGvZquIypX/ZquHSp3zYdVRi09BQepGVj8+MqWDGiOczlJuU2vy71WpHyzuCUhKQBSBRFTJo0CVu2bEF0dHS5Xajcrl27Ah+n//vvv1G9evVCt1coFFAoCh5ylMvlFfaDUpFz6xr2ariMqV/2arh0od9aVW3xy5hWGLTkBE7ffY6Pf7uMn4Y2h6lJ+V6qqwu9VqTS9CbpRdBBQUFYu3YtIiIioFQqkZCQgISEBGRkZGi3GTFiBKZOnapdzs7OxoULF3DhwgVkZ2fjwYMHuHDhAm7evKnd5l//+hdOnDiBb775Bjdv3kRERAR+/vlnBAUFVWp/REREJdXQzRZLR7aEmakMe68+whdbLvORGRVI0gAUHh6O5ORkdO7cGa6urtqvjRs3areJi4vDw4cPtcvx8fHw8fGBj48PHj58iLCwMPj4+GDs2LHabXx9fbFlyxasX78ejRo1wldffYX58+dj6NChldofERFRabSu4YgFg30gE4CNZ+7h2z1F3xyYyk7yU2DFiY6Ozrfs5eVVonFvv/023n777bKWRkREJImuDV3wTZ/G+GzzJfwUfQsOVmYY26GG1GUZHJ26DxAREREBg1pVw6dd6wIAZv9xDVvO35e4IsPDAERERKSDJnauiTHtXnw46NNf/8LBmESJKzIsDEBEREQ6SBAE/KdnfQQ2c0OORsSEtWdxNva51GUZDJ24DxAREREVJJMJ+LZ/UyRlqBEd8xhjVp3Grx+0QZ2qynJ9n7SsHMQnZeBBUgYePM9AQnImWlS3xxv1nMv1fXQJAxAREZEOk5vI8NPQ5hi67CTOxyVhxPJT+H1iW7jbWZRofK5GREJKJu6kAn9cSkBCajbikzIQn5SB+89f/DclM6fAOJkALBneEl0aVC3vlnQCAxAREZGOszQzxcpRvui/+DhuJKZh+PKT+O2DtnCwMoMqO+/oTeaL//5/qHmQlIH45Aw8TMpEjkYEYApc/uuV72FrIYebnQXc7cyRnpWL47efIjjiHCLG+aFF9dd7SLkuYgAiIiLSA3aWZlj9Xiv0/ekYbj9OR8B/DyFXI+K5qvgHgJrIBNjKNajhYg8Pe0u421vAzc7i/wPPi/9aK/4XCXJyNRi/5iwOXE/EmFVn8PuENqjlXL6n3aTGAERERKQnXG0tsPo9P/RffAxP0rK165UK03+EGnNtsMkLN/bmMuzdE4kePVqV6HERpiYyLBzigyFLT+LCvSSMXHEav09oCxdb84psr1IxABEREemRWs7W2PlhB/ydkArX/w87NuZFhxq1uvijRC+zNDPFilG+6Bd+DLefpGPUylPY+H4b2FoYxrPE+DF4IiIiPeNuZ4E36jmjnotNseHndThYmeGXMa1QRanA9YRUjF99Bpnq3Ap7v8rEAERERESv5OlgiVWjfWGtMMXJO88wedMF5Gr0/yGtDEBERERUpIZutvh5eAvITQTsupSAWTuu6P2T6hmAiIiIqFhtaznh+wHNAAC/HI9F+KFb0hb0mhiAiIiIqETeaeqG6W83AADMi4zBr2fuSVxR2TEAERERUYmNae+N9zvVAAB8tvmS3j6klQGIiIiISmVK13ro4+OOXI2IiWvP4cK9JKlLKjUGICIiIioVmUzA3L5N0KG2EzLUuRiz6jRuP06TuqxSYQAiIiKiUjMzlSF8WAs0drfFs/RsjFx5CompmVKXVWIMQERERFQm1ooXd4uu7miJe88yMHrlaaRmlv6u01JgACIiIqIyq6JUYPWYVnC0MsOV+BR8sPYssnM0UpdVLAYgIiIiei3VHa2wcrQvLM1McPTmU3zy60VodPxu0QxARERE9NqaeNghfFgLmMoEbL8Yj292XZO6pCIxABEREVG56FSnCub1awIAWHbkDpYevi1xRa/GAERERETl5t3mHpjavR4A4Otd17DtwgOJKyocAxARERGVq/Eda2B0Oy8AwCe/XsSfNx5LW1AhGICIiIioXAmCgGk9G6BnE1eoc0V8sOYsLj9IlrqsfBiAiIiIqNzJZAK+H9AUbWo4Ij07F6NWnkLcU5XUZWkxABEREVGFUJiaYMmIFqjvaoMnadkYseIknqRlSV0WAAYgIiIiqkA25nL8MtoX7nYWuPtUhfdWnUZ6Vo7UZTEAERERUcVytjHH6vdawd5Sjov3kzFx3Tmoc6W9WzQDEBEREVW4mlWssXyUL8zlMhz6+zGm/P4XRFG6u0VLGoBCQ0Ph6+sLpVIJZ2dnBAYGIiYmpsgxV65cQd++feHl5QVBEDB//vwit58zZw4EQUBISEj5FU5ERESl1ryaPRYNaQ4TmQA3WwtJa5E0AB06dAhBQUE4ceIEoqKioFarERAQgPT09FeOUalUqFGjBubMmQMXF5ci5z99+jSWLFmCJk2alHfpREREVAZv1a+KPSEd8EnXuhAEQbI6TCV7ZwCRkZH5lletWgVnZ2ecPXsWHTt2LHSMr68vfH19AQCfffbZK+dOS0vD0KFDsXTpUsyePbv8iiYiIqLXUstZKXUJ0gaglyUnv7hJkoODw2vPFRQUhJ49e8Lf37/YAJSVlYWsrP99LC8lJQUAoFaroVarX7uWf8qbr7zn1UXs1XAZU7/s1XAZU7/G0mtp+tOZAKTRaBASEoJ27dqhUaNGrzXXhg0bcO7cOZw+fbpE24eGhmLmzJkF1u/duxeWlpavVcurREVFVci8uoi9Gi5j6pe9Gi5j6tfQe1WpSn6jRZ0JQEFBQbh8+TKOHDnyWvPcu3cPH330EaKiomBubl6iMVOnTsXkyZO1yykpKfD09ERAQABsbGxeq56XqdVqREVFoUuXLpDL5eU6t65hr4bLmPplr4bLmPo1ll7zzuCUhE4EoODgYOzcuROHDx+Gh4fHa8119uxZJCYmonnz5tp1ubm5OHz4MBYuXIisrCyYmJjkG6NQKKBQKArMJZfLK+wHpSLn1jXs1XAZU7/s1XAZU7+G3mtpepM0AImiiEmTJmHLli2Ijo6Gt7f3a8/51ltv4dKlS/nWjR49GvXq1cOUKVMKhB8iIiIyPpIGoKCgIERERGDbtm1QKpVISEgAANja2sLC4sX9AUaMGAF3d3eEhoYCALKzs3H16lXtnx88eIALFy7A2toatWrVglKpLHANkZWVFRwdHV/72iIiIiIyDJLeByg8PBzJycno3LkzXF1dtV8bN27UbhMXF4eHDx9ql+Pj4+Hj4wMfHx88fPgQYWFh8PHxwdixY6VogYiIiPSQ5KfAihMdHZ1v2cvLq9S3zn55DiIiIjJufBYYERERGR0GICIiIjI6DEBERERkdBiAiIiIyOgwABEREZHR0Yk7QeuavE+ZleaW2iWlVquhUqmQkpJi0HfjBNirITOmftmr4TKmfo2l17x/t0vyaXEGoEKkpqYCADw9PSWuhIiIiEorNTUVtra2RW4jiKW9qY4R0Gg0iI+Ph1KphCAI5Tp33oNW7927V+4PWtU17NVwGVO/7NVwGVO/xtKrKIpITU2Fm5sbZLKir/LhEaBCyGSy134oa3FsbGwM+ofwn9ir4TKmftmr4TKmfo2h1+KO/OThRdBERERkdBiAiIiIyOgwAFUyhUKBL7/8EgqFQupSKhx7NVzG1C97NVzG1K8x9VpSvAiaiIiIjA6PABEREZHRYQAiIiIio8MAREREREaHAYiIiIiMDgNQBVi0aBG8vLxgbm4OPz8/nDp1qsjtf/31V9SrVw/m5uZo3Lgxdu3aVUmVll1oaCh8fX2hVCrh7OyMwMBAxMTEFDlm1apVEAQh35e5uXklVVx2M2bMKFB3vXr1ihyjj/s0j5eXV4F+BUFAUFBQodvr0349fPgw3nnnHbi5uUEQBGzdujXf66IoYvr06XB1dYWFhQX8/f1x48aNYuct7e98ZSmqX7VajSlTpqBx48awsrKCm5sbRowYgfj4+CLnLMvvQ2Uobt+OGjWqQN3dunUrdl5d3LfF9VrY768gCPj2229fOaeu7teKxABUzjZu3IjJkyfjyy+/xLlz59C0aVN07doViYmJhW5/7NgxDB48GO+99x7Onz+PwMBABAYG4vLly5VceekcOnQIQUFBOHHiBKKioqBWqxEQEID09PQix9nY2ODhw4far9jY2Eqq+PU0bNgwX91Hjhx55bb6uk/znD59Ol+vUVFRAID+/fu/coy+7Nf09HQ0bdoUixYtKvT1efPm4ccff8TixYtx8uRJWFlZoWvXrsjMzHzlnKX9na9MRfWrUqlw7tw5TJs2DefOncPmzZsRExODXr16FTtvaX4fKktx+xYAunXrlq/u9evXFzmnru7b4nr9Z48PHz7EihUrIAgC+vbtW+S8urhfK5RI5apVq1ZiUFCQdjk3N1d0c3MTQ0NDC91+wIABYs+ePfOt8/PzE99///0KrbO8JSYmigDEQ4cOvXKblStXira2tpVXVDn58ssvxaZNm5Z4e0PZp3k++ugjsWbNmqJGoyn0dX3drwDELVu2aJc1Go3o4uIifvvtt9p1SUlJokKhENevX//KeUr7Oy+Vl/stzKlTp0QAYmxs7Cu3Ke3vgxQK63XkyJFi7969SzWPPuzbkuzX3r17i2+++WaR2+jDfi1vPAJUjrKzs3H27Fn4+/tr18lkMvj7++P48eOFjjl+/Hi+7QGga9eur9xeVyUnJwMAHBwcitwuLS0N1atXh6enJ3r37o0rV65URnmv7caNG3Bzc0ONGjUwdOhQxMXFvXJbQ9mnwIuf6bVr12LMmDFFPhhYX/frP925cwcJCQn59p2trS38/Pxeue/K8juvy5KTkyEIAuzs7IrcrjS/D7okOjoazs7OqFu3LiZMmICnT5++cltD2bePHj3CH3/8gffee6/YbfV1v5YVA1A5evLkCXJzc1G1atV866tWrYqEhIRCxyQkJJRqe12k0WgQEhKCdu3aoVGjRq/crm7dulixYgW2bduGtWvXQqPRoG3btrh//34lVlt6fn5+WLVqFSIjIxEeHo47d+6gQ4cOSE1NLXR7Q9inebZu3YqkpCSMGjXqldvo6359Wd7+Kc2+K8vvvK7KzMzElClTMHjw4CIfllna3wdd0a1bN6xevRr79+/H3LlzcejQIXTv3h25ubmFbm8o+/aXX36BUqnEu+++W+R2+rpfXwefBk+vLSgoCJcvXy72fHGbNm3Qpk0b7XLbtm1Rv359LFmyBF999VVFl1lm3bt31/65SZMm8PPzQ/Xq1bFp06YS/V+VPlu+fDm6d+8ONze3V26jr/uV/ketVmPAgAEQRRHh4eFFbquvvw+DBg3S/rlx48Zo0qQJatasiejoaLz11lsSVlaxVqxYgaFDhxb7wQR93a+vg0eAypGTkxNMTEzw6NGjfOsfPXoEFxeXQse4uLiUantdExwcjJ07d+LgwYPw8PAo1Vi5XA4fHx/cvHmzgqqrGHZ2dqhTp84r69b3fZonNjYW+/btw9ixY0s1Tl/3a97+Kc2+K8vvvK7JCz+xsbGIiooq8uhPYYr7fdBVNWrUgJOT0yvrNoR9++effyImJqbUv8OA/u7X0mAAKkdmZmZo0aIF9u/fr12n0Wiwf//+fP+H/E9t2rTJtz0AREVFvXJ7XSGKIoKDg7FlyxYcOHAA3t7epZ4jNzcXly5dgqurawVUWHHS0tJw69atV9atr/v0ZStXroSzszN69uxZqnH6ul+9vb3h4uKSb9+lpKTg5MmTr9x3Zfmd1yV54efGjRvYt28fHB0dSz1Hcb8Puur+/ft4+vTpK+vW930LvDiC26JFCzRt2rTUY/V1v5aK1FdhG5oNGzaICoVCXLVqlXj16lVx/Pjxop2dnZiQkCCKoigOHz5c/Oyzz7TbHz16VDQ1NRXDwsLEa9euiV9++aUol8vFS5cuSdVCiUyYMEG0tbUVo6OjxYcPH2q/VCqVdpuXe505c6a4Z88e8datW+LZs2fFQYMGiebm5uKVK1ekaKHEPv74YzE6Olq8c+eOePToUdHf3190cnISExMTRVE0nH36T7m5uWK1atXEKVOmFHhNn/dramqqeP78efH8+fMiAPH7778Xz58/r/3U05w5c0Q7Oztx27Zt4l9//SX27t1b9Pb2FjMyMrRzvPnmm+KCBQu0y8X9zkupqH6zs7PFXr16iR4eHuKFCxfy/R5nZWVp53i53+J+H6RSVK+pqaniJ598Ih4/fly8c+eOuG/fPrF58+Zi7dq1xczMTO0c+rJvi/s5FkVRTE5OFi0tLcXw8PBC59CX/VqRGIAqwIIFC8Rq1aqJZmZmYqtWrcQTJ05oX+vUqZM4cuTIfNtv2rRJrFOnjmhmZiY2bNhQ/OOPPyq54tIDUOjXypUrtdu83GtISIj2+1K1alWxR48e4rlz5yq/+FIaOHCg6OrqKpqZmYnu7u7iwIEDxZs3b2pfN5R9+k979uwRAYgxMTEFXtPn/Xrw4MFCf27z+tFoNOK0adPEqlWrigqFQnzrrbcKfA+qV68ufvnll/nWFfU7L6Wi+r1z584rf48PHjyonePlfov7fZBKUb2qVCoxICBArFKliiiXy8Xq1auL48aNKxBk9GXfFvdzLIqiuGTJEtHCwkJMSkoqdA592a8VSRBFUazQQ0xEREREOobXABEREZHRYQAiIiIio8MAREREREaHAYiIiIiMDgMQERERGR0GICIiIjI6DEBERERkdBiAiIhKQBAEbN26VeoyiKicMAARkc4bNWoUBEEo8NWtWzepSyMiPWUqdQFERCXRrVs3rFy5Mt86hUIhUTVEpO94BIiI9IJCoYCLi0u+L3t7ewAvTk+Fh4eje/fusLCwQI0aNfDbb7/lG3/p0iW8+eabsLCwgKOjI8aPH4+0tLR826xYsQINGzaEQqGAq6srgoOD873+5MkT9OnTB5aWlqhduza2b99esU0TUYVhACIigzBt2jT07dsXFy9exNChQzFo0CBcu3YNAJCeno6uXbvC3t4ep0+fxq+//op9+/blCzjh4eEICgrC+PHjcenSJWzfvh21atXK9x4zZ87EgAED8Ndff6FHjx4YOnQonj17Vql9ElE5kfpprERExRk5cqRoYmIiWllZ5fv6+uuvRVEURQDiBx98kG+Mn5+fOGHCBFEURfHnn38W7e3txbS0NO3rf/zxhyiTybRPBHdzcxO/+OKLV9YAQPzPf/6jXU5LSxMBiLt37y63Pomo8vAaICLSC2+88QbCw8PzrXNwcND+uU2bNvlea9OmDS5cuAAAuHbtGpo2bQorKyvt6+3atYNGo0FMTAwEQUB8fDzeeuutImto0qSJ9s9WVlawsbFBYmJiWVsiIgkxABGRXrCysipwSqq8WFhYlGg7uVyeb1kQBGg0moooiYgqGK8BIiKDcOLEiQLL9evXBwDUr18fFy9eRHp6uvb1o0ePQiaToW7dulAqlfDy8sL+/fsrtWYikg6PABGRXsjKykJCQkK+daampnBycgIA/Prrr2jZsiXat2+PdevW4dSpU1i+fDkAYOjQofjyyy8xcuRIzJgxA48fP8akSZMwfPhwVK1aFQAwY8YMfPDBB3B2dkb37t2RmpqKo0ePYtKkSZXbKBFVCgYgItILkZGRcHV1zbeubt26uH79OoAXn9DasGEDJk6cCFdXV6xfvx4NGjQAAFhaWmLPnj346KOP4OvrC0tLS/Tt2xfff/+9dq6RI0ciMzMT//3vf/HJJ5/AyckJ/fr1q7wGiahSCaIoilIXQUT0OgRBwJYtWxAYGCh1KUSkJ3gNEBERERkdBiAiIiIyOrwGiIj0Hs/kE1Fp8QgQERERGR0GICIiIjI6DEBERERkdBiAiIiIyOgwABEREZHRYQAiIiIio8MAREREREaHAYiIiIiMDgMQERERGZ3/A5L2hCdnrDirAAAAAElFTkSuQmCC\n",
330
  "text/plain": [
331
  "<Figure size 640x480 with 1 Axes>"
332
  ]
@@ -338,11 +506,12 @@
338
  "name": "stdout",
339
  "output_type": "stream",
340
  "text": [
341
- "Epoch [20/20], Loss: 2.1422\n"
342
  ]
343
  }
344
  ],
345
  "source": [
 
346
  "import matplotlib.pyplot as plt\n",
347
  "from IPython import display\n",
348
  "\n",
 
14
  "shell.execute_reply.started": "2023-10-03T10:17:38.056796Z"
15
  }
16
  },
17
+ "outputs": [
18
+ {
19
+ "name": "stdout",
20
+ "output_type": "stream",
21
+ "text": [
22
+ "data_small/trainLabels.csv\n",
23
+ "data_small/test/1.png\n",
24
+ "data_small/test/10.png\n",
25
+ "data_small/test/100.png\n",
26
+ "data_small/test/1000.png\n",
27
+ "data_small/test/10000.png\n",
28
+ "data_small/test/100000.png\n",
29
+ "data_small/test/100001.png\n",
30
+ "data_small/test/100002.png\n",
31
+ "data_small/test/100003.png\n",
32
+ "data_small/test/100004.png\n",
33
+ "data_small/test/100005.png\n",
34
+ "data_small/test/100006.png\n",
35
+ "data_small/test/100007.png\n",
36
+ "data_small/test/100008.png\n",
37
+ "data_small/test/100009.png\n",
38
+ "data_small/test/10001.png\n",
39
+ "data_small/test/100010.png\n",
40
+ "data_small/test/100011.png\n",
41
+ "data_small/test/100012.png\n",
42
+ "data_small/test/100013.png\n",
43
+ "data_small/test/100014.png\n",
44
+ "data_small/test/100015.png\n",
45
+ "data_small/test/100016.png\n",
46
+ "data_small/test/100017.png\n",
47
+ "data_small/test/100018.png\n",
48
+ "data_small/test/100019.png\n",
49
+ "data_small/test/10002.png\n",
50
+ "data_small/test/100020.png\n",
51
+ "data_small/test/100021.png\n",
52
+ "data_small/test/100022.png\n",
53
+ "data_small/test/100023.png\n",
54
+ "data_small/test/100024.png\n",
55
+ "data_small/test/100025.png\n",
56
+ "data_small/train/1.png\n",
57
+ "data_small/train/10.png\n",
58
+ "data_small/train/100.png\n",
59
+ "data_small/train/1000.png\n",
60
+ "data_small/train/10000.png\n",
61
+ "data_small/train/10001.png\n",
62
+ "data_small/train/10002.png\n",
63
+ "data_small/train/10003.png\n",
64
+ "data_small/train/10004.png\n",
65
+ "data_small/train/10005.png\n",
66
+ "data_small/train/10006.png\n",
67
+ "data_small/train/10007.png\n",
68
+ "data_small/train/10008.png\n",
69
+ "data_small/train/10009.png\n",
70
+ "data_small/train/1001.png\n",
71
+ "data_small/train/10010.png\n",
72
+ "data_small/train/10011.png\n",
73
+ "data_small/train/10012.png\n",
74
+ "data_small/train/10013.png\n",
75
+ "data_small/train/10014.png\n",
76
+ "data_small/train/10015.png\n",
77
+ "data_small/train/10016.png\n",
78
+ "data_small/train/10017.png\n",
79
+ "data_small/train/10018.png\n",
80
+ "data_small/train/10019.png\n",
81
+ "data_small/train/1002.png\n",
82
+ "data_small/train/10020.png\n",
83
+ "data_small/train/10021.png\n",
84
+ "data_small/train/10022.png\n",
85
+ "data_small/train/10023.png\n",
86
+ "data_small/train/10024.png\n",
87
+ "data_small/train/10025.png\n",
88
+ "data_small/train/10026.png\n",
89
+ "data_small/train/10027.png\n",
90
+ "data_small/train/10028.png\n",
91
+ "data_small/train/10029.png\n",
92
+ "data_small/train/1003.png\n",
93
+ "data_small/train/10030.png\n",
94
+ "data_small/train/10031.png\n",
95
+ "data_small/train/10032.png\n",
96
+ "data_small/train/10033.png\n",
97
+ "data_small/train/10034.png\n",
98
+ "data_small/train/10035.png\n",
99
+ "data_small/train/10036.png\n",
100
+ "data_small/train/10037.png\n",
101
+ "data_small/train/10038.png\n",
102
+ "data_small/train/10039.png\n",
103
+ "data_small/train/1004.png\n",
104
+ "data_small/train/10040.png\n",
105
+ "data_small/train/10041.png\n",
106
+ "data_small/train/10042.png\n",
107
+ "data_small/train/10043.png\n",
108
+ "data_small/train/10044.png\n",
109
+ "data_small/train/10045.png\n",
110
+ "data_small/train/10046.png\n",
111
+ "data_small/train/10047.png\n",
112
+ "data_small/train/10048.png\n",
113
+ "data_small/train/10049.png\n",
114
+ "data_small/train/1005.png\n",
115
+ "data_small/train/10050.png\n",
116
+ "data_small/train/10051.png\n",
117
+ "data_small/train/10052.png\n",
118
+ "data_small/train/10053.png\n",
119
+ "data_small/train/10054.png\n",
120
+ "data_small/train/10055.png\n",
121
+ "data_small/train/10056.png\n",
122
+ "data_small/train/10057.png\n",
123
+ "data_small/train/10058.png\n",
124
+ "data_small/train/10059.png\n",
125
+ "data_small/train/1006.png\n",
126
+ "data_small/train/10060.png\n",
127
+ "data_small/train/10061.png\n",
128
+ "data_small/train/10062.png\n",
129
+ "data_small/train/10063.png\n",
130
+ "data_small/train/10064.png\n",
131
+ "data_small/train/10065.png\n",
132
+ "data_small/train/10066.png\n",
133
+ "data_small/train/10067.png\n",
134
+ "data_small/train/10068.png\n",
135
+ "data_small/train/10069.png\n",
136
+ "data_small/train/1007.png\n",
137
+ "data_small/train/10070.png\n",
138
+ "data_small/train/10071.png\n",
139
+ "data_small/train/10072.png\n",
140
+ "data_small/train/10073.png\n",
141
+ "data_small/train/10074.png\n",
142
+ "data_small/train/10075.png\n",
143
+ "data_small/train/10076.png\n",
144
+ "data_small/train/10077.png\n",
145
+ "data_small/train/10078.png\n",
146
+ "data_small/train/10079.png\n",
147
+ "data_small/train/1008.png\n",
148
+ "data_small/train/10080.png\n",
149
+ "data_small/train/10081.png\n",
150
+ "data_small/train/10082.png\n",
151
+ "data_small/train/10083.png\n",
152
+ "data_small/train/10084.png\n",
153
+ "data_small/train/10085.png\n",
154
+ "data_small/train/10086.png\n",
155
+ "data_small/train/10087.png\n",
156
+ "data_small/train/10088.png\n",
157
+ "data_small/train/10089.png\n",
158
+ "data_small/train/1009.png\n",
159
+ "data_small/train/10090.png\n",
160
+ "data_small/train/10091.png\n",
161
+ "data_small/train/10092.png\n",
162
+ "data_small/train/10093.png\n",
163
+ "data_small/train/10094.png\n",
164
+ "data_small/train/10095.png\n",
165
+ "data_small/train/10096.png\n",
166
+ "data_small/train/10097.png\n",
167
+ "data_small/train/10098.png\n",
168
+ "data_small/train/10099.png\n",
169
+ "data_small/train/101.png\n",
170
+ "data_small/train/1010.png\n",
171
+ "data_small/train/10100.png\n",
172
+ "data_small/train/10101.png\n",
173
+ "data_small/train/10102.png\n",
174
+ "data_small/train/10103.png\n",
175
+ "data_small/train/10104.png\n",
176
+ "data_small/train/10105.png\n",
177
+ "data_small/train/10106.png\n",
178
+ "data_small/train/10107.png\n"
179
+ ]
180
+ }
181
+ ],
182
  "source": [
183
+ "# fix --- execute this cell\n",
184
  "# This Python 3 environment comes with many helpful analytics libraries installed\n",
185
  "# It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python\n",
186
  "# For example, here's several helpful packages to load\n",
 
363
  }
364
  ],
365
  "source": [
366
+ "# fix --- execute this cell\n",
367
  "# Load train labels\n",
368
  "train_labels_df = pd.read_csv('data_small/trainLabels.csv')\n",
369
  "train_labels_df"
 
392
  }
393
  ],
394
  "source": [
395
+ "# fix --- execute this cell\n",
396
  "# Preprocess the Data\n",
397
  "from sklearn.preprocessing import OneHotEncoder\n",
398
  "from PIL import Image\n",
 
453
  }
454
  ],
455
  "source": [
456
+ "# fix --- execute this cell\n",
457
  "# Build the MLP Model in PyTorch\n",
458
  "import torch\n",
459
  "import torch.nn as nn\n",
 
494
  "outputs": [
495
  {
496
  "data": {
497
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkAAAAHHCAYAAABXx+fLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAABuUUlEQVR4nO3dd1gUV9sG8HtoS1uagFQFsaNY0dh9o2J7bbFroiZfYqJgYqoxibHGFpLXJCYYTdRYiDGJqLGgWNCo2DsiNgQUEFGpS1nY+f4gbESQujDL7v27rr1kZueceR5mVx/PnJkRRFEUQURERKRHDKQOgIiIiKi2sQAiIiIivcMCiIiIiPQOCyAiIiLSOyyAiIiISO+wACIiIiK9wwKIiIiI9A4LICIiItI7LICIiIhI77AAItJBU6ZMgYeHR5Xazps3D4IgaDYg0mrV+bwQ1VUsgIhqkSAIFXqFh4dLHaokpkyZAktLS6nD0An8rBGVTeCzwIhqz6ZNm4otb9iwAWFhYdi4cWOx9f369UP9+vWrvB+lUgmVSgWZTFbptvn5+cjPz4epqWmV919VU6ZMwR9//IHMzMxa37euqcxnzc7OrsqfF6K6igUQkYQCAgLw/fffo7yvoUKhgLm5eS1FJR0WQJWXlZUFCwuLcrer6GeNSF/wFBiRlunduzdatWqFc+fOoWfPnjA3N8cnn3wCANixYwcGDx4MFxcXyGQyeHl5YeHChSgoKCjWx7NzOu7evQtBEBAYGIjVq1fDy8sLMpkMvr6+OHPmTLG2pc0BEgQBAQEB2L59O1q1agWZTAZvb2+EhoaWiD88PBwdO3aEqakpvLy88OOPP2p8XtHvv/+ODh06wMzMDPb29nj55Zdx//79YtskJSXh1VdfhZubG2QyGZydnTFs2DDcvXtXvc3Zs2fRv39/2Nvbw8zMDJ6ennjttdcqFMMPP/wAb29vyGQyuLi4wN/fH6mpqer3AwICYGlpCYVCUaLt+PHj4eTkVOy47d27Fz169ICFhQXkcjkGDx6MyMjIYu2KThHevn0bgwYNglwux8SJEysUb1nK+rx8//33aNSoEczNzeHn54f4+HiIooiFCxfCzc0NZmZmGDZsGB4/flyi34rkRCQVI6kDIKKSHj16hIEDB2LcuHF4+eWX1afD1q9fD0tLS7z33nuwtLTEoUOH8PnnnyM9PR1ffvlluf0GBwcjIyMDb775JgRBwPLly/HSSy/hzp07MDY2LrPtsWPHsG3bNkyfPh1yuRzffvstRo4cibi4ONSrVw8AcOHCBQwYMADOzs6YP38+CgoKsGDBAjg4OFT/l/KP9evX49VXX4Wvry+WLFmCBw8e4JtvvsHx48dx4cIF2NjYAABGjhyJyMhIzJgxAx4eHkhOTkZYWBji4uLUy35+fnBwcMDHH38MGxsb3L17F9u2bSs3hnnz5mH+/Pno27cvpk2bhujoaAQFBeHMmTM4fvw4jI2NMXbsWHz//ffYvXs3Ro8erW6rUCjw119/YcqUKTA0NAQAbNy4EZMnT0b//v2xbNkyKBQKBAUFoXv37rhw4UKx4iQ/Px/9+/dH9+7dERgYWKMjg5s3b0ZeXh5mzJiBx48fY/ny5RgzZgxefPFFhIeHY9asWbh16xa+++47fPDBB1i7dq26bWVyIpKESESS8ff3F5/9Gvbq1UsEIK5atarE9gqFosS6N998UzQ3NxdzcnLU6yZPniw2bNhQvRwTEyMCEOvVqyc+fvxYvX7Hjh0iAPGvv/5Sr5s7d26JmACIJiYm4q1bt9TrLl26JAIQv/vuO/W6IUOGiObm5uL9+/fV627evCkaGRmV6LM0kydPFi0sLJ77fl5enujo6Ci2atVKzM7OVq/ftWuXCED8/PPPRVEUxSdPnogAxC+//PK5fYWEhIgAxDNnzpQb19OSk5NFExMT0c/PTywoKFCvX7lypQhAXLt2rSiKoqhSqURXV1dx5MiRxdpv3bpVBCAePXpUFEVRzMjIEG1sbMQ33nij2HZJSUmitbV1sfWTJ08WAYgff/xxpWIWxdI/a0/3W9rnxcHBQUxNTVWvnz17tghAbNOmjahUKtXrx48fL5qYmKg/g5XJiUgqPAVGpIVkMhleffXVEuvNzMzUP2dkZCAlJQU9evSAQqHA9evXy+137NixsLW1VS/36NEDAHDnzp1y2/bt2xdeXl7qZR8fH1hZWanbFhQU4MCBAxg+fDhcXFzU2zVu3BgDBw4st/+KOHv2LJKTkzF9+vRik7QHDx6M5s2bY/fu3QAKf08mJiYIDw/HkydPSu2raKRo165dUCqVFY7hwIEDyMvLw8yZM2Fg8O9foW+88QasrKzUMQiCgNGjR2PPnj3F5jT99ttvcHV1Rffu3QEAYWFhSE1Nxfjx45GSkqJ+GRoaonPnzjh8+HCJGKZNm1bheKtj9OjRsLa2Vi937twZAPDyyy/DyMio2Pq8vDz1aciq5ERU21gAEWkhV1dXmJiYlFgfGRmJESNGwNraGlZWVnBwcMDLL78MAEhLSyu33wYNGhRbLiqGnlcklNW2qH1R2+TkZGRnZ6Nx48YltittXVXExsYCAJo1a1bivebNm6vfl8lkWLZsGfbu3Yv69eujZ8+eWL58OZKSktTb9+rVCyNHjsT8+fNhb2+PYcOGYd26dcjNza1SDCYmJmjUqJH6faCw4MzOzsbOnTsBAJmZmdizZw9Gjx6tnhN18+ZNAMCLL74IBweHYq/9+/cjOTm52H6MjIzg5uZW/i9LA5495kXFkLu7e6nriz4Llc2JSAqcA0SkhZ4e6SmSmpqKXr16wcrKCgsWLICXlxdMTU1x/vx5zJo1CyqVqtx+i+acPEuswJVB1WkrhZkzZ2LIkCHYvn079u3bhzlz5mDJkiU4dOgQ2rVrB0EQ8Mcff+DkyZP466+/sG/fPrz22mv46quvcPLkSY3cj+iFF16Ah4cHtm7digkTJuCvv/5CdnY2xo4dq96m6Lht3LgRTk5OJfp4eqQFKCzunh55qknPO+blfRYqmxORFPgpJKojwsPD8ejRI2zbtg09e/ZUr4+JiZEwqn85OjrC1NQUt27dKvFeaeuqomHDhgCA6OhovPjii8Xei46OVr9fxMvLC++//z7ef/993Lx5E23btsVXX31V7B45L7zwAl544QV88cUXCA4OxsSJE7Flyxa8/vrr5cbQqFEj9fq8vDzExMSgb9++xbYfM2YMvvnmG6Snp+O3336Dh4cHXnjhhWIxAoW/v2fb1lW6mBPpHp4CI6ojiv7X/fSIS15eHn744QepQirG0NAQffv2xfbt25GQkKBef+vWLezdu1cj++jYsSMcHR2xatWqYqeq9u7di6ioKAwePBhA4ZVWOTk5xdp6eXlBLper2z158qTE6FXbtm0BoMzTYH379oWJiQm+/fbbYu1//vlnpKWlqWMoMnbsWOTm5uKXX35BaGgoxowZU+z9/v37w8rKCosXLy51LtLDhw+fG4u20sWcSPdwBIiojujatStsbW0xefJkvP322xAEARs3btSqU1Dz5s3D/v370a1bN0ybNg0FBQVYuXIlWrVqhYsXL1aoD6VSiUWLFpVYb2dnh+nTp2PZsmV49dVX0atXL4wfP159GbyHhwfeffddAMCNGzfQp08fjBkzBi1btoSRkRFCQkLw4MEDjBs3DgDwyy+/4IcffsCIESPg5eWFjIwMrFmzBlZWVhg0aNBz43NwcMDs2bMxf/58DBgwAEOHDkV0dDR++OEH+Pr6qudkFWnfvj0aN26MTz/9FLm5ucVOfwGAlZUVgoKC8Morr6B9+/YYN24cHBwcEBcXh927d6Nbt25YuXJlhX532kIXcyLdwwKIqI6oV68edu3ahffffx+fffYZbG1t8fLLL6NPnz7o37+/1OEBADp06IC9e/figw8+wJw5c+Du7o4FCxYgKiqqQlepAYWjWnPmzCmx3svLC9OnT8eUKVNgbm6OpUuXYtasWbCwsMCIESOwbNky9ZVd7u7uGD9+PA4ePIiNGzfCyMgIzZs3x9atWzFy5EgAhZOgT58+jS1btuDBgwewtrZGp06dsHnzZnh6epYZ47x58+Dg4ICVK1fi3XffhZ2dHaZOnYrFixeXej+lsWPH4osvvkDjxo3Rvn37Eu9PmDABLi4uWLp0Kb788kvk5ubC1dUVPXr0KPVqwLpAF3Mi3cJHYRBRjRs+fDgiIyPVVwcREUmNc4CISKOys7OLLd+8eRN79uxB7969pQmIiKgUHAEiIo1ydnbGlClT1PfECQoKQm5uLi5cuIAmTZpIHR4REQDOASIiDRswYAB+/fVXJCUlQSaToUuXLli8eDGLHyLSKhwBIiIiIr3DOUBERESkd1gAERERkd7hHKBSqFQqJCQkQC6Xqx9YSERERNpNFEVkZGTAxcWl3GfmsQAqRUJCQomnHRMREVHdEB8fDzc3tzK3YQFUCrlcDqDwF2hlZaXRvpVKJfbv3w8/P79S7xirS5ir7tKnfJmr7tKnfPUl1/T0dLi7u6v/HS8LC6BSFJ32srKyqpECyNzcHFZWVjr9IQSYqy7Tp3yZq+7Sp3z1KVcAFZq+wknQREREpHdYABEREZHeYQFEREREeodzgIiISGuoVCrk5eXVyr6USiWMjIyQk5ODgoKCWtmnVHQlV2NjYxgaGmqkLxZARESkFfLy8hATEwOVSlUr+xNFEU5OToiPj9f5e77pUq42NjZwcnKqdh4sgIiISHKiKCIxMRGGhoZwd3cv9yZ2mqBSqZCZmQlLS8ta2Z+UdCFXURShUCiQnJwMAHB2dq5WfyyAiIhIcvn5+VAoFHBxcYG5uXmt7LPodJupqWmdLQoqSldyNTMzAwAkJyfD0dGxWqfD6u5vgYiIdEbRvBQTExOJIyFtV1QgK5XKavXDAoiIiLRGXZ+fQjVPU58RFkBERESkd1gAERERaREPDw+sWLGiwtuHh4dDEASkpqbWWEy6iAUQERFRFQiCUOZr3rx5Ver3zJkzmDp1aoW379q1KxITE2FtbV2l/VWUrhVavAqslh258RAqUeooiIiouhITE9U///bbb/j8888RHR2tXmdpaan+WRRFFBQUwMio/H92HRwcKhWHiYkJnJycKtWGOAJUq47ceIjXN17AiquGuPkgU+pwiIioGpycnNQva2trCIKgXr5+/Trkcjn27t2LDh06QCaT4dixY7h9+zaGDRuG+vXrw9LSEr6+vjhw4ECxfp89BSYIAn766SeMGDEC5ubmaNKkCXbu3Kl+/9mRmfXr18PGxgb79u1DixYtYGlpiYEDByIpKUndJj8/H2+//TZsbGxQr149zJo1C5MnT8bw4cOr/Pt48uQJJk2aBFtbW5ibm2PgwIG4efOm+v3Y2FgMGTIEtra2sLCwgLe3N/bs2aNuO3HiRDg4OMDMzAxNmjTBunXrqhxLRbAAqkUZOUrITY0QmylgWFAEvjt4E8qC2rnjKRFRXSKKIhR5+TX+ys4rKLFOFDU3TP/xxx9j6dKliIqKgo+PDzIzMzFo0CAcPHgQFy5cwIABAzBkyBDExcWV2c/8+fMxZswYXL58GYMGDcLEiRPx+PHj526vUCgQGBiIjRs34ujRo4iPj8ecOXPU7y9btgybN2/GunXrcPz4caSnp2P79u3VynXKlCk4e/Ysdu7ciYiICIiiiEGDBqkvV/f390dubi6OHj2KK1euYNmyZepRsjlz5uDatWvYu3cvoqKiEBQUBHt7+2rFUx5JT4EtWbIE27Ztw/Xr12FmZoauXbti2bJlaNas2XPbbNu2DYsXL8atW7egVCrRpEkTvP/++3jllVfU24iiiLlz52LNmjVITU1Ft27dEBQUhCZNmtRGWs/1Xx8XtHGV462fwhH5xABfhd3A3qtJWD7KB61ca/bcLRFRXZKtLEDLz/dJsu9rC/rD3EQz/zwuWLAA/fr1Uy/b2dmhTZs26uWFCxciJCQEO3fuREBAwHP7mTJlCsaPHw8AWLx4Mb799lucPn0aAwYMKHV7pVKJVatWwcvLC0Bh8bFgwQL1+9999x1mz56NESNGAABWrlypHo2pips3b2Lnzp04fvw4unbtCgDYvHkz3N3dsX37dowePRpxcXEYOXIkWrduDQBo1KiRun1cXBzatWuHjh07AigcBatpko4AHTlyBP7+/jh58iTCwsKgVCrh5+eHrKys57axs7PDp59+ioiICFy+fBmvvvoqXn31Vezb9+8XZfny5fj222+xatUqnDp1ChYWFujfvz9ycnJqI60yOVmZ4o1mKgSOag0bc2NcS0zHsO+PI3BfNHLz6+4D6oiIqKSif9CLZGZm4oMPPkCLFi1gY2MDS0tLREVFlTsC5OPjo/7ZwsICVlZW6kdClMbc3Fxd/ACFp+sePnwIAEhLS8ODBw/QqVMn9fuGhobo0KFDpXJ7WlRUFIyMjNC5c2f1unr16qFZs2aIiooCALz99ttYtGgRunXrhrlz5+Ly5cvqbadNm4YtW7agbdu2+Oijj3DixIkqx1JRko4AhYaGFltev349HB0dce7cOfTs2bPUNr179y62/M477+CXX37BsWPH0L9/f4iiiBUrVuCzzz7DsGHDAAAbNmxA/fr1sX37dowbN65GcqkMQQCGtXFGr2b1MXfnVey5koSVh29hX2ThaFC7BrZSh0hEJCkzY0NcW9C/RvehUqmQkZ4BuZW82OMhzIw187RxoLBYedoHH3yAsLAwBAYGonHjxjAzM8OoUaOQl5dXZj/GxsbFlgVBKPOhsaVtr8lTe1Xx+uuvo3///ti9ezf279+PJUuW4KuvvsKMGTMwcOBAxMbGYs+ePQgLC0OfPn3g7++PwMDAGotHq+YApaWlASgc5akIURRx8OBBREdHqwummJgYJCUloW/fvurtrK2t0blzZ0RERGg+6GpwkMvww8QO+GFie9hbmuBmciZGBp3A4j1RyFFyNIiI9JcgCDA3Marxl5mJYYl1NXk36uPHj2PKlCkYMWIEWrduDScnJ9y9e7fG9lcaa2tr1K9fH2fOnFGvKygowPnz56vcZ4sWLZCfn49Tp06p1z169AjR0dFo2bKlep27uzveeustbNu2De+//z7WrFmjfs/BwQGTJ0/Gpk2bsGLFCqxevbrK8VSE1lwGr1KpMHPmTHTr1g2tWrUqc9u0tDS4uroiNzcXhoaG+OGHH9TnWItmudevX79Ym/r16xebAf+03Nxc5ObmqpfT09MBFJ5Dre6zRp5V1N/T/fZrbo+ODbriiz3R2HEpEauP3sH+yCQsHu4NX4+6OxpUWq66Sp9yBfQrX+Zae/sWRREqlarMkQ1NKhoRKdpvdRS1L+3Pp/tu3Lgxtm3bhsGDB0MQBHz++edQqVQlYnh2ubTfS9G6Z/f1bAzP5qxSqRAQEIAlS5agUaNGaN68OVauXIknT548t93T6y9dugS5XK5eLwgC2rRpg6FDh+KNN95AUFAQ5HI5Zs+eDVdXVwwZMgQqlQrvvvsuBgwYgKZNm+LJkyc4fPgwmjdvDpVKhblz56J9+/bw9vZGbm4u/vrrL7Ro0aLUWIp+X0qlssTDUCvz2dWaAsjf3x9Xr17FsWPHyt1WLpfj4sWLyMzMxMGDB/Hee++hUaNGJU6PVdSSJUswf/78Euv3799fY08lDgsLK7HuRXPAsbmArbcNcPeRAhN+PoMeTioMaaCCTHMjsrWutFx1lT7lCuhXvsy1ZhkZGcHJyQmZmZnlng7StIyMjGr3kZOTA1EU1f+BVigU6r6fPr02f/58BAQEoHv37rCzs8M777yDJ0+eIC8vT91WpVIhJydHvQwA2dnZxZZFUVRv8+y+no2lqP3Tub711luIi4vD5MmTYWhoiMmTJ+PFF1+EgYFBsXZPK9rPs//WGhoaIiUlBd988w0+/vhjDBkyBEqlEl27dsWWLVuQnZ2tfvn7+yMhIQFyuRx9+vTB4sWLkZ6eDlEUMXv2bMTFxcHU1BRdunTB6tWrS40lLy8P2dnZOHr0KPLz80uNsSIEUeqTggACAgKwY8cOHD16FJ6enpVu//rrryM+Ph779u3DnTt34OXlhQsXLqBt27bqbXr16oW2bdvim2++KdG+tBEgd3d3pKSkwMrKqko5PY9SqURYWBj69etX4hytev/ZSizbdwNbz90HALjZmGLRcG9086qn0VhqWkVy1RX6lCugX/ky19qRk5OD+Ph4eHh4wNTUtFb2KYoiMjIyIJfLdf4hrOXlqlKp4O3tjdGjRxe7Wkwb5eTk4O7du3B3dy/xWUlPT4e9vT3S0tLK/fdb0hEgURQxY8YMhISEIDw8vErFD1B44IoKGE9PTzg5OeHgwYPqAig9PR2nTp3CtGnTSm0vk8kgk8lKrDc2Nq6xvwTK6ruesTGWj26LIW1d8fGfV3AvNRtT1p/DOF93fDK4BaxM69ZfwjX5e9Q2+pQroF/5MteaVVBQAEEQYGBgUGzEpCYVnV4p2q8uezbX2NhY7N+/H7169UJubi5WrlyJmJgYTJw4Uet/FwYGBhAEodTPaWU+t5Jm6e/vj02bNiE4OBhyuRxJSUlISkpSD9UBwKRJkzB79mz18pIlSxAWFoY7d+4gKioKX331FTZu3IiXX34ZQOHBnTlzJhYtWoSdO3fiypUrmDRpElxcXKp1h0sp9GjigP3v9sTkLg0BAFvOxMPv66M4dP2BxJEREVFdZmBggPXr18PX1xfdunXDlStXcODAAbRo0ULq0GqNpCNAQUFBAEqeT1y3bh2mTJkCoPDmSE9Xo1lZWZg+fTru3bsHMzMzNG/eHJs2bcLYsWPV23z00UfIysrC1KlTkZqaiu7duyM0NLTWhlU1yUJmhPnDWmFQa2fM+vMy7j5S4LX1ZzGinSs+/29L2FqYSB0iERHVMe7u7jh+/LjUYUhK8lNg5QkPDy+2vGjRIixatKjMNoIgYMGCBVp/HrMyOjeqh73v9MTXYdH4+VgMQi7cx983U7BouDcGtHKWOjwiIqI6RbtP9FExZiaG+HRwS/wxrSsaO1oiJTMXb206D//N55GSmVt+B0REWk4LrsshLaepzwgLoDqofQNb7H67OwL+0xiGBgJ2X0lEv6+PYMfF+/zLg4jqpKL7udT2JfBU9xRd6l7difpacx8gqhyZkSE+6N8MA1o54cM/LiMqMR3vbLmIvy4l4KvRbWFtrh9XqxCRbjAyMoK5uTkePnwIY2PjWrkSSaVSIS8vDzk5OVp/5VN16UKuoihCoVAgOTkZNjY2JW6CWFksgOq4Vq7W2BnQDavCb+PbQzdxICoZ8/+KxNdj20odGhFRhQmCAGdnZ8TExCA2NrZW9imKIrKzs2FmZqYX9wHSlVxtbGzg5ORU7X5YAOkAY0MDzOjTBC941cPoVRHYduE+Xu7SEO35UFUiqkNMTEzQpEmTWjsNplQqcfToUfTs2VPn7/GkK7kaGxtXe+SnCAsgHeLrYYdRHdzwx7l7mL8zEiHTu8HAoG5X+kSkXwwMDGrtliWGhobIz8+HqalpnS4KKkKfcq2ounkikJ7rowHNYCkzwqV7afjz/D2pwyEiItJKLIB0jKPcFDNebAwAWBYajYwc3X+CNRERUWWxANJBr3bzhKe9BVIyc7Hy0C2pwyEiItI6LIB0kImRAT4bXPg8l7XHYxCTkiVxRERERNqFBZCOerG5I3o1dYCyQMSiXdekDoeIiEirsADSUYIgYM5/W8LIQMDB68kIj06WOiQiIiKtwQJIhzV2tMSUrh4AgAW7riEvXyVtQERERFqCBZCOe7tvE9hbmuDOwyxsiLgrdThERERagQWQjrMyNcaH/ZsBAL45cJNPjSciIgILIL0wqoM7WrlaISM3H4H7oqUOh4iISHIsgPSAoYGAeUO8AQC/nY3HlXtpEkdEREQkLRZAeqKjhx2GtXWBKALz/4qEKIpSh0RERCQZFkB65OOBzWFmbIizsU+w81KC1OEQERFJhgWQHnG2NoP/f7wAAEv2XIciL1/iiIiIiKTBAkjPvN6jEdxszZCUnoOg8NtSh0NERCQJFkB6xtTYUP2csB+P3kH8Y4XEEREREdU+FkB6qL+3E7p61UNevgpf7I6SOhwiIqJaxwJIDwmCgLlDvGFoICA0MgknbqVIHRIREVGtYgGkp5o5yfFy5wYAgPl/XUN+AZ8TRkRE+oMFkB57t19T2JgbI/pBBoJPx0kdDhERUa1hAaTHbMxN8H6/pgCAr/bfwJOsPIkjIiIiqh0sgPTc+E4N0NxJjrRsJb4OuyF1OERERLWCBZCeMzI0wNx/nhO2+VQsohLTJY6IiIio5rEAInTxqodBrZ2gEoEFf13jc8KIiEjnsQAiAMDsgS0gMzJAxJ1HCL2aJHU4RERENYoFEAEA3O3M8WbPRgCARbujkKMskDgiIiKimsMCiNTe6u0FZ2tT3E/Nxuqjd6QOh4iIqMawACI1cxMjzB5U+JywH8JvISE1W+KIiIiIagYLICpmiI8zfD1skaNUYene61KHQ0REVCNYAFExRc8JEwRg56UEnLn7WOqQiIiINI4FEJXQytUa43zdAQDzdkaiQMXL4omISLewAKJSfeDXDHJTI0QmpGPr2XipwyEiItIoFkBUqnqWMszsW/icsC/3RSMtWylxRERERJojaQG0ZMkS+Pr6Qi6Xw9HREcOHD0d0dHSZbdasWYMePXrA1tYWtra26Nu3L06fPl1sm8zMTAQEBMDNzQ1mZmZo2bIlVq1aVZOp6KRJXRrCy8ECj7Py8O3Bm1KHQ0REpDGSFkBHjhyBv78/Tp48ibCwMCiVSvj5+SErK+u5bcLDwzF+/HgcPnwYERERcHd3h5+fH+7fv6/e5r333kNoaCg2bdqEqKgozJw5EwEBAdi5c2dtpKUzjA0N8Pk/zwn75cRd3ErOkDgiIiIizZC0AAoNDcWUKVPg7e2NNm3aYP369YiLi8O5c+ee22bz5s2YPn062rZti+bNm+Onn36CSqXCwYMH1ducOHECkydPRu/eveHh4YGpU6eiTZs2JUaKqHy9mjqgbwtH5KtELNgVxeeEERGRTjCSOoCnpaWlAQDs7Owq3EahUECpVBZr07VrV+zcuROvvfYaXFxcEB4ejhs3buB///tfqX3k5uYiNzdXvZyeXvhEdKVSCaVSs3NfivrTdL816eP+TXHkxkMcvfEQ+64moE9zxwq1q4u5VpU+5QroV77MVXfpU776kmtl8hNELfkvvUqlwtChQ5Gamopjx45VuN306dOxb98+REZGwtTUFEBhQTN16lRs2LABRkZGMDAwwJo1azBp0qRS+5g3bx7mz59fYn1wcDDMzc2rlpCO2RlrgIMJBrCXiXinVQGsTKSOqHJyC4BrTwQ0sxFhrlVlPxERaYpCocCECROQlpYGKyurMrfVmgJo2rRp2Lt3L44dOwY3N7cKtVm6dCmWL1+O8PBw+Pj4qNcHBgZizZo1CAwMRMOGDXH06FHMnj0bISEh6Nu3b4l+ShsBcnd3R0pKSrm/wMpSKpUICwtDv379YGxsrNG+a1Jmbj76f3McyRm5sDEzxvwhLTCotVOZbbQl11Mxj/FxSCTuPclG3+YOCJrYTuP70JZca4s+5ctcdZc+5asvuaanp8Pe3r5CBZBW/F84ICAAu3btwtGjRytc/AQGBmLp0qU4cOBAseInOzsbn3zyCUJCQjB48GAAgI+PDy5evIjAwMBSCyCZTAaZTFZivbGxcY19UGqy75pga2yMza93xszfLiIyIR3vbL2M/dcfYuGwVrCzKHs4SKpcs3LzsSz0OjZExKrXHYp+iMfZBahvZVoj+6xrx7W69Clf5qq79ClfXc+1MrlJOglaFEUEBAQgJCQEhw4dgqenZ4XaLV++HAsXLkRoaCg6duxY7L2ieTsGBsVTMzQ0hEql0ljs+qhJfTlCpnfD232awNBAwO7LifD731GEXXsgdWglRNx+hAHfHFUXP+M7NUBbdxuoRODP8/ckjo6IiKQmaQHk7++PTZs2ITg4GHK5HElJSUhKSkJ29r9PIZ80aRJmz56tXl62bBnmzJmDtWvXwsPDQ90mMzMTAGBlZYVevXrhww8/RHh4OGJiYrB+/Xps2LABI0aMqPUcdY2JkQHe69cUIdO7oomjJVIyc/HGhrP44PdLSM+RfnKdIi8fc3dcxfg1JxH/OBsu1qbY+H+dsOSl1pjYuQEA4Pez93g1GxGRnpO0AAoKCkJaWhp69+4NZ2dn9eu3335TbxMXF4fExMRibfLy8jBq1KhibQIDA9XbbNmyBb6+vpg4cSJatmyJpUuX4osvvsBbb71Vq/npMh83G/w1ozve7NkIggD8ce4e+v/vKI7eeChZTCfvPMKAFX/jl6dGffa92xM9mjgAAAa1doaFiSFiUrJwNvaJZHESEZH0JJ0DVJH/hYeHhxdbvnv3brltnJycsG7duipGRRVlamyI2YNaoF/L+vjg90u4+0iBSWtPY2LnBvhkUAuY1FJ5rcjLx7K919WFj4u1KZaN8lEXPkUsZEb4r48Lfjsbj61n4uHrUfHbLRARkW7hs8Co2jp62GHPOz0wuUtDAMDmU3EY+M3fOH33cY3vu+Soj3uxUZ9njfEtnGS/+0oiMnPzazw+IiLSTiyASCPMTYwwf1grBL/eGa42Zoh7rMDLa88i5K4BcpQFGt+fIi8f83ZGYtzqk4h7rICLtSk2vNYJS17ygdz0+VcBtG9gi0YOFlDkFWDP5cTnbkdERLqNBRBpVNfG9gid2QNjO7pDFIHwRAMM+yECF+NTNbaPU3ceYeA3f2P9ibsAgHG+7gh9tyd6Ni191OdpgiBgTEd3AMDWs/Eai4mIiOoWFkCkcXJTYywb5YPVL7eDlbGIOykKvPTDcXy57zpy86s+GlQ06jN29UnEPlLA2doUv7zWCUtH+sCqjFGfZ73UzhWGBgLOxj7B7YeZVY6HiIjqLhZAVGP+08wBH7cpwBAfJ6hE4PvDtzFs5XFcS0ivdF+nYx6XGPXZ925P9KrAqM+zHK1M8Z9mhe1+P8t7AhER6SMWQFSjLIyBr0f7IGhie9hZmOB6UgaGfX8M3x28ifyC8m9M+e+oT0S1Rn2eNfqf02B/nr9XoTiIiEi3sACiWjGwtTP2v9sT/b3rQ1kg4quwGxgZdAK3kjOe2+bpUR9RBMZ2rPqoz7NebO4Ie0sTPMzIxREJ711ERETSYAFEtcbeUoZVL3fAirFtYWVqhEv30jDo22NYc/QOClT/3hMqO68A8/8qPuqz/lVfLBtVvVGfpxkbGmBEO1cAnAxNRKSPWABRrRIEAcPbuWL/u73Qq6kD8vJV+GJPFMatjkDsoyycufsYA785inXHi4/69G7mqPFYik6DHYxKRkpmrsb7JyIi7aUVT4Mn/eP0z6jOb2fisXDXNZy5+wR+/zuKvAIVRBFwtjbFkpda10jhU6RpfTnautvgYnwqtl+4j9d7NKqxfRERkXbhCBBJRhAEjOvUAKEze+KFRnbIzS8sfsZ0dKuxUZ9nFd0T6Lcz8XxAKhGRHuEIEEnO3c4cwa+/gD1XE2FvKcMLjerV2r7/28YZC3ZF4mZyJi7dS0Nbd5ta2zcREUmHI0CkFQwMBPzXx6VWix8AsDI1xqBWzgA4GZqISJ+wACK9VzQZ+q+LCcjO0/xzy4iISPuwACK919nTDg3szJGRm4/QSD4glYhIH7AAIr1nYCBgdAc3AMDWM3w0BhGRPmABRARgZAc3CAIQcecR4h4ppA6HiIhqGAsgIgAuNmbo0aTwERt/nONkaCIiXccCiOgfYzoWngb749y9Yo/mICIi3cMCiOgf/VrWh425MRLScnD8VorU4RARUQ1iAUT0D5mRIYa35QNSiYj0AQsgoqeM/uc02P7IB0hV5EkcDRER1RQWQERP8XaxhreLFfIKVNhxMUHqcIiIqIawACJ6RtEDUnkajIhId7EAInrGsLYuMDE0QGRCOq7eT5M6HCIiqgEsgIieYWNuAj/v+gAKL4knIiLdwwKIqBRFp8FCLtxHjpIPSCUi0jUsgIhK0a2xPVysTZGWrcSBqAdSh0NERBrGAoioFIYGAkYVPSD1LE+DERHpGhZARM8xqkPhabC/bz5EQmq2xNEQEZEmsQAieo4G9czRpVE9iCLwJydDExHpFBZARGUY41t4Guz3c/eg4gNSiYh0BgsgojIM8HaGXGaEuMcKnIp5LHU4RESkISyAiMpgZmKIIW1dAAC/887QREQ6gwUQUTmK7gm052oi0nOUEkdDRESawAKIqBxt3KzRtL4lcpQq7LqUKHU4RESkASyAiMohCAIfkEpEpGNYABFVwPB2rjAyEHAxPhU3HmRIHQ4REVWTpAXQkiVL4OvrC7lcDkdHRwwfPhzR0dFltlmzZg169OgBW1tb2Nraom/fvjh9+nSJ7aKiojB06FBYW1vDwsICvr6+iIuLq6lUSMfZW8rQp4UjAE6GJiLSBZIWQEeOHIG/vz9OnjyJsLAwKJVK+Pn5ISsr67ltwsPDMX78eBw+fBgRERFwd3eHn58f7t+/r97m9u3b6N69O5o3b47w8HBcvnwZc+bMgampaW2kRTqq6DTYtvP3oSxQSRwNERFVh5GUOw8NDS22vH79ejg6OuLcuXPo2bNnqW02b95cbPmnn37Cn3/+iYMHD2LSpEkAgE8//RSDBg3C8uXL1dt5eXlpOHrSN72aOsBBLsPDjFwcup6M/t5OUodERERVJGkB9Ky0tDQAgJ2dXYXbKBQKKJVKdRuVSoXdu3fjo48+Qv/+/XHhwgV4enpi9uzZGD58eKl95ObmIjc3V72cnp4OAFAqlVAqNXvZc1F/mu5XG+liriPaOmP133ex5XQsXmxaT71eF3Mtiz7ly1x1lz7lqy+5ViY/QRRFrbi/v0qlwtChQ5Gamopjx45VuN306dOxb98+REZGwtTUFElJSXB2doa5uTkWLVqE//znPwgNDcUnn3yCw4cPo1evXiX6mDdvHubPn19ifXBwMMzNzauVF+mWB9nA4otGECBifocCWJtIHRERERVRKBSYMGEC0tLSYGVlVea2WlMATZs2DXv37sWxY8fg5uZWoTZLly7F8uXLER4eDh8fHwBAQkICXF1dMX78eAQHB6u3HTp0KCwsLPDrr7+W6Ke0ESB3d3ekpKSU+wusLKVSibCwMPTr1w/GxsYa7Vvb6Gqu49acxrm4VHzQrwne7OkJQHdzfR59ype56i59yldfck1PT4e9vX2FCiCtOAUWEBCAXbt24ejRoxUufgIDA7F06VIcOHBAXfwAgL29PYyMjNCyZcti27do0eK5I0symQwymazEemNj4xr7oNRk39pG13Id69sA5+JSse1CAvxfbAJBENTv6Vqu5dGnfJmr7tKnfHU918rkJulVYKIoIiAgACEhITh06BA8PT0r1G758uVYuHAhQkND0bFjx2LvmZiYwNfXt8Tl9Ddu3EDDhg01Fjvpr0E+zjA3McSdlCyci30idThERFQFko4A+fv7Izg4GDt27IBcLkdSUhIAwNraGmZmZgCASZMmwdXVFUuWLAEALFu2DJ9//jmCg4Ph4eGhbmNpaQlLS0sAwIcffoixY8eiZ8+e6jlAf/31F8LDw2s/SdI5ljIjDG7tjN/P3cPWs/Ho6FHxSftERKQdJB0BCgoKQlpaGnr37g1nZ2f167ffflNvExcXh8TExGJt8vLyMGrUqGJtAgMD1duMGDECq1atwvLly9G6dWv1pfLdu3ev1fxId43xLbwn0K7LicjKzZc4GiIiqixJR4AqMv/62VGbu3fvVqjv1157Da+99loVoiIqX8eGtvC0t0BMShZ2X0nEiDa8JxARUV3CZ4ERVYEgCBjdsXDCPh+NQURU97AAIqqike3dYCAAZ+4+QUzK8x/fUh05ygKcj3uCdcdjsOPi/fIbEBFRhWjFZfBEdVF9K1P0buaIQ9eT8ef5BLQsv0mZVCoRMY+ycCk+FRf/eUUlpkNZ8O+pYpmRIQa04uk2IqLqYgFEVA1jOrrh0PVkhFxMQDPvyrV9lJmrLnQuxqfiUnwq0nNKTqiuZ2ECB7kM15MyMHfnVXRtXA9Wprp7Hw8iotrAAoioGl5sXh92FiZIzsjF9VQBQ56zXY6yAJEJabgQ90+xcy8V8Y+zS2wnMzJAa1drtHG3Qdt/Xm62ZsjNV2HgN38jJiULX4ZGY+HwVjWbGBGRjmMBRFQNJkYGGNHOFT8fi8HJ5MI7QqtUIu6kZOJCXGGhczE+FdcTM5CvKnnVY2NHS7R1t0Ebdxu0c7dBMyc5jA1LTs0zNTbEFyNaYcKaU9h0KhbD27mgQ0Pef4iIqKpYABFV05iO7vj5WAyuPhEwed1ZXLmfjoxS7g1kbylDW3cbtGtQOLLT2s26UqeyunrZY3QHN/x+7h4+/vMKdr/dAyZGvI6BiKgqWAARVVMzJzl8XK1w+X46Ttx5DAAwMzZEa1drtG1ggzZuNmjbwAYu1qbFnhtWFZ8OboFD15NxMzkTPx65jRl9mmgiBSIivcMCiEgDvhjuja+2HUcf31Zo72GHZvXlMCrlVFZ12Zib4PMhLfHOlov47tAtDPJxhpeDpcb3Q0Sk6zh+TqQBzZ3kGOGhwjhfN3i7WNdI8VNkaBsX9GrqgLwCFWZvuwJVKXOLiIiobCyAiOoYQRCwaHgrmBkb4nTMY2zlnaiJiCqNBRBRHeRuZ473/ZoCABbviUJyRo7EERER1S0sgIjqqCldPdDa1RrpOflY8Nc1qcMhIqpTWAAR1VFGhgZY8lJrGBoI2HU5EYeuP5A6JCKiOoMFEFEd1srVGv/X3RMA8FnIVWSVcv8hIiIqiQUQUR03s28TuNuZISEtB4H7o6UOh4ioTmABRFTHmZsY4YvhrQEA60/cxcX4VGkDIiKqA1gAEemAnk0dMKKdK0QRmL3tCpQFKqlDIiLSaiyAiHTEZ4NbwMbcGFGJ6fjp7xipwyEi0mosgIh0RD1LGT4b3BIAsOLADcQ+ypI4IiIi7cUCiEiHjGzvim6N6yE3X4VPQq5AFPmYDCKi0rAAItIhgiDgi+GtITMywPFbj7Dt/H2pQyIi0kosgIh0jIe9Bd7p2wQAsGj3NTzKzJU0ngKViOikDD60lYi0CgsgIh30Ro9GaO4kxxOFEot2R0kWR0xKFkavOoH+K45iaeh1yeIgInoWCyAiHWRsaIClI30gCEDIhfs4euNhre5fpRLxy4m7GPjNUZyPSwUA/HLiLlIkHo0iIirCAohIR7V1t8GUrh4AgE+3X4Eir3Yek3E/NRuvrD2FuTsjkaNUoatXPbRwtkJuvgq/nLhbKzEQEZWHBRCRDnvfrxlcrE0R/zgb3xy4WaP7EkURW8/GY8D/juL4rUcwNTbA/KHe2PR/nfH2i40BABsiYvm8MiLSCiyAiHSYpcwIC4e3AgD8dCwGV++n1ch+kjNy8MaGs/joj8vIyM1HuwY22PN2D0zu6gEDAwF+3k7wtLdAWrYSv56Oq5EYiIgqgwUQkY7r06I+Bvs4o0AlYva2K8jX8GMydl1OgN//juJAVDJMDA0wa0Bz/PFWVzRysFRvY2ggYGrPRgCAn4/FIC+fj+ogImmxACLSA3OHtISVqRGu3E/Deg3Nw8lSAjO3XkZA8AWkKpRo6WyFnTO6YVpvLxgaCCW2H9HOFQ5yGRLTcrDjIu9PRETSYgFEpAcc5ab4ZFALAMBX+28g/rGiWv0djn6IpZcMsftKEgwNBLz9YmNs9++G5k5Wz21jamyI17p5AgB+PHqH9wUiIkmxACLSE2M6uqOTpx2ylQX4bPvVKj0mIyNHiY/+uISpmy4gXSmgkb0F/pzWFe/5NYOJUfl/nUx8oQHkMiPcSs7EwevJVUmDiEgjWAAR6QkDAwGLR7SGiaEBjtx4iL8uJ1aq/YlbKRiw4m9sPXsPggD0dlZhx/QX0NbdpsJ9WJkaY+ILDQEAq47crtT+iYg0iQUQkR5p7GiJgH8uSV/wVyRSFXnltsnOK8C8nZGY8NMp3E/NhrudGTa+2hEjPFQwNTasdAyvdfOAiaEBzsU+wZm7jyvdnohIE1gAEemZt3p5oYmjJVIy87B4T9mPyTgX+wSDvv1bPXF6QucG2PtOT3T2tKvy/h2tTDGygysAYFU4R4GISBosgIj0jImRAZaObA0A2Hr2Hk7cTimxTW5+AZaFXsfoVScQk5KF+lYyrH/VF4tHtIalzKjaMbzRoxEEATh4PRnRSRnV7o+IqLJYABHpoQ4N7fDyCw0AAJ+GXEWOskD9XmRCGoatPI6g8NtQiYWXr++f2Qu9mzlqbP+NHCwxwNsJAPDjUY4CEVHtYwFEpKc+GtAc9a1kiEnJwspDt5BfoMJ3B29i2MrjuJ6UgXoWJlj1cnv8b2xbWJsba3z/b/XyAgDsvJiA+6nZGu+fiKgskhZAS5Ysga+vL+RyORwdHTF8+HBER0eX2WbNmjXo0aMHbG1tYWtri759++L06dPP3f6tt96CIAhYsWKFhqMnqtusTI0xf2jhYzJWHbmNYd8fx1dhN5CvEuHXsj72vdsTA1o519j+27jboEujeshXifj575ga2w8RUWkkLYCOHDkCf39/nDx5EmFhYVAqlfDz80NWVtZz24SHh2P8+PE4fPgwIiIi4O7uDj8/P9y/X/LOsiEhITh58iRcXFxqMg2iOmtAKyf4tayPfJWIyIR0yE2N8L+xbfDjKx1gbymr8f2/1btwFOjX03F4klX+FWlERJpS/dmM1RAaGlpsef369XB0dMS5c+fQs2fPUtts3ry52PJPP/2EP//8EwcPHsSkSZPU6+/fv48ZM2Zg3759GDx4sOaDJ9IRC4a1QkJaNlyszTB/mDecrc1qbd89m9ijpbMVriWmY0NELN7p26TW9k1E+k3SAuhZaWmFT6q2s6v4JbYKhQJKpbJYG5VKhVdeeQUffvghvL29y+0jNzcXubm56uX09HQAgFKphFKprHAsFVHUn6b71UbMtW6oZ26IkLdeUC9XJAdN5vtG94Z49/crWH8iBq92cYeZSeXvLVST6vKxrSx9yhXQr3z1JdfK5CeIVbkffg1QqVQYOnQoUlNTcezYsQq3mz59Ovbt24fIyEiYmpoCKJxbdPjwYezbtw+CIMDDwwMzZ87EzJkzS+1j3rx5mD9/fon1wcHBMDc3r1I+RFQxBSLwxQVDPMoVMNKjAD2dteKvJCKqgxQKBSZMmIC0tDRYWT3/2YSAFo0A+fv74+rVq5UqfpYuXYotW7YgPDxcXfycO3cO33zzDc6fPw9BKPlE6tLMnj0b7733nno5PT1dPbeovF9gZSmVSoSFhaFfv34wNtb8lTXahLnqLk3nm24fh3m7ruNUqgUWTekOI0PtuUBVn46tPuUK6Fe++pJr0RmcitCKAiggIAC7du3C0aNH4ebmVqE2gYGBWLp0KQ4cOAAfHx/1+r///hvJyclo0KCBel1BQQHef/99rFixAnfv3i3Rl0wmg0xWcsKnsbFxjX1QarJvbcNcdZem8h3X2QPfHb6De6k52H89BcPaumogOs3Sp2OrT7kC+pWvrudamdyq9N+s+Ph43Lt3T718+vRpzJw5E6tXr65UP6IoIiAgACEhITh06BA8PT0r1G758uVYuHAhQkND0bFjx2LvvfLKK7h8+TIuXryofrm4uODDDz/Evn37KhUfEdUOU2NDTOnqAQBYdeROlZ5UT0RUGVUqgCZMmIDDhw8DAJKSktCvXz+cPn0an376KRYsWFDhfvz9/bFp0yYEBwdDLpcjKSkJSUlJyM7+96ZokyZNwuzZs9XLy5Ytw5w5c7B27Vp4eHio22RmZgIA6tWrh1atWhV7GRsbw8nJCc2aNatKukRUC17p0hDmJoaISkzHkRsPpQ6HiHRclQqgq1evolOnTgCArVu3olWrVjhx4gQ2b96M9evXV7ifoKAgpKWloXfv3nB2dla/fvvtN/U2cXFxSExMLNYmLy8Po0aNKtYmMDCwKqkQkZawMTfB+E6Fp65XHeHjMYioZlVpDpBSqVTPmTlw4ACGDh0KAGjevHmxYqU8FRnmDg8PL7Zc2hye8lSlDRHVvv/r7olfTtzFyTuPcSHuCdo1sJU6JCLSUVUaAfL29saqVavw999/IywsDAMGDAAAJCQkoF69ehoNkIj0h4uNmXoCNEeBiKgmVakAWrZsGX788Uf07t0b48ePR5s2bQAAO3fuVJ8aIyKqird6NQIA7L/2ALcfZkocDRHpqiqdAuvduzdSUlKQnp4OW9t/h6inTp3KGwcSUbU0qS9H3xb1cSDqAVYfuYNlo3zKb0REVElVGgHKzs5Gbm6uuviJjY3FihUrEB0dDUdHR40GSET6Z1rvwlGgkAv38SA9R+JoiEgXVakAGjZsGDZs2AAASE1NRefOnfHVV19h+PDhCAoK0miARKR/OjS0g6+HLfIKVFh7LEbqcIhIB1WpADp//jx69OgBAPjjjz9Qv359xMbGYsOGDfj22281GiAR6ae3enkBADafikNatm4/wJGIal+VCiCFQgG5XA4A2L9/P1566SUYGBjghRdeQGxsrEYDJCL99J9mjmha3xKZufnYfIp/rxCRZlWpAGrcuDG2b9+O+Ph47Nu3D35+fgCA5ORkjT88lIj0k4GBgDd7Fo4CrT12FznKAokjIiJdUqUC6PPPP8cHH3wADw8PdOrUCV26dAFQOBrUrl07jQZIRPpraFsXuFibIiUzF3+ev1d+AyKiCqpSATRq1CjExcXh7NmzxR4w2qdPH/zvf//TWHBEpN+MDQ3wfz0Krwhbc/QOClR8SCoRaUaVCiAAcHJyQrt27ZCQkKB+MnynTp3QvHlzjQVHRDTO1x3WZsa4+0iB0KtJUodDRDqiSgWQSqXCggULYG1tjYYNG6Jhw4awsbHBwoULoVKpNB0jEekxC5kRJndpCKDw8RgVeYYgEVF5qlQAffrpp1i5ciWWLl2KCxcu4MKFC1i8eDG+++47zJkzR9MxEpGem9zVA6bGBrhyPw0nbj+SOhwi0gFVehTGL7/8gp9++kn9FHgA8PHxgaurK6ZPn44vvvhCYwESEdWzlGFsR3f8EhGLVUduo1tje6lDIqI6rkojQI8fPy51rk/z5s3x+PHjagdFRPSs13s0gqGBgL9vpuDq/TSpwyGiOq5KBVCbNm2wcuXKEutXrlwJHx8+uJCINM/dzhz/9XEGUDgXiIioOqp0Cmz58uUYPHgwDhw4oL4HUEREBOLj47Fnzx6NBkhEVOTNnl7YcTEBe64kIvZRFhrWs5A6JCKqo6o0AtSrVy/cuHEDI0aMQGpqKlJTU/HSSy8hMjISGzdu1HSMREQAgJYuVujV1AEqEVjz9x2pwyGiOqxKI0AA4OLiUmKy86VLl/Dzzz9j9erV1Q6MiKg0b/XywpEbD7H17D2806cpHOQyqUMiojqoyjdCJCKSwguN7NDG3QZ5+SqsPxEjdThEVEexACKiOkUQBEzrVfh4jI0RscjMzZc4IiKqi1gAEVGd49fSCY0cLJCek49fT8VJHQ4R1UGVmgP00ksvlfl+ampqdWIhIqoQAwMBb/ZshFl/XsHPx2IwuasHTIz4/zkiqrhKFUDW1tblvj9p0qRqBUREVBHD27ni67AbSErPwfaL9zGmo3uV+hFFEbn5KmTl5iMrtwBZeflQ5BX+rMjLR7oiD0mZGg6eiCRXqQJo3bp1NRUHEVGlyIwM8Vo3TyzZex2rjtyGpcwIWbn5UOQVIDO3eBGTlVcARe4/f+blQ1FU6Pzzp6qc56sawBCdX0hFZy+H2kmOiGpclS+DJyKS2oTODbDy8C3ceZiF6ZvPV7s/cxNDmJsYwUL2z58mhkhV5OHWwyzM3HoZe97uAVsLEw1ETkRSYwFERHWW3NQY84Z4Y0PEXciMDWFhYghzWWHh8mwhU7jeCOYyw8I/TQxhKft32czYEAYGQol9PM7IRv+vDiIxLQcf/nEJayZ1hCCU3I6I6hYWQERUp43s4IaRHdxqrH+5qRGmNC3AN9dMcCAqGT8fi8HrPRrV2P6IqHbwsgkionK4WQCfDmwGAFi69zrOxz2ROCIiqi4WQEREFTDe1w2DfZyRrxIxI/gCUhV5UodERNXAAoiIqAIEQcDSl1qjYT1z3E/Nxge/X4YolnP5GBFpLRZAREQVJDc1xvcT2sPE0AAHoh5g7fG7UodERFXEAoiIqBJauVrjs/+2AAAs3RuFi/Gp0gZERFXCAoiIqJJeeaEhBrV2grJAREDweaRlK6UOiYgqiQUQEVElCYKApSN90MDOHPeeZOOjPy5xPhBRHcMCiIioCqyemg+0L/IB1p+4K3VIRFQJLICIiKqotZs1PhnUHACweE8ULt9LlTYgIqowFkBERNUwuasHBngXzgfy53wgojpD0gJoyZIl8PX1hVwuh6OjI4YPH47o6Ogy26xZswY9evSAra0tbG1t0bdvX5w+fVr9vlKpxKxZs9C6dWtYWFjAxcUFkyZNQkJCQk2nQ0R6SBAELBvlAzdbM8Q/zsbHf/L+QER1gaQF0JEjR+Dv74+TJ08iLCwMSqUSfn5+yMrKem6b8PBwjB8/HocPH0ZERATc3d3h5+eH+/fvAwAUCgXOnz+POXPm4Pz589i2bRuio6MxdOjQ2kqLiPSMtVnhfCBjQwF7ryZh48lYqUMionJI+jDU0NDQYsvr16+Ho6Mjzp07h549e5baZvPmzcWWf/rpJ/z55584ePAgJk2aBGtra4SFhRXbZuXKlejUqRPi4uLQoEEDzSZBRASgjbsNZg9sgQW7rmHRrii0b2CLVq7WUodFRM+hVXOA0tLSAAB2dnYVbqNQKKBUKstsk5aWBkEQYGNjU90QiYie69VuHvBrWR95BSr4B59Heg7nAxFpK0lHgJ6mUqkwc+ZMdOvWDa1atapwu1mzZsHFxQV9+/Yt9f2cnBzMmjUL48ePh5WVVanb5ObmIjc3V72cnp4OoHA+kVKp2b/AivrTdL/aiLnqLn3Kt7K5Lh7eEpEJaYh9pMCs3y/hm7E+EAShJkPUGH06roB+5asvuVYmP0HUktl606ZNw969e3Hs2DG4ublVqM3SpUuxfPlyhIeHw8fHp8T7SqUSI0eOxL179xAeHv7cAmjevHmYP39+ifXBwcEwNzevXCJEpPfuZgDfRBpCJQoY7VmA7k5a8dcskc5TKBSYMGEC0tLSnvtvfhGtKIACAgKwY8cOHD16FJ6enhVqExgYiEWLFuHAgQPo2LFjifeVSiXGjBmDO3fu4NChQ6hXr95z+yptBMjd3R0pKSnl/gIrS6lUIiwsDP369YOxsbFG+9Y2zFV36VO+Vc117fG7WBJ6AyZGBtj6Rid4u2j275KaoE/HFdCvfPUl1/T0dNjb21eoAJL0FJgoipgxYwZCQkIQHh5e4eJn+fLl+OKLL7Bv374yi5+bN2/i8OHDZRY/ACCTySCTyUqsNzY2rrEPSk32rW2Yq+7Sp3wrm+vUXo1xJjYVB6KSMXPrZfw1ozvkpnXjd6VPxxXQr3x1PdfK5CbpJGh/f39s2rQJwcHBkMvlSEpKQlJSErKzs9XbTJo0CbNnz1YvL1u2DHPmzMHatWvh4eGhbpOZmQmgsPgZNWoUzp49i82bN6OgoEC9TV5eXq3nSET6SRAEBI5uA1cbM9x9pMDsbVd4fyAiLSJpARQUFIS0tDT07t0bzs7O6tdvv/2m3iYuLg6JiYnF2uTl5WHUqFHF2gQGBgIA7t+/j507d+LevXto27ZtsW1OnDhR6zkSkf6yMTfBt+PbwchAwK7LiQg+HSd1SET0D8lPgZUnPDy82PLdu3fL3N7Dw4P/yyIirdGhoS0+GtAMi/dcx/y/rqGduy1a1oH5QES6TqvuA0REpIte794IfZo7Ii9fhYDg88jMzZc6JCK9xwKIiKiGGRgUzgdysTbFnZQsfBrC+UBEUmMBRERUC2wtTPDdhHYwNBCw42ICfjsTL3VIRHqNBRARUS3p0NAOH/ZvBgCYuzMSUYnpEkdEpL9YABER1aKpPRqhdzMH5OYXPi8si/OBiCTBAoiIqBYZGAj4ekxbOFmZ4s7DLHy2/SrnAxFJgAUQEVEts3tqPlDIhfvYwvlARLWOBRARkQR8Pezwvl9TAMCnIVew7fw9iSMi0i8sgIiIJPJWTy+M7+QOlQi8//slbOVIEFGtYQFERCQRAwMBXwxvjVdeaAhRBD768zI2n4qVOiwivcACiIhIQgYGAhYM88ar3TwAAJ+GXMX64zHSBkWkB1gAERFJTBAEfP7flnizZyMAwLy/ruGnv+9IHBWRbmMBRESkBQRBwMcDmyPgP40BAIt2RyEo/LbEURHpLhZARERaQhAEfNC/Gd7tW3h12LLQ6/j24E2JoyLSTSyAiIi0zDt9m6gfmfF12A18tT+aN0sk0jAWQEREWsj/P43xyaDmAIDvDt3CslAWQUSaxAKIiEhLTe3phblDWgIAVh25jUW7o1gEEWkICyAiIi32ajdPLBzeCgDw87EYzN0ZCZWKRRBRdbEAIiLScq+80BBLX2oNQQA2RMTi0+1XWQQRVRMLICKiOmBcpwb4clQbCALw6+k4zPrzMgpYBBFVGQsgIqI6YlQHN6wY2xYGAvD7uXv44PdLyC9QSR0WUZ3EAoiIqA4Z1tYV341vD0MDASEX7uPdrZegZBFEVGksgIiI6pjBPs74fkJ7GBsK+OtSAt7+9QLy8lkEEVUGCyAiojpoQCsnBE3sABNDA+y9moTpm88jN79A6rCI6gwWQEREdVTflvWxelIHmBgZ4EDUA7y58RxylCyCiCqCBRARUR3Wu5kj1k72hamxAcKjH+KNDWeRncciiKg8LICIiOq47k3ssW5KJ5ibGOLvmyl4bf0ZKPLypQ6LSKuxACIi0gFdvOrhl9c6wcLEEBF3HmHK2jPIzGURRPQ8LICIiHSEr4cdNr7eGXKZEU7ffYxJP59Ceo5S6rCItBILICIiHdK+gS02v9EZVqZGOB+Xild+OoW9VxJx9X4aiyGipxhJHQAREWmWj5sNgt94Aa/8fAqX7qVh2ubz6veszYzRwM4cDezM4WZnpv7Z3dYcDhb8J4H0Bz/tREQ6qJWrNX5/qwt+CL+NmJQsxD9WICUzD2nZSly5n4Yr99NKtDEQABsTQwQnnUHDehaFhdE/rwZ25qhnYQJBECTIhkjzWAAREemoxo5yfD2mrXo5Kzcf8U8UiH+cjbjHCsT/84p7rED8EwVylCo8zhVwKuYJTsU8KdGfmbHhP0WRmboo6tDQFj5uNrWXFJGGsAAiItITFjIjNHeyQnMnqxLviaKIxCdZ2LrnINyat0NCWm6xIikxPQfZygJEP8hA9IOMYm2DJrbHwNbOtZUGkUawACIiIgiCAAe5DJ5yYFAbZxgbGxd7Pze/AAmpOYj7Z8To3mMFLsSn4nTMY3y6/Sp8Pe1gbymTKHqiymMBRERE5ZIZGcLT3gKe9hbqdXn5KgxdeQzXkzLwacgVrHq5A+cIUZ3By+CJiKhKTIwM8NWYNjAyELAv8gF2XEyQOiSiCmMBREREVebtYo23+zQBAHy+4yoepOdIHBFRxbAAIiKiapnW2wutXa2RnpOPj/+8DFEUpQ6JqFySFkBLliyBr68v5HI5HB0dMXz4cERHR5fZZs2aNejRowdsbW1ha2uLvn374vTp08W2EUURn3/+OZydnWFmZoa+ffvi5s2bNZkKEZHeMjYsPBVmYmSAw9EPsfVsvNQhEZVL0gLoyJEj8Pf3x8mTJxEWFgalUgk/Pz9kZWU9t014eDjGjx+Pw4cPIyIiAu7u7vDz88P9+/fV2yxfvhzffvstVq1ahVOnTsHCwgL9+/dHTg6HZomIakLT+nK8368pAGDhrijce6KQOCKisklaAIWGhmLKlCnw9vZGmzZtsH79esTFxeHcuXPPbbN582ZMnz4dbdu2RfPmzfHTTz9BpVLh4MGDAApHf1asWIHPPvsMw4YNg4+PDzZs2ICEhARs3769ljIjItI/r/dohA4NbZGZm49Zf16GSsVTYaS9tOoy+LS0wluz29nZVbiNQqGAUqlUt4mJiUFSUhL69u2r3sba2hqdO3dGREQExo0bV6KP3Nxc5ObmqpfT09MBAEqlEkqlZh8eWNSfpvvVRsxVd+lTvsy1cpaOaIkh30fg+K1H2HDiDiZ2bqCp8DSOx1b3VCY/QdSS2WoqlQpDhw5Famoqjh07VuF206dPx759+xAZGQlTU1OcOHEC3bp1Q0JCApyd/70z6ZgxYyAIAn777bcSfcybNw/z588vsT44OBjm5uZVS4iISE8dTRTw511DmBiImNWmAPamUkdE+kKhUGDChAlIS0uDlVXJO54/TWtGgPz9/XH16tVKFT9Lly7Fli1bEB4eDlPTqn/DZs+ejffee0+9nJ6erp5bVN4vsLKUSiXCwsLQr1+/Enda1TXMVXfpU77MtfIGqETcX38WJ2OeYO9je2x6zReGBtp3g0QeW91TdAanIrSiAAoICMCuXbtw9OhRuLm5VahNYGAgli5digMHDsDHx0e93snJCQDw4MGDYiNADx48QNu2bUvtSyaTQSYreQt3Y2PjGvug1GTf2oa56i59ype5Vs6Xo9tiwIqjOBubik2n7+H1Ho00FJ3m8djqjsrkJukkaFEUERAQgJCQEBw6dAienp4Vard8+XIsXLgQoaGh6NixY7H3PD094eTkpJ4UDRRWhKdOnUKXLl00Gj8REZXO3c4cnw5uCQBYvi8at5IzJY6IqDhJCyB/f39s2rQJwcHBkMvlSEpKQlJSErKzs9XbTJo0CbNnz1YvL1u2DHPmzMHatWvh4eGhbpOZWfjlEgQBM2fOxKJFi7Bz505cuXIFkyZNgouLC4YPH17bKRIR6a3xndzRs6kD8vJVeP/3S8gvUEkdEpGapAVQUFAQ0tLS0Lt3bzg7O6tfT09UjouLQ2JiYrE2eXl5GDVqVLE2gYGB6m0++ugjzJgxA1OnToWvry8yMzMRGhparXlCRERUOYIgYNnI1pCbGuFSfCp+PHpH6pCI1CSdA1SRC9DCw8OLLd+9e7fcNoIgYMGCBViwYEEVIyMiIk1wtjbDvCHeeP/3S1hx4AZebO6IFs6avbiEqCr4LDAiIqpRL7V3Rd8W9aEsEPH+1kvIy+epMJIeCyAiIqpRgiBg8UutYGNujGuJ6Vh5+JbUIRGxACIioprnKDfFwmGtAADfH76FK/fSJI6I9B0LICIiqhVD2rhgsI8zClQi3v/9InKUBVKHRHqMBRAREdWahcNawd7SBDceZOJ/B25IHQ7pMRZARERUa+wsTLB4RGsAwJqjd3Au9onEEZG+YgFERES1ys/bCS+1c4VKBD74/RKy83gqjGofCyAiIqp1c4d4w8nKFDEpWVi+77rU4ZAeYgFERES1ztrcGEtHFp4KW3f8LiJuP5I4ItI3LICIiEgSvZs5YnwndwDAh39cQmZuvsQRkT5hAURERJL5dHBLuNqY4d6TbCzeEyV1OKRHWAAREZFkLGVG+HK0DwAg+FQcjt54KHFEpC9YABERkaS6etljSlcPAMCsPy8jLVspbUCkF1gAERGR5D4a0Awe9cyRmJaDhbuuSR0O6QEWQEREJDlzEyMEjm4DQQD+OHcPYdce1Ni+RFFEckYOIhPSwQfT6y8jqQMgIiICgI4ednijRyOsPnoHs7ddQceGtrC1MKl0P6Io4lFWHu49yUb8YwXuPcnGvSfF/8z9p/JpJDeEX/8CGBsbazod0nIsgIiISGu8168pDl1Pxq3kTHy+MxLfjW9XYhtRFPFEoSxR3MQ/VeTkKMse2hEEwFAQcCcDeOe3y1g9qSOMDHlSRJ+wACIiIq1hamyIr0a3wUtBJ/DXpQQ0cbSEmbFhseLm3pNsKMp5fIYgAE5WpnCzNYObrfk/fxb+7G5rDidrU5yNScHktadxKPohPgm5gmUjfSAIQi1lSlJjAURERFqljbsNpvf2wneHbuHrsOc/Mb6+leyfgubpIqfwT2cbU8iMDMvcj6+HLSY3VWHtDUNsPXsPDnIZPuzfXNPpkJZiAURERFpnxotNEPdYgbjHCrg/Vdy42xX+6WxtClPjsgucimhtJ2Lh0Jb4dMc1fH/4NuwtZXi1m6cGMiBtxwKIiIi0jomRAb4ZV3L+T00Y09ENT7LzEbj/BhbsuoZ6ljIMbeNSK/sm6XDGFxER6T3//zTG5C4NIYrA+1sv4u+bvCO1rmMBREREek8QBHw+xBuDfZyhLBDx1sZzuHwvVeqwqAaxACIiIgJgaCDg6zFt0K1xPWTlFeDVdWcQk5IldVhUQ1gAERER/UNmZIhVL3dAK1crPMrKw6S1p5CcniN1WFQDWAARERE9RW5qjHVTOqFhPXPEP87G5HVnkJ7DB7TqGhZAREREz3CQy7Dxtc6wt5QhKjEdUzecRY6y7JsvUt3CAoiIiKgUDeqZ45fXfGEpM8LJO48xc8tFFKhEqcMiDWEBRERE9BzeLtZYPakDTAwNEBqZhDk7rkIUWQTpAhZAREREZejqZY8V49pCEIDgU3H45uBNqUMiDWABREREVI5BrZ2xYFgrAMCKAzex6WSsxBFRdbEAIiIiqoBXXmiIt/s0AQDM2XEVe68kShwRVQcLICIiogp6t28TTOjcAKIIvLPlIiJuP5I6JKoiFkBEREQVJAgCFg5rhQHeTsgrUGHqhrOITEiTOiyqAhZARERElWBoIGDFuLbo5GmHjNx8TFl3BnGPFFKHRZXEAoiIiKiSTI0NsWZSRzR3kuNhRi4mrT2FlMxcqcOiSmABREREVAXWZsbY8FonuNma4e4jBV5ddwaZuflSh0UVxAKIiIioihytTLHx/zqjnoUJrtxPw1sbzyE3n4/MqAskLYCWLFkCX19fyOVyODo6Yvjw4YiOji6zTWRkJEaOHAkPDw8IgoAVK1aU2KagoABz5syBp6cnzMzM4OXlhYULF/LunUREpHGe9hZY96ovzE0McexWCt7fegkqPjJD60laAB05cgT+/v44efIkwsLCoFQq4efnh6ysrOe2USgUaNSoEZYuXQonJ6dSt1m2bBmCgoKwcuVKREVFYdmyZVi+fDm+++67mkqFiIj0mI+bDX58pQOMDQXsupyIBbuu8T/dWs5Iyp2HhoYWW16/fj0cHR1x7tw59OzZs9Q2vr6+8PX1BQB8/PHHpW5z4sQJDBs2DIMHDwYAeHh44Ndff8Xp06c1GD0REdG/ejRxQODoNnhny0WsP3EXDnIZ/P/TWOqw6DkkLYCelZZWeC8FOzu7avXTtWtXrF69Gjdu3EDTpk1x6dIlHDt2DF9//XWp2+fm5iI399/Z++np6QAApVIJpVJZrVieVdSfpvvVRsxVd+lTvsxVd9VEvoO8HZE8qBm+2BONL/dF4+zdR3i5cwN096oHAwNBY/upLH05tpXJTxC1ZIxOpVJh6NChSE1NxbFjxyrUxsPDAzNnzsTMmTNL9PXJJ59g+fLlMDQ0REFBAb744gvMnj271H7mzZuH+fPnl1gfHBwMc3PzSudCRET6bW+8AULv/TvLxN5URPf6KnR2FGGuVUMPukWhUGDChAlIS0uDlZVVmdtqzWHw9/fH1atXK1z8lGXr1q3YvHkzgoOD4e3tjYsXL2LmzJlwcXHB5MmTS2w/e/ZsvPfee+rl9PR0uLu7w8/Pr9xfYGUplUqEhYWhX79+MDY21mjf2oa56i59ype56q6azHcQgDsPsxB8Jh7bLiQgJScf22MNEZpggCE+zpjYyR3eLpr996Us+nJsi87gVIRWFEABAQHYtWsXjh49Cjc3t2r39+GHH+Ljjz/GuHHjAACtW7dGbGwslixZUmoBJJPJIJPJSqw3NjausQ9KTfatbZir7tKnfJmr7qqpfJu52GD+MBvMGtgC2y8kYEPEXVxPysDv5+7j93P30a6BDSZ1aYhBrZ0hMzLU+P5Lo+vHtjK5SVoAiaKIGTNmICQkBOHh4fD09NRIvwqFAgYGxS9wMzQ0hEql0kj/REREFWVuYoQJnRtgfCd3nIt9gg0Rsdh7NREX4lJxIS4VC3dFYayvOyZ2bgA3W067qC2SFkD+/v4IDg7Gjh07IJfLkZSUBACwtraGmZkZAGDSpElwdXXFkiVLAAB5eXm4du2a+uf79+/j4sWLsLS0ROPGhbPthwwZgi+++AINGjSAt7c3Lly4gK+//hqvvfaaBFkSEREVPki1o4cdOnrY4WFGS2w5HYfg03FITMtBUPht/HjkNl5sXh+TujRE98b2kk6a1geSFkBBQUEAgN69exdbv27dOkyZMgUAEBcXV2w0JyEhAe3atVMvBwYGIjAwEL169UJ4eDgA4LvvvsOcOXMwffp0JCcnw8XFBW+++SY+//zzGs2HiIioIhzkMszo0wTTenvhQFQyNp68i+O3HuFA1AMciHoAT3sLTOzcAKM7uMPaXHdPWUlJ8lNg5Skqaop4eHiU204ul2PFihWl3iWaiIhIWxgZGmBAKycMaOWEW8mZ2HQyFn+eu4eYlCws2h2FwP3RGN7WFa90aQhvF2upw9UpWjEJmoiISN81drTEvKHe+LB/M2y/eB8bI2JxPSkDW87EY8uZeLRvYINJXTwwsLVTrU2a1mUsgIiIiLSIhcwIEzs3xIRODXDm7hNsPBmLvVcScT4uFefjLmLhLhOM6+SOsR0boEE9TpquKhZAREREWkgQBHTytEMnTzsk/7cFtpyOR/CpOCSl5+D7w7fx/eHbcLY2RfuGtmjfwBYdGtqipbMVTIwkfcxnncECiIiISMs5yk3xdp8mmN7bCweiHmBDRCxO3nmExLQc7L6ciN2XEwEAMiMD+LhZo30DW3Vh5CAveZ87YgFERERUZxROmnbGgFbOyMrNx6V7qTgf++Sf02NPkKpQ4szdJzhz94m6TQM7c7R1s4ZJhoCGCelo5WYLI0OOErEAIiIiqoMsZEbo6mWPrl72AAqvrL6TkvVPQfQE52NTcSM5A3GPFYh7rABgiD+CTsLcxBBt3GzQoaEt2je0QTt3W9hamEibjARYABEREekAQRDg5WAJLwdLjO7oDgBIz1HiYlwqzsSkIOz8LdzLMUFmbj4i7jxCxJ1H6raNHCzQ4Z/TZh0a2qKxg6XO34iRBRAREZGOsjI1Rs+mDujiaYPGOTfQf8B/EPskF+fUo0RPcCclC3ceFr5+P3cPACA3NcJL7VzxyeAWOnvJPQsgIiIiPWFoIKCZkxzNnOSY0LkBAOBxVh4uxP172uxifCoycvLxS0Qsriak48dXOsDeUvcmUrMAIiIi0mN2Fibo06I++rSoDwDIL1DhcPRDvLf1Is7FPsGwlcfx0+SOaOFsJXGkmsVp4ERERKRmZGiAfi3rY7t/N3jaW+B+ajZGBp3A/sgkqUPTKBZAREREVIKXgyW2T++G7o3tocgrwJubzuH7w7cq9BzPuoAFEBEREZXK2twY6171xaQuDSGKwJf7ovHubxeRoyyQOrRqYwFEREREz2VsaIAFw1ph4fBWMDQQsP1iAsatPonkjBypQ6sWFkBERERUrldeaIiNr3WCtZkxLsanYtjK47h6P03qsKqMBRARERFVSNfG9tjh3w1eDhZITMvB6FUR2HslUeqwqoQFEBEREVWYh70Ftk3vhp5NHZCtLMC0zefx7cGbdW5yNAsgIiIiqhRrM2OsndwRr3bzAAB8HXYDM369UKcmR7MAIiIiokozMjTA3CHeWPJSaxgZCNh1ORFjfozAg/S6MTmaBRARERFV2fhODbDp9c6wNTfG5XtpGLryGC7Fp0odVrlYABEREVG1vNCoHnb4d0cTR0s8SM/FmB8j8NelBKnDKhMLICIiIqq2BvXMsW16V/ynmQNy81WY8esFfL0/GiqVdk6OZgFEREREGiE3NcZPk33xRg9PAMC3h27BP/g8FHn5EkdWEgsgIiIi0hhDAwGfDm6J5aN8YGwoYO/VJIxeFYGE1GypQyuGBRARERFp3JiO7gh+4wXYWZggMiEdQ1cex4W4J1KHpcYCiIiIiGqEr4cddvh3Q3MnOVIyczF29Ulsv3Bf6rAAsAAiIiKiGuRuZ44/pnVF3xb1kZevwszfLmJ56HXJJ0ezACIiIqIaZSkzwupXOmBaby8AwA/htzFt8zlJiyAWQERERFTjDAwEzBrQHF+PaQMTQwO0drWGgYEgWTxGku2ZiIiI9M5L7d3Qxt0GjewtJI2DBRARERHVKi8HS6lD4CkwIiIi0j8sgIiIiEjvsAAiIiIivcMCiIiIiPQOCyAiIiLSOyyAiIiISO+wACIiIiK9I2kBtGTJEvj6+kIul8PR0RHDhw9HdHR0mW0iIyMxcuRIeHh4QBAErFixotTt7t+/j5dffhn16tWDmZkZWrdujbNnz9ZAFkRERFTXSFoAHTlyBP7+/jh58iTCwsKgVCrh5+eHrKys57ZRKBRo1KgRli5dCicnp1K3efLkCbp16wZjY2Ps3bsX165dw1dffQVbW9uaSoWIiIjqEEnvBB0aGlpsef369XB0dMS5c+fQs2fPUtv4+vrC19cXAPDxxx+Xus2yZcvg7u6OdevWqdd5enpqKGoiIiKq67TqURhpaWkAADs7u2r1s3PnTvTv3x+jR4/GkSNH4OrqiunTp+ONN94odfvc3Fzk5uaql9PT0wEASqUSSqWyWrE8q6g/TferjZir7tKnfJmr7tKnfPUl18rkJ4iiKN2z6J+iUqkwdOhQpKam4tixYxVq4+HhgZkzZ2LmzJnF1puamgIA3nvvPYwePRpnzpzBO++8g1WrVmHy5Mkl+pk3bx7mz59fYn1wcDDMzc0rnwwRERHVOoVCgQkTJiAtLQ1WVlZlbqs1BdC0adOwd+9eHDt2DG5ubhVq87wCyMTEBB07dsSJEyfU695++22cOXMGERERJfopbQTI3d0dKSkp5f4CK0upVCIsLAz9+vWDsbGxRvvWNsxVd+lTvsxVd+lTvvqSa3p6Ouzt7StUAGnFKbCAgADs2rULR48erXDxUxZnZ2e0bNmy2LoWLVrgzz//LHV7mUwGmUymXi6qCbOzszX+QVEqlVAoFMjOzkZ+fr5G+9Y2zFV36VO+zFV36VO++pJrdnY2gH//HS+LpAWQKIqYMWMGQkJCEB4errGJyt26dStxOf2NGzfQsGHDCrXPyMgAALi7u2skHiIiIqo9GRkZsLa2LnMbSQsgf39/BAcHY8eOHZDL5UhKSgIAWFtbw8zMDAAwadIkuLq6YsmSJQCAvLw8XLt2Tf3z/fv3cfHiRVhaWqJx48YAgHfffRddu3bF4sWLMWbMGJw+fRqrV6/G6tWrKxSXi4sL4uPjIZfLIQiCRnMuOr0WHx+v8dNr2oa56i59ype56i59yldfchVFERkZGXBxcSl3W0nnAD2vuFi3bh2mTJkCAOjduzc8PDywfv16AMDdu3dLHSnq1asXwsPD1cu7du3C7NmzcfPmTXh6euK999577lVgtSk9PR3W1tYVOj9Z1zFX3aVP+TJX3aVP+epTrhUl+Smw8jxd1ACFE58r0u6///0v/vvf/1Y1NCIiItJhfBYYERER6R0WQLVMJpNh7ty5xa4601XMVXfpU77MVXfpU776lGtFac19gIiIiIhqC0eAiIiISO+wACIiIiK9wwKIiIiI9A4LICIiItI7LIBqwPfffw8PDw+Ympqic+fOOH36dJnb//7772jevDlMTU3RunVr7Nmzp5YirbolS5bA19cXcrkcjo6OGD58eInHjzxr/fr1EASh2MvU1LSWIq66efPmlYi7efPmZbapi8e0iIeHR4l8BUGAv79/qdvXpeN69OhRDBkyBC4uLhAEAdu3by/2viiK+Pzzz+Hs7AwzMzP07dsXN2/eLLffyn7na0tZ+SqVSsyaNQutW7eGhYUFXFxcMGnSJCQkJJTZZ1W+D7WhvGM7ZcqUEnEPGDCg3H618diWl2tp319BEPDll18+t09tPa41iQWQhv3222947733MHfuXJw/fx5t2rRB//79kZycXOr2J06cwPjx4/F///d/uHDhAoYPH47hw4fj6tWrtRx55Rw5cgT+/v44efIkwsLCoFQq4efnh6ysrDLbWVlZITExUf2KjY2tpYirx9vbu1jcx44de+62dfWYFjlz5kyxXMPCwgAAo0ePfm6bunJcs7Ky0KZNG3z//felvr98+XJ8++23WLVqFU6dOgULCwv0798fOTk5z+2zst/52lRWvgqFAufPn8ecOXNw/vx5bNu2DdHR0Rg6dGi5/Vbm+1Bbyju2ADBgwIBicf/6669l9qmtx7a8XJ/OMTExEWvXroUgCBg5cmSZ/Wrjca1RImlUp06dRH9/f/VyQUGB6OLiIi5ZsqTU7ceMGSMOHjy42LrOnTuLb775Zo3GqWnJyckiAPHIkSPP3WbdunWitbV17QWlIXPnzhXbtGlT4e115ZgWeeedd0QvLy9RpVKV+n5dPa4AxJCQEPWySqUSnZycxC+//FK9LjU1VZTJZOKvv/763H4q+52XyrP5lub06dMiADE2Nva521T2+yCF0nKdPHmyOGzYsEr1UxeObUWO67Bhw8QXX3yxzG3qwnHVNI4AaVBeXh7OnTuHvn37qtcZGBigb9++iIiIKLVNREREse0BoH///s/dXlulpaUBAOzs7MrcLjMzEw0bNoS7uzuGDRuGyMjI2giv2m7evAkXFxc0atQIEydORFxc3HO31ZVjChR+pjdt2oTXXnutzAcD19Xj+rSYmBgkJSUVO3bW1tbo3Lnzc49dVb7z2iwtLQ2CIMDGxqbM7SrzfdAm4eHhcHR0RLNmzTBt2jQ8evToudvqyrF98OABdu/ejf/7v/8rd9u6elyrigWQBqWkpKCgoAD169cvtr5+/frqJ90/KykpqVLbayOVSoWZM2eiW7duaNWq1XO3a9asGdauXYsdO3Zg06ZNUKlU6Nq1K+7du1eL0VZe586dsX79eoSGhiIoKAgxMTHo0aMHMjIySt1eF45pke3btyM1NVX9cOLS1NXj+qyi41OZY1eV77y2ysnJwaxZszB+/PgyH5ZZ2e+DthgwYAA2bNiAgwcPYtmyZThy5AgGDhyIgoKCUrfXlWP7yy+/QC6X46WXXipzu7p6XKtD0oehkm7w9/fH1atXyz1f3KVLF3Tp0kW93LVrV7Ro0QI//vgjFi5cWNNhVtnAgQPVP/v4+KBz585o2LAhtm7dWqH/VdVlP//8MwYOHAgXF5fnblNXjyv9S6lUYsyYMRBFEUFBQWVuW1e/D+PGjVP/3Lp1a/j4+MDLywvh4eHo06ePhJHVrLVr12LixInlXphQV49rdXAESIPs7e1haGiIBw8eFFv/4MEDODk5ldrGycmpUttrm4CAAOzatQuHDx+Gm5tbpdoaGxujXbt2uHXrVg1FVzNsbGzQtGnT58Zd149pkdjYWBw4cACvv/56pdrV1eNadHwqc+yq8p3XNkXFT2xsLMLCwsoc/SlNed8HbdWoUSPY29s/N25dOLZ///03oqOjK/0dBuruca0MFkAaZGJigg4dOuDgwYPqdSqVCgcPHiz2P+SndenSpdj2ABAWFvbc7bWFKIoICAhASEgIDh06BE9Pz0r3UVBQgCtXrsDZ2bkGIqw5mZmZuH379nPjrqvH9Fnr1q2Do6MjBg8eXKl2dfW4enp6wsnJqdixS09Px6lTp5577KryndcmRcXPzZs3ceDAAdSrV6/SfZT3fdBW9+7dw6NHj54bd10/tkDhCG6HDh3Qpk2bSretq8e1UqSeha1rtmzZIspkMnH9+vXitWvXxKlTp4o2NjZiUlKSKIqi+Morr4gff/yxevvjx4+LRkZGYmBgoBgVFSXOnTtXNDY2Fq9cuSJVChUybdo00draWgwPDxcTExPVL4VCod7m2Vznz58v7tu3T7x9+7Z47tw5cdy4caKpqakYGRkpRQoV9v7774vh4eFiTEyMePz4cbFv376ivb29mJycLIqi7hzTpxUUFIgNGjQQZ82aVeK9unxcMzIyxAsXLogXLlwQAYhff/21eOHCBfVVT0uXLhVtbGzEHTt2iJcvXxaHDRsmenp6itnZ2eo+XnzxRfG7775TL5f3nZdSWfnm5eWJQ4cOFd3c3MSLFy8W+x7n5uaq+3g23/K+D1IpK9eMjAzxgw8+ECMiIsSYmBjxwIEDYvv27cUmTZqIOTk56j7qyrEt73MsiqKYlpYmmpubi0FBQaX2UVeOa01iAVQDvvvuO7FBgwaiiYmJ2KlTJ/HkyZPq93r16iVOnjy52PZbt24VmzZtKpqYmIje3t7i7t27azniygNQ6mvdunXqbZ7NdebMmerfS/369cVBgwaJ58+fr/3gK2ns2LGis7OzaGJiIrq6uopjx44Vb926pX5fV47p0/bt2ycCEKOjo0u8V5eP6+HDh0v93Bblo1KpxDlz5oj169cXZTKZ2KdPnxK/g4YNG4pz584ttq6s77yUyso3Jibmud/jw4cPq/t4Nt/yvg9SKStXhUIh+vn5iQ4ODqKxsbHYsGFD8Y033ihRyNSVY1ve51gURfHHH38UzczMxNTU1FL7qCvHtSYJoiiKNTrERERERKRlOAeIiIiI9A4LICIiItI7LICIiIhI77AAIiIiIr3DAoiIiIj0DgsgIiIi0jssgIiIiEjvsAAiIqoAQRCwfft2qcMgIg1hAUREWm/KlCkQBKHEa8CAAVKHRkR1lJHUARARVcSAAQOwbt26YutkMplE0RBRXccRICKqE2QyGZycnIq9bG1tARSengoKCsLAgQNhZmaGRo0a4Y8//ijW/sqVK3jxxRdhZmaGevXqYerUqcjMzCy2zdq1a+Ht7Q2ZTAZnZ2cEBAQUez8lJQUjRoyAubk5mjRpgp07d9Zs0kRUY1gAEZFOmDNnDkaOHIlLly5h4sSJGDduHKKiogAAWVlZ6N+/P2xtbXHmzBn8/vvvOHDgQLECJygoCP7+/pg6dSquXLmCnTt3onHjxsX2MX/+fIwZMwaXL1/GoEGDMHHiRDx+/LhW8yQiDZH6aaxEROWZPHmyaGhoKFpYWBR7ffHFF6IoiiIA8a233irWpnPnzuK0adNEURTF1atXi7a2tmJmZqb6/d27d4sGBgbqJ4K7uLiIn3766XNjACB+9tln6uXMzEwRgLh3716N5UlEtYdzgIioTvjPf/6DoKCgYuvs7OzUP3fp0qXYe126dMHFixcBAFFRUWjTpg0sLCzU73fr1g0qlQrR0dEQBAEJCQno06dPmTH4+Piof7awsICVlRWSk5OrmhIRSYgFEBHVCRYWFiVOSWmKmZlZhbYzNjYutiwIAlQqVU2EREQ1jHOAiEgnnDx5ssRyixYtAAAtWrTApUuXkJWVpX7/+PHjMDAwQLNmzSCXy+Hh4YGDBw/WasxEJB2OABFRnZCbm4ukpKRi64yMjGBvbw8A+P3339GxY0d0794dmzdvxunTp/Hzzz8DACZOnIi5c+di8uTJmDdvHh4+fIgZM2bglVdeQf369QEA8+bNw1tvvQVHR0cMHDgQGRkZOH78OGbMmFG7iRJRrWABRER1QmhoKJydnYuta9asGa5fvw6g8AqtLVu2YPr06XB2dsavv/6Kli1bAgDMzc2xb98+vPPOO/D19YW5uTlGjhyJr7/+Wt3X5MmTkZOTg//973/44IMPYG9vj1GjRtVegkRUqwRRFEWpgyAiqg5BEBASEoLhw4dLHQoR1RGcA0RERER6hwUQERER6R3OASKiOo9n8omosjgCRERERHqHBRARERHpHRZAREREpHdYABEREZHeYQFEREREeocFEBEREekdFkBERESkd1gAERERkd5hAURERER65/8BKVyYj9SRS7AAAAAASUVORK5CYII=\n",
498
  "text/plain": [
499
  "<Figure size 640x480 with 1 Axes>"
500
  ]
 
506
  "name": "stdout",
507
  "output_type": "stream",
508
  "text": [
509
+ "Epoch [20/20], Loss: 2.1659\n"
510
  ]
511
  }
512
  ],
513
  "source": [
514
+ "# fix --- execute this cell\n",
515
  "import matplotlib.pyplot as plt\n",
516
  "from IPython import display\n",
517
  "\n",
benchmark/NBspecific_2/NBspecific_2_fixed.ipynb CHANGED
@@ -57,7 +57,7 @@
57
  },
58
  {
59
  "cell_type": "code",
60
- "execution_count": 2,
61
  "metadata": {
62
  "execution": {
63
  "iopub.execute_input": "2023-03-16T09:27:20.618616Z",
@@ -100,7 +100,7 @@
100
  },
101
  {
102
  "cell_type": "code",
103
- "execution_count": 3,
104
  "metadata": {
105
  "execution": {
106
  "iopub.execute_input": "2023-03-16T09:27:20.631972Z",
@@ -155,7 +155,7 @@
155
  },
156
  {
157
  "cell_type": "code",
158
- "execution_count": 4,
159
  "metadata": {
160
  "execution": {
161
  "iopub.execute_input": "2023-03-16T09:27:20.642705Z",
@@ -172,7 +172,7 @@
172
  },
173
  {
174
  "cell_type": "code",
175
- "execution_count": 5,
176
  "metadata": {
177
  "execution": {
178
  "iopub.execute_input": "2023-03-16T09:27:25.915500Z",
@@ -182,214 +182,14 @@
182
  "shell.execute_reply.started": "2023-03-16T09:27:25.915472Z"
183
  }
184
  },
185
- "outputs": [
186
- {
187
- "data": {
188
- "text/html": [
189
- "<div>\n",
190
- "<style scoped>\n",
191
- " .dataframe tbody tr th:only-of-type {\n",
192
- " vertical-align: middle;\n",
193
- " }\n",
194
- "\n",
195
- " .dataframe tbody tr th {\n",
196
- " vertical-align: top;\n",
197
- " }\n",
198
- "\n",
199
- " .dataframe thead th {\n",
200
- " text-align: right;\n",
201
- " }\n",
202
- "</style>\n",
203
- "<table border=\"1\" class=\"dataframe\">\n",
204
- " <thead>\n",
205
- " <tr style=\"text-align: right;\">\n",
206
- " <th></th>\n",
207
- " <th>label</th>\n",
208
- " <th>pixel1</th>\n",
209
- " <th>pixel2</th>\n",
210
- " <th>pixel3</th>\n",
211
- " <th>pixel4</th>\n",
212
- " <th>pixel5</th>\n",
213
- " <th>pixel6</th>\n",
214
- " <th>pixel7</th>\n",
215
- " <th>pixel8</th>\n",
216
- " <th>pixel9</th>\n",
217
- " <th>...</th>\n",
218
- " <th>pixel775</th>\n",
219
- " <th>pixel776</th>\n",
220
- " <th>pixel777</th>\n",
221
- " <th>pixel778</th>\n",
222
- " <th>pixel779</th>\n",
223
- " <th>pixel780</th>\n",
224
- " <th>pixel781</th>\n",
225
- " <th>pixel782</th>\n",
226
- " <th>pixel783</th>\n",
227
- " <th>pixel784</th>\n",
228
- " </tr>\n",
229
- " </thead>\n",
230
- " <tbody>\n",
231
- " <tr>\n",
232
- " <th>0</th>\n",
233
- " <td>2</td>\n",
234
- " <td>0</td>\n",
235
- " <td>0</td>\n",
236
- " <td>0</td>\n",
237
- " <td>0</td>\n",
238
- " <td>0</td>\n",
239
- " <td>0</td>\n",
240
- " <td>0</td>\n",
241
- " <td>0</td>\n",
242
- " <td>0</td>\n",
243
- " <td>...</td>\n",
244
- " <td>0</td>\n",
245
- " <td>0</td>\n",
246
- " <td>0</td>\n",
247
- " <td>0</td>\n",
248
- " <td>0</td>\n",
249
- " <td>0</td>\n",
250
- " <td>0</td>\n",
251
- " <td>0</td>\n",
252
- " <td>0</td>\n",
253
- " <td>0</td>\n",
254
- " </tr>\n",
255
- " <tr>\n",
256
- " <th>1</th>\n",
257
- " <td>9</td>\n",
258
- " <td>0</td>\n",
259
- " <td>0</td>\n",
260
- " <td>0</td>\n",
261
- " <td>0</td>\n",
262
- " <td>0</td>\n",
263
- " <td>0</td>\n",
264
- " <td>0</td>\n",
265
- " <td>0</td>\n",
266
- " <td>0</td>\n",
267
- " <td>...</td>\n",
268
- " <td>0</td>\n",
269
- " <td>0</td>\n",
270
- " <td>0</td>\n",
271
- " <td>0</td>\n",
272
- " <td>0</td>\n",
273
- " <td>0</td>\n",
274
- " <td>0</td>\n",
275
- " <td>0</td>\n",
276
- " <td>0</td>\n",
277
- " <td>0</td>\n",
278
- " </tr>\n",
279
- " <tr>\n",
280
- " <th>2</th>\n",
281
- " <td>6</td>\n",
282
- " <td>0</td>\n",
283
- " <td>0</td>\n",
284
- " <td>0</td>\n",
285
- " <td>0</td>\n",
286
- " <td>0</td>\n",
287
- " <td>0</td>\n",
288
- " <td>0</td>\n",
289
- " <td>5</td>\n",
290
- " <td>0</td>\n",
291
- " <td>...</td>\n",
292
- " <td>0</td>\n",
293
- " <td>0</td>\n",
294
- " <td>0</td>\n",
295
- " <td>30</td>\n",
296
- " <td>43</td>\n",
297
- " <td>0</td>\n",
298
- " <td>0</td>\n",
299
- " <td>0</td>\n",
300
- " <td>0</td>\n",
301
- " <td>0</td>\n",
302
- " </tr>\n",
303
- " <tr>\n",
304
- " <th>3</th>\n",
305
- " <td>0</td>\n",
306
- " <td>0</td>\n",
307
- " <td>0</td>\n",
308
- " <td>0</td>\n",
309
- " <td>1</td>\n",
310
- " <td>2</td>\n",
311
- " <td>0</td>\n",
312
- " <td>0</td>\n",
313
- " <td>0</td>\n",
314
- " <td>0</td>\n",
315
- " <td>...</td>\n",
316
- " <td>3</td>\n",
317
- " <td>0</td>\n",
318
- " <td>0</td>\n",
319
- " <td>0</td>\n",
320
- " <td>0</td>\n",
321
- " <td>1</td>\n",
322
- " <td>0</td>\n",
323
- " <td>0</td>\n",
324
- " <td>0</td>\n",
325
- " <td>0</td>\n",
326
- " </tr>\n",
327
- " <tr>\n",
328
- " <th>4</th>\n",
329
- " <td>3</td>\n",
330
- " <td>0</td>\n",
331
- " <td>0</td>\n",
332
- " <td>0</td>\n",
333
- " <td>0</td>\n",
334
- " <td>0</td>\n",
335
- " <td>0</td>\n",
336
- " <td>0</td>\n",
337
- " <td>0</td>\n",
338
- " <td>0</td>\n",
339
- " <td>...</td>\n",
340
- " <td>0</td>\n",
341
- " <td>0</td>\n",
342
- " <td>0</td>\n",
343
- " <td>0</td>\n",
344
- " <td>0</td>\n",
345
- " <td>0</td>\n",
346
- " <td>0</td>\n",
347
- " <td>0</td>\n",
348
- " <td>0</td>\n",
349
- " <td>0</td>\n",
350
- " </tr>\n",
351
- " </tbody>\n",
352
- "</table>\n",
353
- "<p>5 rows × 785 columns</p>\n",
354
- "</div>"
355
- ],
356
- "text/plain": [
357
- " label pixel1 pixel2 pixel3 pixel4 pixel5 pixel6 pixel7 pixel8 \\\n",
358
- "0 2 0 0 0 0 0 0 0 0 \n",
359
- "1 9 0 0 0 0 0 0 0 0 \n",
360
- "2 6 0 0 0 0 0 0 0 5 \n",
361
- "3 0 0 0 0 1 2 0 0 0 \n",
362
- "4 3 0 0 0 0 0 0 0 0 \n",
363
- "\n",
364
- " pixel9 ... pixel775 pixel776 pixel777 pixel778 pixel779 pixel780 \\\n",
365
- "0 0 ... 0 0 0 0 0 0 \n",
366
- "1 0 ... 0 0 0 0 0 0 \n",
367
- "2 0 ... 0 0 0 30 43 0 \n",
368
- "3 0 ... 3 0 0 0 0 1 \n",
369
- "4 0 ... 0 0 0 0 0 0 \n",
370
- "\n",
371
- " pixel781 pixel782 pixel783 pixel784 \n",
372
- "0 0 0 0 0 \n",
373
- "1 0 0 0 0 \n",
374
- "2 0 0 0 0 \n",
375
- "3 0 0 0 0 \n",
376
- "4 0 0 0 0 \n",
377
- "\n",
378
- "[5 rows x 785 columns]"
379
- ]
380
- },
381
- "execution_count": 5,
382
- "metadata": {},
383
- "output_type": "execute_result"
384
- }
385
- ],
386
  "source": [
387
  "df.head()"
388
  ]
389
  },
390
  {
391
  "cell_type": "code",
392
- "execution_count": 6,
393
  "metadata": {
394
  "execution": {
395
  "iopub.execute_input": "2023-03-16T09:27:25.945744Z",
@@ -414,7 +214,7 @@
414
  },
415
  {
416
  "cell_type": "code",
417
- "execution_count": 7,
418
  "metadata": {
419
  "execution": {
420
  "iopub.execute_input": "2023-03-16T09:27:25.952561Z",
@@ -424,15 +224,7 @@
424
  "shell.execute_reply.started": "2023-03-16T09:27:25.952452Z"
425
  }
426
  },
427
- "outputs": [
428
- {
429
- "name": "stdout",
430
- "output_type": "stream",
431
- "text": [
432
- "Pullover\n"
433
- ]
434
- }
435
- ],
436
  "source": [
437
  "print(labels[df.label[0]])"
438
  ]
@@ -494,7 +286,7 @@
494
  },
495
  {
496
  "cell_type": "code",
497
- "execution_count": 8,
498
  "metadata": {
499
  "execution": {
500
  "iopub.execute_input": "2023-03-16T09:27:27.779136Z",
@@ -512,7 +304,7 @@
512
  },
513
  {
514
  "cell_type": "code",
515
- "execution_count": 9,
516
  "metadata": {
517
  "execution": {
518
  "iopub.execute_input": "2023-03-16T09:27:27.895472Z",
@@ -529,7 +321,7 @@
529
  },
530
  {
531
  "cell_type": "code",
532
- "execution_count": 10,
533
  "metadata": {
534
  "execution": {
535
  "iopub.execute_input": "2023-03-16T09:27:28.047020Z",
@@ -546,7 +338,7 @@
546
  },
547
  {
548
  "cell_type": "code",
549
- "execution_count": 11,
550
  "metadata": {
551
  "execution": {
552
  "iopub.execute_input": "2023-03-16T09:27:28.053553Z",
@@ -558,6 +350,7 @@
558
  },
559
  "outputs": [],
560
  "source": [
 
561
  "from sklearn.model_selection import train_test_split\n",
562
  "\n",
563
  "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1)"
@@ -715,7 +508,7 @@
715
  },
716
  {
717
  "cell_type": "code",
718
- "execution_count": 19,
719
  "metadata": {
720
  "execution": {
721
  "iopub.execute_input": "2023-03-16T09:30:30.982098Z",
@@ -732,7 +525,7 @@
732
  "0.7139166666666666"
733
  ]
734
  },
735
- "execution_count": 19,
736
  "metadata": {},
737
  "output_type": "execute_result"
738
  }
@@ -740,7 +533,7 @@
740
  "source": [
741
  "from xgboost import XGBClassifier\n",
742
  "\n",
743
- "# fix -------- using cpu instead (and change settings) for reproducing and fixing purposes\n",
744
  "# classifier = XGBClassifier(tree_method='gpu_hist', gpu_id=0)\n",
745
  "classifier = XGBClassifier(tree_method=\"hist\", n_estimators=2, max_depth=2)\n",
746
  "\n",
 
57
  },
58
  {
59
  "cell_type": "code",
60
+ "execution_count": null,
61
  "metadata": {
62
  "execution": {
63
  "iopub.execute_input": "2023-03-16T09:27:20.618616Z",
 
100
  },
101
  {
102
  "cell_type": "code",
103
+ "execution_count": null,
104
  "metadata": {
105
  "execution": {
106
  "iopub.execute_input": "2023-03-16T09:27:20.631972Z",
 
155
  },
156
  {
157
  "cell_type": "code",
158
+ "execution_count": 2,
159
  "metadata": {
160
  "execution": {
161
  "iopub.execute_input": "2023-03-16T09:27:20.642705Z",
 
172
  },
173
  {
174
  "cell_type": "code",
175
+ "execution_count": null,
176
  "metadata": {
177
  "execution": {
178
  "iopub.execute_input": "2023-03-16T09:27:25.915500Z",
 
182
  "shell.execute_reply.started": "2023-03-16T09:27:25.915472Z"
183
  }
184
  },
185
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
186
  "source": [
187
  "df.head()"
188
  ]
189
  },
190
  {
191
  "cell_type": "code",
192
+ "execution_count": 3,
193
  "metadata": {
194
  "execution": {
195
  "iopub.execute_input": "2023-03-16T09:27:25.945744Z",
 
214
  },
215
  {
216
  "cell_type": "code",
217
+ "execution_count": null,
218
  "metadata": {
219
  "execution": {
220
  "iopub.execute_input": "2023-03-16T09:27:25.952561Z",
 
224
  "shell.execute_reply.started": "2023-03-16T09:27:25.952452Z"
225
  }
226
  },
227
+ "outputs": [],
 
 
 
 
 
 
 
 
228
  "source": [
229
  "print(labels[df.label[0]])"
230
  ]
 
286
  },
287
  {
288
  "cell_type": "code",
289
+ "execution_count": 4,
290
  "metadata": {
291
  "execution": {
292
  "iopub.execute_input": "2023-03-16T09:27:27.779136Z",
 
304
  },
305
  {
306
  "cell_type": "code",
307
+ "execution_count": 5,
308
  "metadata": {
309
  "execution": {
310
  "iopub.execute_input": "2023-03-16T09:27:27.895472Z",
 
321
  },
322
  {
323
  "cell_type": "code",
324
+ "execution_count": null,
325
  "metadata": {
326
  "execution": {
327
  "iopub.execute_input": "2023-03-16T09:27:28.047020Z",
 
338
  },
339
  {
340
  "cell_type": "code",
341
+ "execution_count": 6,
342
  "metadata": {
343
  "execution": {
344
  "iopub.execute_input": "2023-03-16T09:27:28.053553Z",
 
350
  },
351
  "outputs": [],
352
  "source": [
353
+ "# fix --- execute this cell\n",
354
  "from sklearn.model_selection import train_test_split\n",
355
  "\n",
356
  "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1)"
 
508
  },
509
  {
510
  "cell_type": "code",
511
+ "execution_count": 7,
512
  "metadata": {
513
  "execution": {
514
  "iopub.execute_input": "2023-03-16T09:30:30.982098Z",
 
525
  "0.7139166666666666"
526
  ]
527
  },
528
+ "execution_count": 7,
529
  "metadata": {},
530
  "output_type": "execute_result"
531
  }
 
533
  "source": [
534
  "from xgboost import XGBClassifier\n",
535
  "\n",
536
+ "# fix for reproducing and fixing purposes, using cpu instead (and change settings)\n",
537
  "# classifier = XGBClassifier(tree_method='gpu_hist', gpu_id=0)\n",
538
  "classifier = XGBClassifier(tree_method=\"hist\", n_estimators=2, max_depth=2)\n",
539
  "\n",
benchmark/NBspecific_2/NBspecific_2_reproduced.ipynb CHANGED
@@ -57,7 +57,7 @@
57
  },
58
  {
59
  "cell_type": "code",
60
- "execution_count": 2,
61
  "metadata": {
62
  "execution": {
63
  "iopub.execute_input": "2023-03-16T09:27:20.618616Z",
@@ -100,7 +100,7 @@
100
  },
101
  {
102
  "cell_type": "code",
103
- "execution_count": 3,
104
  "metadata": {
105
  "execution": {
106
  "iopub.execute_input": "2023-03-16T09:27:20.631972Z",
@@ -155,7 +155,7 @@
155
  },
156
  {
157
  "cell_type": "code",
158
- "execution_count": 4,
159
  "metadata": {
160
  "execution": {
161
  "iopub.execute_input": "2023-03-16T09:27:20.642705Z",
@@ -172,7 +172,7 @@
172
  },
173
  {
174
  "cell_type": "code",
175
- "execution_count": 5,
176
  "metadata": {
177
  "execution": {
178
  "iopub.execute_input": "2023-03-16T09:27:25.915500Z",
@@ -182,214 +182,14 @@
182
  "shell.execute_reply.started": "2023-03-16T09:27:25.915472Z"
183
  }
184
  },
185
- "outputs": [
186
- {
187
- "data": {
188
- "text/html": [
189
- "<div>\n",
190
- "<style scoped>\n",
191
- " .dataframe tbody tr th:only-of-type {\n",
192
- " vertical-align: middle;\n",
193
- " }\n",
194
- "\n",
195
- " .dataframe tbody tr th {\n",
196
- " vertical-align: top;\n",
197
- " }\n",
198
- "\n",
199
- " .dataframe thead th {\n",
200
- " text-align: right;\n",
201
- " }\n",
202
- "</style>\n",
203
- "<table border=\"1\" class=\"dataframe\">\n",
204
- " <thead>\n",
205
- " <tr style=\"text-align: right;\">\n",
206
- " <th></th>\n",
207
- " <th>label</th>\n",
208
- " <th>pixel1</th>\n",
209
- " <th>pixel2</th>\n",
210
- " <th>pixel3</th>\n",
211
- " <th>pixel4</th>\n",
212
- " <th>pixel5</th>\n",
213
- " <th>pixel6</th>\n",
214
- " <th>pixel7</th>\n",
215
- " <th>pixel8</th>\n",
216
- " <th>pixel9</th>\n",
217
- " <th>...</th>\n",
218
- " <th>pixel775</th>\n",
219
- " <th>pixel776</th>\n",
220
- " <th>pixel777</th>\n",
221
- " <th>pixel778</th>\n",
222
- " <th>pixel779</th>\n",
223
- " <th>pixel780</th>\n",
224
- " <th>pixel781</th>\n",
225
- " <th>pixel782</th>\n",
226
- " <th>pixel783</th>\n",
227
- " <th>pixel784</th>\n",
228
- " </tr>\n",
229
- " </thead>\n",
230
- " <tbody>\n",
231
- " <tr>\n",
232
- " <th>0</th>\n",
233
- " <td>2</td>\n",
234
- " <td>0</td>\n",
235
- " <td>0</td>\n",
236
- " <td>0</td>\n",
237
- " <td>0</td>\n",
238
- " <td>0</td>\n",
239
- " <td>0</td>\n",
240
- " <td>0</td>\n",
241
- " <td>0</td>\n",
242
- " <td>0</td>\n",
243
- " <td>...</td>\n",
244
- " <td>0</td>\n",
245
- " <td>0</td>\n",
246
- " <td>0</td>\n",
247
- " <td>0</td>\n",
248
- " <td>0</td>\n",
249
- " <td>0</td>\n",
250
- " <td>0</td>\n",
251
- " <td>0</td>\n",
252
- " <td>0</td>\n",
253
- " <td>0</td>\n",
254
- " </tr>\n",
255
- " <tr>\n",
256
- " <th>1</th>\n",
257
- " <td>9</td>\n",
258
- " <td>0</td>\n",
259
- " <td>0</td>\n",
260
- " <td>0</td>\n",
261
- " <td>0</td>\n",
262
- " <td>0</td>\n",
263
- " <td>0</td>\n",
264
- " <td>0</td>\n",
265
- " <td>0</td>\n",
266
- " <td>0</td>\n",
267
- " <td>...</td>\n",
268
- " <td>0</td>\n",
269
- " <td>0</td>\n",
270
- " <td>0</td>\n",
271
- " <td>0</td>\n",
272
- " <td>0</td>\n",
273
- " <td>0</td>\n",
274
- " <td>0</td>\n",
275
- " <td>0</td>\n",
276
- " <td>0</td>\n",
277
- " <td>0</td>\n",
278
- " </tr>\n",
279
- " <tr>\n",
280
- " <th>2</th>\n",
281
- " <td>6</td>\n",
282
- " <td>0</td>\n",
283
- " <td>0</td>\n",
284
- " <td>0</td>\n",
285
- " <td>0</td>\n",
286
- " <td>0</td>\n",
287
- " <td>0</td>\n",
288
- " <td>0</td>\n",
289
- " <td>5</td>\n",
290
- " <td>0</td>\n",
291
- " <td>...</td>\n",
292
- " <td>0</td>\n",
293
- " <td>0</td>\n",
294
- " <td>0</td>\n",
295
- " <td>30</td>\n",
296
- " <td>43</td>\n",
297
- " <td>0</td>\n",
298
- " <td>0</td>\n",
299
- " <td>0</td>\n",
300
- " <td>0</td>\n",
301
- " <td>0</td>\n",
302
- " </tr>\n",
303
- " <tr>\n",
304
- " <th>3</th>\n",
305
- " <td>0</td>\n",
306
- " <td>0</td>\n",
307
- " <td>0</td>\n",
308
- " <td>0</td>\n",
309
- " <td>1</td>\n",
310
- " <td>2</td>\n",
311
- " <td>0</td>\n",
312
- " <td>0</td>\n",
313
- " <td>0</td>\n",
314
- " <td>0</td>\n",
315
- " <td>...</td>\n",
316
- " <td>3</td>\n",
317
- " <td>0</td>\n",
318
- " <td>0</td>\n",
319
- " <td>0</td>\n",
320
- " <td>0</td>\n",
321
- " <td>1</td>\n",
322
- " <td>0</td>\n",
323
- " <td>0</td>\n",
324
- " <td>0</td>\n",
325
- " <td>0</td>\n",
326
- " </tr>\n",
327
- " <tr>\n",
328
- " <th>4</th>\n",
329
- " <td>3</td>\n",
330
- " <td>0</td>\n",
331
- " <td>0</td>\n",
332
- " <td>0</td>\n",
333
- " <td>0</td>\n",
334
- " <td>0</td>\n",
335
- " <td>0</td>\n",
336
- " <td>0</td>\n",
337
- " <td>0</td>\n",
338
- " <td>0</td>\n",
339
- " <td>...</td>\n",
340
- " <td>0</td>\n",
341
- " <td>0</td>\n",
342
- " <td>0</td>\n",
343
- " <td>0</td>\n",
344
- " <td>0</td>\n",
345
- " <td>0</td>\n",
346
- " <td>0</td>\n",
347
- " <td>0</td>\n",
348
- " <td>0</td>\n",
349
- " <td>0</td>\n",
350
- " </tr>\n",
351
- " </tbody>\n",
352
- "</table>\n",
353
- "<p>5 rows × 785 columns</p>\n",
354
- "</div>"
355
- ],
356
- "text/plain": [
357
- " label pixel1 pixel2 pixel3 pixel4 pixel5 pixel6 pixel7 pixel8 \\\n",
358
- "0 2 0 0 0 0 0 0 0 0 \n",
359
- "1 9 0 0 0 0 0 0 0 0 \n",
360
- "2 6 0 0 0 0 0 0 0 5 \n",
361
- "3 0 0 0 0 1 2 0 0 0 \n",
362
- "4 3 0 0 0 0 0 0 0 0 \n",
363
- "\n",
364
- " pixel9 ... pixel775 pixel776 pixel777 pixel778 pixel779 pixel780 \\\n",
365
- "0 0 ... 0 0 0 0 0 0 \n",
366
- "1 0 ... 0 0 0 0 0 0 \n",
367
- "2 0 ... 0 0 0 30 43 0 \n",
368
- "3 0 ... 3 0 0 0 0 1 \n",
369
- "4 0 ... 0 0 0 0 0 0 \n",
370
- "\n",
371
- " pixel781 pixel782 pixel783 pixel784 \n",
372
- "0 0 0 0 0 \n",
373
- "1 0 0 0 0 \n",
374
- "2 0 0 0 0 \n",
375
- "3 0 0 0 0 \n",
376
- "4 0 0 0 0 \n",
377
- "\n",
378
- "[5 rows x 785 columns]"
379
- ]
380
- },
381
- "execution_count": 5,
382
- "metadata": {},
383
- "output_type": "execute_result"
384
- }
385
- ],
386
  "source": [
387
  "df.head()"
388
  ]
389
  },
390
  {
391
  "cell_type": "code",
392
- "execution_count": 6,
393
  "metadata": {
394
  "execution": {
395
  "iopub.execute_input": "2023-03-16T09:27:25.945744Z",
@@ -414,7 +214,7 @@
414
  },
415
  {
416
  "cell_type": "code",
417
- "execution_count": 7,
418
  "metadata": {
419
  "execution": {
420
  "iopub.execute_input": "2023-03-16T09:27:25.952561Z",
@@ -424,15 +224,7 @@
424
  "shell.execute_reply.started": "2023-03-16T09:27:25.952452Z"
425
  }
426
  },
427
- "outputs": [
428
- {
429
- "name": "stdout",
430
- "output_type": "stream",
431
- "text": [
432
- "Pullover\n"
433
- ]
434
- }
435
- ],
436
  "source": [
437
  "print(labels[df.label[0]])"
438
  ]
@@ -494,7 +286,7 @@
494
  },
495
  {
496
  "cell_type": "code",
497
- "execution_count": 8,
498
  "metadata": {
499
  "execution": {
500
  "iopub.execute_input": "2023-03-16T09:27:27.779136Z",
@@ -512,7 +304,7 @@
512
  },
513
  {
514
  "cell_type": "code",
515
- "execution_count": 9,
516
  "metadata": {
517
  "execution": {
518
  "iopub.execute_input": "2023-03-16T09:27:27.895472Z",
@@ -715,7 +507,7 @@
715
  },
716
  {
717
  "cell_type": "code",
718
- "execution_count": 10,
719
  "metadata": {
720
  "execution": {
721
  "iopub.execute_input": "2023-03-16T09:30:30.982098Z",
@@ -733,7 +525,7 @@
733
  "traceback": [
734
  "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
735
  "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
736
- "\u001b[0;32m<ipython-input-10-fbd99a22b7bd>\u001b[0m in \u001b[0;36m<cell line: 5>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mclassifier\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mXGBClassifier\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtree_method\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'gpu_hist'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgpu_id\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 5\u001b[0;31m \u001b[0mclassifier\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX_train\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_train\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 6\u001b[0m \u001b[0my_hat\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mclassifier\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpredict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX_test\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0maccuracy_score\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0my_test\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_hat\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
737
  "\u001b[0;31mNameError\u001b[0m: name 'X_train' is not defined"
738
  ]
739
  }
 
57
  },
58
  {
59
  "cell_type": "code",
60
+ "execution_count": null,
61
  "metadata": {
62
  "execution": {
63
  "iopub.execute_input": "2023-03-16T09:27:20.618616Z",
 
100
  },
101
  {
102
  "cell_type": "code",
103
+ "execution_count": null,
104
  "metadata": {
105
  "execution": {
106
  "iopub.execute_input": "2023-03-16T09:27:20.631972Z",
 
155
  },
156
  {
157
  "cell_type": "code",
158
+ "execution_count": 2,
159
  "metadata": {
160
  "execution": {
161
  "iopub.execute_input": "2023-03-16T09:27:20.642705Z",
 
172
  },
173
  {
174
  "cell_type": "code",
175
+ "execution_count": null,
176
  "metadata": {
177
  "execution": {
178
  "iopub.execute_input": "2023-03-16T09:27:25.915500Z",
 
182
  "shell.execute_reply.started": "2023-03-16T09:27:25.915472Z"
183
  }
184
  },
185
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
186
  "source": [
187
  "df.head()"
188
  ]
189
  },
190
  {
191
  "cell_type": "code",
192
+ "execution_count": 3,
193
  "metadata": {
194
  "execution": {
195
  "iopub.execute_input": "2023-03-16T09:27:25.945744Z",
 
214
  },
215
  {
216
  "cell_type": "code",
217
+ "execution_count": null,
218
  "metadata": {
219
  "execution": {
220
  "iopub.execute_input": "2023-03-16T09:27:25.952561Z",
 
224
  "shell.execute_reply.started": "2023-03-16T09:27:25.952452Z"
225
  }
226
  },
227
+ "outputs": [],
 
 
 
 
 
 
 
 
228
  "source": [
229
  "print(labels[df.label[0]])"
230
  ]
 
286
  },
287
  {
288
  "cell_type": "code",
289
+ "execution_count": 4,
290
  "metadata": {
291
  "execution": {
292
  "iopub.execute_input": "2023-03-16T09:27:27.779136Z",
 
304
  },
305
  {
306
  "cell_type": "code",
307
+ "execution_count": 5,
308
  "metadata": {
309
  "execution": {
310
  "iopub.execute_input": "2023-03-16T09:27:27.895472Z",
 
507
  },
508
  {
509
  "cell_type": "code",
510
+ "execution_count": 6,
511
  "metadata": {
512
  "execution": {
513
  "iopub.execute_input": "2023-03-16T09:30:30.982098Z",
 
525
  "traceback": [
526
  "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
527
  "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
528
+ "\u001b[0;32m<ipython-input-6-fbd99a22b7bd>\u001b[0m in \u001b[0;36m<cell line: 5>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mclassifier\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mXGBClassifier\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtree_method\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'gpu_hist'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mgpu_id\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 5\u001b[0;31m \u001b[0mclassifier\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX_train\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_train\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 6\u001b[0m \u001b[0my_hat\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mclassifier\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpredict\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mX_test\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0maccuracy_score\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0my_test\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0my_hat\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
529
  "\u001b[0;31mNameError\u001b[0m: name 'X_train' is not defined"
530
  ]
531
  }
benchmark/NBspecific_20/NBspecific_20_fixed.ipynb CHANGED
@@ -221,7 +221,7 @@
221
  {
222
  "data": {
223
  "text/plain": [
224
- "<statsmodels.tsa.seasonal.DecomposeResult at 0x7fe82a688cd0>"
225
  ]
226
  },
227
  "execution_count": 7,
@@ -268,6 +268,7 @@
268
  }
269
  ],
270
  "source": [
 
271
  "multiplicative_model, additive_model = decompose(data, 'Open')"
272
  ]
273
  },
 
221
  {
222
  "data": {
223
  "text/plain": [
224
+ "<statsmodels.tsa.seasonal.DecomposeResult at 0x72fad5090fd0>"
225
  ]
226
  },
227
  "execution_count": 7,
 
268
  }
269
  ],
270
  "source": [
271
+ "# fix --- execute this cell beforehand\n",
272
  "multiplicative_model, additive_model = decompose(data, 'Open')"
273
  ]
274
  },
benchmark/NBspecific_3/NBspecific_3_fixed.ipynb CHANGED
@@ -1172,7 +1172,7 @@
1172
  },
1173
  {
1174
  "cell_type": "code",
1175
- "execution_count": 6,
1176
  "metadata": {
1177
  "execution": {
1178
  "iopub.execute_input": "2023-02-19T06:46:16.944366Z",
@@ -1182,16 +1182,7 @@
1182
  "shell.execute_reply.started": "2023-02-19T06:46:16.944335Z"
1183
  }
1184
  },
1185
- "outputs": [
1186
- {
1187
- "name": "stdout",
1188
- "output_type": "stream",
1189
- "text": [
1190
- "(272, 6)\n",
1191
- "(68, 6)\n"
1192
- ]
1193
- }
1194
- ],
1195
  "source": [
1196
  "print(X_train.shape)\n",
1197
  "print(X_test.shape)"
@@ -1199,7 +1190,7 @@
1199
  },
1200
  {
1201
  "cell_type": "code",
1202
- "execution_count": 7,
1203
  "metadata": {
1204
  "execution": {
1205
  "iopub.execute_input": "2023-02-19T06:46:17.964019Z",
@@ -1209,15 +1200,7 @@
1209
  "shell.execute_reply.started": "2023-02-19T06:46:17.963980Z"
1210
  }
1211
  },
1212
- "outputs": [
1213
- {
1214
- "name": "stdout",
1215
- "output_type": "stream",
1216
- "text": [
1217
- "(272,) (272, 6)\n"
1218
- ]
1219
- }
1220
- ],
1221
  "source": [
1222
  "X_train=X_train\n",
1223
  "print(y_train.shape,X_train.shape)"
@@ -1225,7 +1208,7 @@
1225
  },
1226
  {
1227
  "cell_type": "code",
1228
- "execution_count": 8,
1229
  "metadata": {
1230
  "execution": {
1231
  "iopub.execute_input": "2023-02-19T06:46:18.564017Z",
@@ -1245,7 +1228,7 @@
1245
  },
1246
  {
1247
  "cell_type": "code",
1248
- "execution_count": 9,
1249
  "metadata": {
1250
  "execution": {
1251
  "iopub.execute_input": "2023-02-19T06:49:05.697057Z",
@@ -1285,7 +1268,7 @@
1285
  },
1286
  {
1287
  "cell_type": "code",
1288
- "execution_count": 10,
1289
  "metadata": {
1290
  "execution": {
1291
  "iopub.execute_input": "2023-02-19T06:51:37.728006Z",
@@ -1295,27 +1278,7 @@
1295
  "shell.execute_reply.started": "2023-02-19T06:51:37.727965Z"
1296
  }
1297
  },
1298
- "outputs": [
1299
- {
1300
- "name": "stdout",
1301
- "output_type": "stream",
1302
- "text": [
1303
- "F统计量:2.2858\n",
1304
- "F检验的P值:3.6126e-02\n",
1305
- "R2:0.0492\n"
1306
- ]
1307
- },
1308
- {
1309
- "data": {
1310
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAArwAAAIjCAYAAADhisjVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADVoElEQVR4nOydd3gUVRfG303vCSEJHULvXap0kNCk2rBQVKx0G1goAqIoTUBAkCLCB6JSREHpvUmTIr23JBBISA/Z+f44uXtnZks2yYYNyfk9zz5TdubOnf7OueeeY1AURQHDMAzDMAzD5FNcnF0BhmEYhmEYhslNWPAyDMMwDMMw+RoWvAzDMAzDMEy+hgUvwzAMwzAMk69hwcswDMMwDMPka1jwMgzDMAzDMPkaFrwMwzAMwzBMvoYFL8MwDMMwDJOvYcHLMAzDMAzD5GtY8DIMY5HLly/DYDBg0aJFzq4KkwUMBgPGjBnjlG1v2LABderUgZeXFwwGA+7fv49+/fohPDw8x2U7a7/4PmCY/AELXoYpgCxatAgGgwH//POPs6vC5BPu3r2L5557Dt7e3pg1axaWLFkCX19fs+USExMxZswYbNu2zey/P//802linWGY/I2bsyvAMEzepEyZMkhKSoK7u7uzq8JkgaSkJLi5PfpH+8GDB/HgwQOMGzcO7dq1M82fN28ejEajaToxMRFjx44FALRq1UpTxp9//olZs2ZZFL3O2i++Dxgmf8AWXoZhLGIwGODl5QVXV1dnV8UqiYmJWVo+ISEhl2ri3G2p8fLycoowjIqKAgAEBQVp5ru7u8PT0zPH5Ttrvx6H+4BhmMxhwcswjEUs+S7269cPfn5+uHHjBrp37w4/Pz+Ehobi/fffR3p6umZ9o9GIadOmoXr16vDy8kKRIkXw5ptv4t69e5rl1qxZg86dO6N48eLw9PRE+fLlMW7cOLPyWrVqhRo1auDQoUNo0aIFfHx88PHHH1utv6jrhQsX0KlTJ/j7++Oll17KUt2MRiPGjBmD4sWLw8fHB61bt8apU6cQHh6Ofv36mZYTLiLbt2/HO++8g7CwMJQsWdL0//r169G8eXP4+vrC398fnTt3xsmTJzXbun37Nvr374+SJUvC09MTxYoVQ7du3XD58mXTMv/88w8iIiIQEhICb29vlC1bFq+++qqmHEu+rkeOHEHHjh0REBAAPz8/tG3bFvv27dMsI/Zh9+7dGD58OEJDQ+Hr64sePXogOjra6nEG6Nz07dsXANCgQQMYDAbT8VH78F6+fBmhoaEAgLFjx8JgMJjq269fP8yaNcu0D+Jnbb/GjBkDg8GA8+fPo1+/fggKCkJgYCD69+9v9iGUlJSEwYMHIyQkBP7+/ujatStu3Lhhl1+wrfvg6tWr6NKlC/z8/FCiRAlT/Y8fP442bdrA19cXZcqUwbJlyzRlxsTE4P3330fNmjXh5+eHgIAAdOzYEceOHTPb/pUrV9C1a1f4+voiLCwMw4YNw19//QWDwWDmFrJ//3506NABgYGB8PHxQcuWLbF7926b+8cwBQV2aWAYJkukp6cjIiICjRo1wjfffINNmzZh8uTJKF++PN5++23Tcm+++SYWLVqE/v37Y/Dgwbh06RJmzpyJI0eOYPfu3aYm4kWLFsHPzw/Dhw+Hn58ftmzZglGjRiEuLg5ff/21Ztt3795Fx44d8cILL+Dll19GkSJFbNb14cOHiIiIQLNmzfDNN9/Ax8cnS3UbOXIkJk2ahKeffhoRERE4duwYIiIikJycbHF777zzDkJDQzFq1CiThXfJkiXo27cvIiIi8NVXXyExMRGzZ89Gs2bNcOTIEZMY7NWrF06ePIlBgwYhPDwcUVFR2LhxI65evWqabt++PUJDQzFixAgEBQXh8uXL+O2332weg5MnT6J58+YICAjAhx9+CHd3d8ydOxetWrXC9u3b0ahRI83ygwYNQqFChTB69GhcvnwZ06ZNw8CBA7FixQqr2/jkk09QuXJlfP/99/j8889RtmxZlC9f3my50NBQzJ49G2+//TZ69OiBnj17AgBq1aqFhIQE3Lx5Exs3bsSSJUts7pOa5557DmXLlsXEiRNx+PBhzJ8/H2FhYfjqq69My/Tr1w8///wzXnnlFTRu3Bjbt29H586d7d6GJdLT09GxY0e0aNECkyZNwtKlSzFw4ED4+vrik08+wUsvvYSePXtizpw56NOnD5o0aYKyZcsCAC5evIjVq1fj2WefRdmyZREZGYm5c+eiZcuWOHXqFIoXLw6AWgnatGmDW7duYciQIShatCiWLVuGrVu3mtVny5Yt6NixI+rXr4/Ro0fDxcUFCxcuRJs2bbBz5040bNgwR/vLMI89CsMwBY6FCxcqAJSDBw9aXebSpUsKAGXhwoWmeX379lUAKJ9//rlm2bp16yr169c3Te/cuVMBoCxdulSz3IYNG8zmJyYmmm37zTffVHx8fJTk5GTTvJYtWyoAlDlz5ti1j6KuI0aM0My3t263b99W3NzclO7du2uWGzNmjAJA6du3r2meOJ7NmjVTHj58aJr/4MEDJSgoSBkwYICmjNu3byuBgYGm+ffu3VMAKF9//bXV/Vm1alWm50xRFAWAMnr0aNN09+7dFQ8PD+XChQumeTdv3lT8/f2VFi1amO1Du3btFKPRaJo/bNgwxdXVVbl//77N7Vq7pvr27auUKVPGNB0dHW1WR8G7776rWHst6dcZPXq0AkB59dVXNcv16NFDKVy4sGn60KFDCgBl6NChmuX69etntR5qbN0HX3zxhWnevXv3FG9vb8VgMCjLly83zT99+rTZdpKTk5X09HSz7Xh6emrurcmTJysAlNWrV5vmJSUlKVWqVFEAKFu3blUURVGMRqNSsWJFJSIiQnPuEhMTlbJlyypPPfWUzX1kmIIAuzQwDJNl3nrrLc108+bNcfHiRdP0ypUrERgYiKeeegp37twx/erXrw8/Pz+Nhcrb29s0/uDBA9y5cwfNmzdHYmIiTp8+rdmOp6cn+vfvn6W6qq3OWanb5s2b8fDhQ7zzzjua9QcNGmR1WwMGDND4em7cuBH3799H7969NdtydXVFo0aNTNvy9vaGh4cHtm3bZuZWIRC+sevWrUNaWppd+56eno6///4b3bt3R7ly5UzzixUrhhdffBG7du1CXFycZp033nhD40rQvHlzpKen48qVK3Zt81Fj6Vq8e/euab82bNgAAFk6j/by+uuvm8aDgoJQuXJl+Pr64rnnnjPNr1y5MoKCgjT3h6enJ1xc6PWbnp6Ou3fvws/PD5UrV8bhw4dNy23YsAElSpRA165dTfO8vLwwYMAATT2OHj2Kc+fO4cUXX8Tdu3dN11lCQgLatm2LHTt2aDoOMkxBhF0aGIbJEl5eXiY/TEGhQoU0Qu3cuXOIjY1FWFiYxTJEByeAmtw//fRTbNmyxUx8xcbGaqZLlCgBDw8Pu+vq5uam8aXNSt2EwKtQoYLm/+DgYBQqVMjiuqLJWr0tAGjTpo3F5QMCAgCQAPrqq6/w3nvvoUiRImjcuDG6dOmCPn36oGjRogCAli1bolevXhg7diymTp2KVq1aoXv37njxxRetdgqLjo5GYmIiKleubPZf1apVYTQace3aNVSvXt00v3Tp0prlxL5aE+LOxlZ9AwICcOXKFbi4uJidG/15zSqW7oPAwECULFlS88Eg5quPn9FoxPTp0/Hdd9/h0qVLGn/1woULm8avXLmC8uXLm5Wnr7u4zoQftSViY2OtXrcMUxBgwcswTJawp7e60WhEWFgYli5davF/IRTu37+Pli1bIiAgAJ9//jnKly8PLy8vHD58GB999JGZVUptDbYHtSUtq3XLDvr6ifovWbLEJFzVqKMODB06FE8//TRWr16Nv/76C5999hkmTpyILVu2oG7dujAYDPjll1+wb98+/P777/jrr7/w6quvYvLkydi3bx/8/PyyXW811s6voigOKd/ROKu+1rZrT32++OILfPbZZ3j11Vcxbtw4BAcHw8XFBUOHDs2WJVas8/XXX6NOnToWl3HU9cEwjysseBmGcTjly5fHpk2b8OSTT9oUqdu2bcPdu3fx22+/oUWLFqb5ly5dcnrdypQpAwA4f/68xjp49+5du62douNWWFiYJjatreXfe+89vPfeezh37hzq1KmDyZMn46effjIt07hxYzRu3BgTJkzAsmXL8NJLL2H58uWa5nVBaGgofHx8cObMGbP/Tp8+DRcXF5QqVcqufXEUemulvf9llzJlysBoNOLSpUuoWLGiaf758+cdvi17+eWXX9C6dWv88MMPmvn3799HSEiIabpMmTI4deoUFEXRHBt93cV1FhAQYNd1xjAFEfbhZRjG4Tz33HNIT0/HuHHjzP57+PAh7t+/D0Baw9TWr9TUVHz33XdOr1vbtm3h5uaG2bNna5aZOXOm3duKiIhAQEAAvvjiC4t+tyLcV2Jiolnkh/Lly8Pf3x8pKSkAqIleb7UU1jyxjB5XV1e0b98ea9as0YQ3i4yMxLJly9CsWTOTW8WjQkTKEMdZjcjMZum/7BIREQEAZtfUjBkzHLaNrOLq6mp2LleuXIkbN25o5kVERODGjRtYu3ataV5ycjLmzZunWa5+/fooX748vvnmG8THx5ttL7OwcgxTEGALL8MUYBYsWGDq1KNmyJAhOSq3ZcuWePPNNzFx4kQcPXoU7du3h7u7O86dO4eVK1di+vTpeOaZZ9C0aVMUKlQIffv2xeDBg2EwGLBkyZJcbY62t25FihTBkCFDMHnyZHTt2hUdOnTAsWPHsH79eoSEhNhljQwICMDs2bPxyiuvoF69enjhhRcQGhqKq1ev4o8//sCTTz6JmTNn4uzZs2jbti2ee+45VKtWDW5ubli1ahUiIyPxwgsvAAAWL16M7777Dj169ED58uXx4MEDzJs3DwEBAejUqZPVOowfPx4bN25Es2bN8M4778DNzQ1z585FSkoKJk2a5LDjai/e3t6oVq0aVqxYgUqVKiE4OBg1atRAjRo1UL9+fQDA4MGDERERAVdXV9P+Z5f69eujV69emDZtGu7evWsKS3b27FkAuWNVzowuXbrg888/R//+/dG0aVMcP34cS5cu1XQsBCh83syZM9G7d28MGTIExYoVw9KlS+Hl5aWpu4uLC+bPn4+OHTuievXq6N+/P0qUKIEbN25g69atCAgIwO+///7I95Nh8hIseBmmAKO3XgrUSRWyy5w5c1C/fn3MnTsXH3/8Mdzc3BAeHo6XX34ZTz75JADqoLNu3Tq89957+PTTT1GoUCG8/PLLaNu2rckylxvYUzcA+Oqrr+Dj44N58+Zh06ZNaNKkCf7++280a9bMJDoy48UXX0Tx4sXx5Zdf4uuvv0ZKSgpKlCiB5s2bmyJOlCpVCr1798bmzZuxZMkSuLm5oUqVKvj555/Rq1cvACTUDxw4gOXLlyMyMhKBgYFo2LAhli5datYhS0316tWxc+dOjBw5EhMnToTRaESjRo3w008/mcXgfVTMnz8fgwYNwrBhw5CamorRo0ejRo0a6NmzJwYNGoTly5fjp59+gqIoORa8APDjjz+iaNGi+N///odVq1ahXbt2WLFiBSpXrmz3eXQkH3/8MRISErBs2TKsWLEC9erVwx9//IERI0ZolhNxqQcNGoTp06fDz88Pffr0QdOmTdGrVy9N3Vu1aoW9e/di3LhxmDlzJuLj41G0aFE0atQIb7755qPeRYbJcxiUvNoTgWEYJg9y//59FCpUCOPHj8cnn3zi7Oow2eTo0aOoW7cufvrpJ1MGvseFadOmYdiwYbh+/TpKlCjh7OowzGMB+/AyDMNYISkpyWzetGnTAJBFjXk8sHYeXVxcNJ0l8yL6uicnJ2Pu3LmoWLEii12GyQLs0sAwDGOFFStWYNGiRejUqRP8/Pywa9cu/O9//0P79u01rg9M3mbSpEk4dOgQWrduDTc3N6xfvx7r16/HG2+88cijVGSVnj17onTp0qhTpw5iY2Px008/4fTp01bD6jEMYxkWvAzDMFaoVasW3NzcMGnSJMTFxZk6so0fP97ZVWOyQNOmTbFx40aMGzcO8fHxKF26NMaMGfNYuKRERERg/vz5WLp0KdLT01GtWjUsX74czz//vLOrxjCPFezDyzAMwzAMw+Rr2IeXYRiGYRiGydew4GUYhmEYhmHyNezDawGj0YibN2/C39/fKUHJGYZhGIZhGNsoioIHDx6gePHicHGxbcNlwWuBmzdv5vmeuwzDMAzDMAxw7do1lCxZ0uYyLHgt4O/vD4AO4KPOM88wDMMwDMNkTlxcHEqVKmXSbbZgwWsB4cYQEBDAgpdhGIZhGCYPY4/7KXdaYxiGYRiGYfI1LHgZhmEYhmGYfA0LXoZhGIZhGCZfwz68DMMwDMMwGSiKgocPHyI9Pd3ZVSnwuLq6ws3NzSEhYlnwMgzDMAzDAEhNTcWtW7eQmJjo7KowGfj4+KBYsWLw8PDIUTkseBmGYRiGKfAYjUZcunQJrq6uKF68ODw8PDj5lBNRFAWpqamIjo7GpUuXULFixUyTS9iCBS/DMAzDMAWe1NRUGI1GlCpVCj4+Ps6uDgPA29sb7u7uuHLlClJTU+Hl5ZXtsrjTGsMwDMMwTAY5sSIyjsdR54PPKsMwDMMwDJOvYcHLMAzDMAzD5GtY8DIMwzAMwzC5gsFgwOrVq51dDRa8DMMwDMMwjzPR0dF4++23Ubp0aXh6eqJo0aKIiIjA7t27nV21PANHaWAYhmEYhnmM6dWrF1JTU7F48WKUK1cOkZGR2Lx5M+7evevsquUZ2MLLMAzDMAxjg4SErP8ePpTrP3xI85KSMi83q9y/fx87d+7EV199hdatW6NMmTJo2LAhRo4cia5duwIApkyZgpo1a8LX1xelSpXCO++8g/j4eFMZixYtQlBQENatW4fKlSvDx8cHzzzzDBITE7F48WKEh4ejUKFCGDx4sCYDXXh4OMaNG4fevXvD19cXJUqUwKxZs2zW99q1a3juuecQFBSE4OBgdOvWDZcvX876jmcRFrwMwzAMwzA28PPL+m/VKrn+qlU0r2NHbbnh4ebrZb1ufvDz88Pq1auRkpJicRkXFxd8++23OHnyJBYvXowtW7bgww8/1CyTmJiIb7/9FsuXL8eGDRuwbds29OjRA3/++Sf+/PNPLFmyBHPnzsUvv/yiWe/rr79G7dq1ceTIEYwYMQJDhgzBxo0bLdYjLS0NERER8Pf3x86dO7F79274+fmhQ4cOSE1NzfrOZwF2aWAYhmEYhnlMcXNzw6JFizBgwADMmTMH9erVQ8uWLfHCCy+gVq1aAIChQ4ealg8PD8f48ePx1ltv4bvvvjPNT0tLw+zZs1G+fHkAwDPPPIMlS5YgMjISfn5+qFatGlq3bo2tW7fi+eefN6335JNPYsSIEQCASpUqYffu3Zg6dSqeeuops7quWLECRqMR8+fPN2WxW7hwIYKCgrBt2za0b9/e4cdHwIKXYRiGYRjGBqrWf7vx9JTjPXpQGfocCo5qye/Vqxc6d+6MnTt3Yt++fVi/fj0mTZqE+fPno1+/fti0aRMmTpyI06dPIy4uDg8fPkRycjISExNNWeV8fHxMYhcAihQpgvDwcPipzM5FihRBVFSUZttNmjQxm542bZrFeh47dgznz5+Hv7+/Zn5ycjIuXLiQk0OQKSx4GYZhGIZhbODrm7P13dzo5+hy1Xh5eeGpp57CU089hc8++wyvv/46Ro8ejVatWqFLly54++23MWHCBAQHB2PXrl147bXXkJqaahK87u7umvIMBoPFeUajMdt1jI+PR/369bF06VKz/0JDQ7Ndrj2wDy+Tr5k6FShdGvj0U2fXhGEYhmEeHdWqVUNCQgIOHToEo9GIyZMno3HjxqhUqRJu3rzpsO3s27fPbLpq1aoWl61Xrx7OnTuHsLAwVKhQQfMLDAx0WJ0swYKXydfExADXrgGxsc6uCcMwDMM4nrt376JNmzb46aef8O+//+LSpUtYuXIlJk2ahG7duqFChQpIS0vDjBkzcPHiRSxZsgRz5sxx2PZ3796NSZMm4ezZs5g1axZWrlyJIUOGWFz2pZdeQkhICLp164adO3fi0qVL2LZtGwYPHozr1687rE6WYJcGJl9z+jQN9+93bj0YhmEYJjfw8/NDo0aNMHXqVFy4cAFpaWkoVaoUBgwYgI8//hje3t6YMmUKvvrqK4wcORItWrTAxIkT0adPH4ds/7333sM///yDsWPHIiAgAFOmTEFERITFZX18fLBjxw589NFH6NmzJx48eIASJUqgbdu2CAgIcEh9rGFQFEXJ1S08hsTFxSEwMBCxsbG5fgKY3MXPT8Y15CudYRiGsUZycjIuXbqEsmXLwsvLy9nVeSwIDw/H0KFDNVEgHI2t85IVvcYuDUy+pmhRZ9eAYRiGYRhnw4KXydeIVpVRo5xbD4ZhGIZhnAf78DL5GpHa0VI4GIZhGIZhss+jSAnsKNjCy+RrhODVhRJkGIZhGKYAwYKXydesWUPDkSOdWw+GYRiGYZwHC14mX5OS4uwaMAzDMAzjbFjwMgzDMAzDMPkaFrwMwzAMwzBMvoYFL5OvMRicXQOGYRiGYZwNC14mX/PWW86uAcMwDMM4h1atWmU7C1p4eDimTZvm0Po4Exa8TL7m2WdpWKqUc+vBMAzDMLlFv379YDAYzH6TJk3CuHHjTMtZErGLFi1CUFCQWZkHDx7EG2+8kcs1f3RwOH4mXyPi76alObceDMMwDJObdOjQAQsXLtTMCw0Nhaura7bKCw0NdUS18gxs4WXyNf/9R8PoaOfWg2EYhnkMURQgIeHR/xQly1X19PRE0aJFNb+2bduaXBpatWqFK1euYNiwYSYL8LZt29C/f3/Exsaa5o0ZMwaAuTXYYDBg/vz56NGjB3x8fFCxYkWsXbtWU4e1a9eiYsWK8PLyQuvWrbF48WIYDAbcv38/myfAcbCFl8nXCB/e9HTn1oNhGIZ5DElMBPz8Hv124+MBX1+HFvnbb7+hdu3aeOONNzBgwAAAQHBwMKZNm4ZRo0bhzJkzAAA/G/s7duxYTJo0CV9//TVmzJiBl156CVeuXEFwcDAuXbqEZ555BkOGDMHrr7+OI0eO4P3333foPuQEtvAy+ZrwcGfXgGEYhmFyn3Xr1sHPz8/0e1Z0YskgODgYrq6u8Pf3N1mAPTw8EBgYCIPBYJpnS/D269cPvXv3RoUKFfDFF18gPj4eBw4cAADMnTsXlStXxtdff43KlSvjhRdeQL9+/XJzl7MEW3iZfM26dUDp0tKXl2EYhmHsxseHrK3O2G4Wad26NWbPnm2a9vX1Re/evR1ZK9SqVUtTfkBAAKKiogAAZ86cQYMGDTTLN2zY0KHbzwkseJl8jbrTmqJwXF6GYRgmCxgMDnctyC18fX1RoUKFXN2Gu856ZDAYYDQac3WbjoIFL5OvCQwEZs1iCy/DMAzDeHh4IF3XqcXSvOxQuXJl/Pnnn5p5Bw8ezHG5joJ9eJl8Tc+ewA8/AE2bsnWXYRiGKdiEh4djx44duHHjBu7cuWOaFx8fj82bN+POnTtITEzMVtlvvvkmTp8+jY8++ghnz57Fzz//jEWLFgEgS7CzYcHL5GuOHwcOHwZSUpxdE4ZhGIZxLp9//jkuX76M8uXLm+LsNm3aFG+99Raef/55hIaGYtKkSdkqu2zZsvjll1/w22+/oVatWpg9ezY++eQTABQyzdkYFCUbwd7yOXFxcQgMDERsbCwCAgKcXR0mB4SFUQzeb74BBg0CPDycXSOGYRgmL5KcnIxLly6hbNmy8PLycnZ18gUTJkzAnDlzcO3atWyXYeu8ZEWvsYWXydc8fEjD998H7t1zbl0YhmEYJj/z3Xff4eDBg7h48SKWLFmCr7/+Gn379nV2tQBwpzUmnyP88H192YeXYRiGYXKTc+fOYfz48YiJiUHp0qXx3nvvYeTIkc6uFgAWvEw+Jy2NhidOkHsDwzAMwzC5w9SpUzF16lRnV8Mi7NLA5GuES4Mbf9oxDMMwTIGFBS+Tb1EUaeHlOLwMwzCMPXBf/ryFo84HC14m36JO/lKlCvDff86rC8MwDJO3EVnEshuHlskdxPnQZ3nLKtzQy+RbhDsDANy/D/AzjGEYhrGGq6srgoKCEBUVBQDw8fHJEwkTCiqKoiAxMRFRUVEICgqCq6trjspjwcvkW4Q7g7VphmEYhlFTtGhRADCJXsb5BAUFmc5LTmDBy+Rb1BZegAUvwzAMYxuDwYBixYohLCwMafzScDru7u45tuwKWPAy+Ra94NVPMwzDMIwlXF1dHSa0mLwBd1pj8i1eXsDHH8tp/lhnGIZhmIIJC14m3+LnB0yYANSvT9MseBmGYRimYMKCl8n3iEgmLHgZhmEYpmDCPrxMviUlBbhyBbh1i6bZh5dhGIZhCiYseJl8y4ULQPXqcpotvAzDMAxTMGGXBibfoihAQICcZsHLMAzDMAUTFrxMvqV6dSA2FujcmaZZ8DIMwzBMwcTpgnfWrFkIDw+Hl5cXGjVqhAMHDlhd9uTJk+jVqxfCw8NhMBgwbdo0s2UmTpyIBg0awN/fH2FhYejevTvOnDmTi3vA5HVEpzX24WUYhmGYgolTBe+KFSswfPhwjB49GocPH0bt2rURERFhNaVfYmIiypUrhy+//NJqmrnt27fj3Xffxb59+7Bx40akpaWhffv2SEhIyM1dYfIwL74IjB8PNGjg7JowDMMwDOMMDIqiKM7aeKNGjdCgQQPMnDkTAGA0GlGqVCkMGjQII0aMsLlueHg4hg4diqFDh9pcLjo6GmFhYdi+fTtatGhhV73i4uIQGBiI2NhYBKidQJnHiqNHgQ8/BMqXB2bPdnZtGIZhGIZxJFnRa06L0pCamopDhw5h5MiRpnkuLi5o164d9u7d67DtxMbGAgCCg4OtLpOSkoKUlBTTdFxcnMO2zziP6Ghg40bASoMBwzAMwzAFBKe5NNy5cwfp6ekoUqSIZn6RIkVw+/Zth2zDaDRi6NChePLJJ1GjRg2ry02cOBGBgYGmX6lSpRyyfca5iE5qUVFk7RXxeBmGYRiGKVg4vdNabvLuu+/ixIkTWL58uc3lRo4cidjYWNPv2rVrj6iGTG4iOqndugXUrQt8/71z68MwDMMwjHNwmktDSEgIXF1dERkZqZkfGRlptUNaVhg4cCDWrVuHHTt2oGTJkjaX9fT0hKenZ463yeQt1FEZihUDfHycVxeGYRiGYZyH0yy8Hh4eqF+/PjZv3myaZzQasXnzZjRp0iTb5SqKgoEDB2LVqlXYsmULypYt64jqMo8hwqWhVSvg5k3ggw+cWh2GYRiGYZyEU1MLDx8+HH379sUTTzyBhg0bYtq0aUhISED//v0BAH369EGJEiUwceJEANTR7dSpU6bxGzdu4OjRo/Dz80OFChUAkBvDsmXLsGbNGvj7+5v8gQMDA+Ht7e2EvWSchbDwunECbYZhGIYp0DhVCjz//POIjo7GqFGjcPv2bdSpUwcbNmwwdWS7evUqXFykEfrmzZuoW7euafqbb77BN998g5YtW2Lbtm0AgNkZ8adatWql2dbChQvRr1+/XN0fJm8hLLwi8QTDMAzDMAUTp8bhzatwHN78wfz5wIABNN60KdC1K/DRR86tE8MwDMMwjiErei1fR2lgCjbCwgsAe/YA5845ry4MwzAMwzgPFrxMvkUdpQHQCmCGYRiGYQoOLHiZfAsLXoZhGIZhABa8TD5GL3D1AphhGIZhmIIBC14m31KzJvDaa0DDhjTNFl6GYRiGKZiw4GXyLR07UqSGN9+kaRa8DMMwDFMwYcHL5HtEHF4WvAzDMAxTMOEcVEy+JTGRRK7RSNMseBmGYRimYMIWXibfMmoUEBQEjB1L09xpjWEYhmEKJix4mXyLELje3jRkCy/DMAzDFExY8DL5lilTgJQU4IsvaJoFL8MwDMMUTFjwMvkWFxfAwwPw8aFpFrwMwzAMUzDhTmtMvqdMGWDwYKBECWfXhGEYhmEYZ8CCl8m3fPcdsHs38PLLwPTpzq4NwzAMwzDOgl0amHzLrl3AsmXAmTPOrgnDMAzDMM6EBS+TbxFRGgwG4NYt4MYN59aHYRiGYRjnwC4NTL5FdFI7fx4oXhwICwMiI51bJ4ZhGIZhHj1s4WXyLeo4vC4u9GMYhmEYpuDBFl4m3yIsvDVqAOnpzq0LwzAMwzDOg21eTL5FWHjd+LOOYRiGYQo0LHiZfIsQvO7uzq0HwzAMwzDOhQUvk28RLg1JSUCPHsDTTwNGo3PrxDAMwzDMo4cbe5l8i7DwurgAq1fLeR4eTqsSwzAMwzBOgC28TL5FWHi9veU8IYIZ5xMX5+waMAzDMAUFFrxMvkUdlkwgRDDjXL77DggMBBYvdnZNGIZhmIIAC14m32LJwsuCN2/w7rs07NfPqdVgGIZhCgjsw8vkW9q2BSpWBIoUIT9eo5EFL8MwDMMURFjwMvmWmTPluLs7kJLCgpdhGIZhCiLs0sAUCEQsXu60xjAMwzAFDxa8TIFAZFtjCy/DMAzDFDxY8DL5ltBQirl7+rS08LLgzRuMGEHDwEDn1oNhGIYpGLDgZfItqakkcF1dWfDmNTp3pmFoqHPrwTAMwxQMuNMak285c4YEbtGiLHjzGqGhQKNGQJkyzq4JwzAMUxBgwcvkW4oWlePcaS1vcf48uTW0aOHsmjAMwzAFARa8TIHg6aeBqCigcGFn14QBgHfeAa5eBfbvBxo2dHZtGIZhmPwOC14mX5KeDgwbRtEZxo0Dpkxxdo0YNU88AZQoAQQFObsmDMMwTEHAoCiK4uxK5DXi4uIQGBiI2NhYBAQEOLs6TDZISQG8vGj8/n2OBpAXqVgRuHMHOHGCxC/DMAzDZIWs6DWO0sDkS9Sd09zcyOKbnMw+vHmJmBj6GImLc3ZNGIZhmPwOC14mX6IWtu7uQKtWgLc3sGaN06rE6NiyBfjvP6BcOWfXhGEYhsnvsA8vky9RC143N5lpjS28zicpCShVilxOzpwBPD2dXSOGYRgmv8OCl8mXCJcGFxf6Ccuuj4/z6sQQycnA3bs0zmKXYRiGeRSwSwOTLxGWXGHZDQignxt/4jmd5GQ5PnYscPCg8+rCMAzDFAxY8DL5Er3gZfIOasE7fjxw4IDz6sIwDMMUDFjwMvkS4dIgMqx9/z3w6qvApk3OqxNDJCVppx88cE49GIZhmIIDC14mX6K38G7dCixcCJw86bw6MYTawguw4GUYhmFyHxa8TL5Eb+EVQ3V8XsY5sOBlGIZhHjUseJl8id7Cy4I378CCl2EYhnnUsOBl8iVC8LKFN+/BgpdhGIZ51HAfdiZf4uMDPPkkUKwYTbPgzTuw4GUYhmEeNSx4mXxJzZrArl1ymjOt5R1Y8DIMwzCPGnZpYAoEbOHNOwjB6+1NQxa8DMMwTG7DgpcpEDhS8A4fDnzwAXDlSs7LyimpqZS84dAhZ9fEfoTgDQ2lIQtehmEYJrdhwcvkS/76i/x3u3alaUcJXkUB5s0DvvkGSEjIWVmOYOpU4LPPgCeecHZN7Kd5c2DmTGDwYJpmwcswDMPkNix4mXxJQgJw+zYQE0PTjhK8Dx8C774L+PkBhw/nrCxHoPZTzi5RUcDKlY/O3aNmTTqGzz9P0yx4GYZhmNyGBS+TL2nbFjh2DFiwgKYd1WnN3R1o1AiIjycrpbNJTMx5GW3bAs89R1brR0lAAFC5MlC7NvtWMwzDMLkLC14mXxIYCNSqBVSqRNOO9OEtXpyGN2/mvKyc0qdPzss4cYKGS5bkvCx7OHMG2L4duHcPOH0aOHhQnh+GYRiGyQ1Y8DIFgrJlgfbtgRo1clbOgQPAtWs0fusWYDTmvG45oW1bGrq5kX9xTnhUPskzZwKtWgHz5z+a7TEMwzAMC14mX3LoEDBuHPDLLzTdowd1ZBsxImfljhoFPPssjT98CNy5k7Py7GXNGqBECWDTJu38gABZl5SUnG3DEe4R9hAaClSpAhQt+mi2xzAMwzBOF7yzZs1CeHg4vLy80KhRIxw4cMDqsidPnkSvXr0QHh4Og8GAadOm5bhMJn9y8CCJ0//9z7HlnjmjnX5Ubg3du9O2Bg3Szt++XY7HxWWv7LffpmHhwtlbP6uMGgX89x91XHv6abK+79//aLbNMAzDFEycKnhXrFiB4cOHY/To0Th8+DBq166NiIgIREVFWVw+MTER5cqVw5dffomiVsxDWS2TyRvk1DqpR/jquulyCeak01pSkoy9W7IkDW/cyH559qL2O/bwkOPp6WS5FmRX8PbuLctTExVFocOOH89eufZw8yZw+bKMpsEwDMMwuYFTBe+UKVMwYMAA9O/fH9WqVcOcOXPg4+ODBaJrvY4GDRrg66+/xgsvvABPT0+HlMk4n6NHqWn+008dV6YQtkLwnj9PFswiRbJf5rlz5CdbqBBFFgC0Ft7jx8k3tXPn7G/DEgcPyvFixeR4QgLQsKGczq7gFd+Ot29r57/9NjBjBlCvXvbKtYe5c4G9e4GmTXNvGwzDMAzjNMGbmpqKQ4cOoV27drIyLi5o164d9u7d+0jLTElJQVxcnObHPDoGDKCMYRMmOK5MIXhF7/9ChciKGBND28oOwp2hcmXypwW0gjciglwM/vwze+VbY+tWOa62hAYEAHv2kD8skD3Bm5ICbNhA4/Hx2o5r4pbJaSg3PX37UufBDRsoYUbjxhRVg2EYhmFyC6cJ3jt37iA9PR1FdCa3IkWK4Lbe1JTLZU6cOBGBgYGmX6lSpbK1fSZ7XL3q+DL1Lg3BwRR+Kzo6+yGwTp+mYeXKlkOTiQQKM2bkPGKCmi1baNirF/Djj+b/P/EE0KIF4O2d9bLv3pUZzwAgMlKOO3If1Jw/D5w8+eg6yTEMwzCM0zut5QVGjhyJ2NhY0++aiDvFZIstW4DPP7c/ZFduxH/VuzQYDED16kBICI1nB2HhrVLFXPA+eEAWUgB45ZXsb0NPcjJZcQGKOiGsuWqWLCHLcqNGWS/fYAA6dJDT6u/C1q1pOHly1su1RXIyDb28gJ07qXx15zuGYRiGcTROE7whISFwdXVFpNqkBCAyMtJqh7TcKtPT0xMBAQGaH0MWvux0JmvbFhg92v4ICSI2rouL4+LaCguvoxIaJCYCGzfSeI0a5oL30iUaBgc7tnl+3z4SiEWLmovdqVOB8HBg7Njsl1+sGLB+PaVJPnMGqF9f/idcJIKCsl++JdSCd80a4P33gXXrHLsNhmEYhlHjNMHr4eGB+vXrY/PmzaZ5RqMRmzdvRpMmTfJMmQWZpUspW9kvv5A/Z1azlB07Zt9yIhyW0QjExmZtG9bQW3gBYPlyYOBArU+svcybR1ELwsPJV1f48IooDRcv0jAmBvjuO22YLUUBFi/OXugtUdfWrYEffgC++AK4f5/mXb1KUSMc4RpQty5lpVP3BRXbyS3B6+1NvtUA8O+/jt0GwzAMw6hxqkvD8OHDMW/ePCxevBj//fcf3n77bSQkJKB///4AgD59+mDkyJGm5VNTU3H06FEcPXoUqampuHHjBo4ePYrz58/bXSZjH4pCTc1nz1KihaZNyfcyM0SzPiCFjS02biQRJ7h7N+t1tYS+0xpAnaRmzcq68ExOBr76isZHjqQyixcn94hixUioC8ELUHzZ33+X07t3A/36UcxZSyiK9f2+dw/w8QGaNaOkGZ98Aly/Tv8J94N588gCnBNLryWEZ0+vXuYhy3KC2sL77LP0UfL33/RjGIZhmNzALfNFco/nn38e0dHRGDVqFG7fvo06depgw4YNpk5nV69ehYuL1OQ3b95E3bp1TdPffPMNvvnmG7Rs2RLbtm2zq8yCzvHjJPhefZVcCKxhMADbtgHffgv8+itZa//7D6ha1Xb5ah9Qe7KQrVlDIlRw9y5QoULm62VGUhIN1XFrxSWg83jJlAULKI1wqVIUYQAAwsKoA5xALXgBbUc8sT/R0RQhQl0no5GSSWzYQH6sIr6v4NtvgWnTSHAeP04uJj4+9J841oUK0fazk/Vt6VLgzTfp2Lz8Mll5X3qJ/lNbjh88cJylVy14K1Wi/Z86FRg2jK4zfexkhmEYhskxCmNGbGysAkCJjY11dlUczpNPKgqgKEuW2L9Onz60zoQJmS+7YwctCyhK48aZL//LL4rSv79c548/7K+XLbp1o/K++07OmzyZ5vXunbWyatSg9WbOtL5Mx460TKtWcigwGhXFy4vmX7igXW/QIJpvMCjK8uVZq1eVKrTujz8qyrFjihIZaXm5GzcU5eBBRYmPN/9v1ix57AE6bgJfX5o3bpyiJCZmrW628PGhci9epOl79xSlcGGaN2uW47bDMAzD5G+yotc4SkMB49w5Gi5caH0ZfTgq0Vnqv/8yL19t4RUduWzRqxdZUEXoZEe5NFy+TMMyZeS87Fp4334beO014JlnrC8jLLwtW9Lw6lXal61byVpeujTNF5naAHIRmTGD/l+0CHj++azVSxzrJ54gX+uwMMvLNW0KNGhgOWOaCKVWpQrw1lvS7eLhQxmT9+23sxfyzBKKorXwAmQ5Hj2axufNc8x2GIZhGEYNC94CRGoqdbwCKHSYWnypWbAAaNIEWLaMpoXgFXFobdGihQwzFhlpf4cq0XFNL3gVJXuJD0qXpl/ZsnJedgXvO+8A8+ebZ2kbOxaoVg2YM0eK+1ataHjtGnWSa9MGeO89KbyFEAeoTIA6wZUqRaL/nXfk/+vWkZD95BOaVhQSoQ8ekGgUncqsBSBRFEobLM6zpVDUQvC2awfMnk3CHtB2HnRk1ImHD2UkDiF4Aaqniwtl3VMfI4ZhGIZxBCx48wB//EGWzrVrqZPSsGGUrcvRGa5u3dJOW0piAJDP7r59UngIv93TpzNPRlCkCPmA1q0LtG9vO/vXtWvks5maSp2/ihUDXF3l/0lJJLa9vIDy5em42JsMYe1aEnpqn+PsCl5rGI1k9f7f/2gfXF0pa5iLC0W0OHqU/HWLFpWCV4jP1FRpZX/zTdrXzZupg5vg+HH6CX/gTz4B/PzIGir2wcODhO/48eTvq+boURLdAv35B+T50UfiCw6mcn/9lTrgOSo5iPCtBrRW45AQoHlzGl+71jHbYug6ER81DMMwBRkWvHmA7duB334jcbJlC3VS6tyZmqizmwbXEiKElmDRInMBGRdHwgsAevSgYfny1JEoPl5GCLCFwUBxXf/6y7r1ESBLcJ06lFp46lSKaTtokPz/4EGKEpGeTi4D06YB//yT+fatIQTv3bv0MbF8ueVwWIcPy2QPBw8CR45Yjkc8ZAjw/ffAmDE0XaYMiXMRo3fAAOqo9sYb5oJ39WqythcvDnTpQm4JCxdSeYJ+/ehjaOBAmhYhvO7ckdbaokVJjH72GYVDU1OyJB1XgS0Lr78/CdzTp0msGwxk2Z09G+jZ03GJIdSRO9Qh0ACge3carl7tmG0VdGJi6PoQ7jQMwzAFGRa8eYCePWm4bp02nNW9eyS+HEWRImQl/PhjshRevEhiSi2E168nkV2pknRlcHeXkQYyc2tYuZKErDrlrjWEG0C5cpb/F/vevj3QrRuN2/I9zozChcn6qijkTtC7N1C7tnaZ1FRyQ2jViizQH34I1KtnOYlGcDCJWiFixX6IzNRXr5LlNDDQXPAKYfvaa/QxERZGAledLa1YMaBTJzkvJISGd+9qBa+wzuqt6aGhwNChUpDbErwBAVTHqlW1vtciMoOj4iMLwevpaZ6NTpzjHTsc58tdkBFW+fv3Hd9axDAM87jBgjcP0LAhJTJ48AD46SeaN3gwZb7KTrrYhATLFsny5anpe8IEEkIAWQUrV5ad2bZsoWGXLlpBYm/HtfHjgT59pOX04UMSmJbiuAphFR5uuSwheJs1o9i2AAnPzOL7zpxJovOzz7TzXV1JBALaEF4xMXL8zBkSd2lpZGksVIhEn14Yq2ndmkT+kCE0LSxq6gzVasEbHS2t6K+/bntf1Ag/5zt3pKXdluAVCCt7ZhZeYQG/fZtcWgYMoKQjgOMEr78/XSOffmr+X9my5LOcnk6WbTWKQhZ+a244jDm1a9OzQFE41BvDMAwL3jyAi4t0H0hPJ4vqhAlkZdVbwdRER1OT+ODB2vlffUUW2ZUrra/7+efkcvDZZySeKlak+Xv30vDJJ7XL6zuuxcaS0HvmGa1bRIsWlFp4/34Sly+8AIwbR039wk1AIARv2bIkbps310ZCcHMjgVSvHlldS5Yka9WaNdb3CyDL9fXrWn9RgRB1DRrQBwAAHDok/z9xQo7/9hv9YmLI9cIaZcpQDNsuXWhaCMzhw6XfrBD1165JP91q1bTNzUePAnPn0rGLiaFOcepzKCy8d+7QsgClORaCNyGBrh9FoYQOixbRB0exYvS/LR9ef3+tMD55UnaqA2QHuZxSqBC1MlgSvIC08maE1Tbxxx/kw923r30JTRh6doiYzQzDMAUdFrx5BOHWAJDY9PPLfJ2kJMDXl0SSSPsbG0udl65fN08sceYMcOECWX8NBnIV+Pxz2WwdFycFnz4Ts+j8deAANfunppIo+fVXrdV3xgxg0yYSqXfukJD96isSXmp3hPR02eRatiz9v2sX+cwKFiwgoRURQdZZkfQhM7eGTz8l0fjWW+b/qTuuNWhA4+ptqkN37dhBHxUGg+0PDz0iCoF6e8WL0z6kpdExA8w/KhYsoDr/9hudhzFjgI8+kv+rI1kIkV6/vrbDWXw8WaZ/+YXcVe7ds8/CGxCgXa5ePbo2KlemeY6y8GbGhx/SdbhggXa+WuTaE+4uK9y4ATz1lAwpl18QrSsMwzAMC948Q/PmUtC0b0/DBQuA557TWh3VCItnhQrSZ3bGDClOrl0jn1zBm2/SsqtWWS7vwAF6QYaHS6ugoEkTEmyHDlEzfGgoheNatEhah9W0aEFWyN69ZWiy9evlC/jGDXohizS9lSoBP/8sQ5oJXFxkc2y/fjT8+2/L1kpBcDC5iVjK2CYE6IED1FEM0HaEU4fEMhqzFzFg+HCyHk+fLj863NxkFjUR7q1pU+164jiePy8t6cKyDkgLb2ws8PXXwDffUBmenjKF8v370pVj6FA6T2ohqxdAapcG0dnuxg2KsvHZZzJMmqMEb1wcReawJlr9/Kguep55Rh4Le1JcZwV3d/pI27kzf/m6Tp1K15/BQK05DMMwBRkWvHkENzdqwq5fn3xgAWrOXrlS+nvqcXEh4XDyJDWrJyTIXvm1a1MT8NKlcnl3d3ItKFFCW86cOeQn+/77NK237gIkxn79ldYVVsc33ySrqxBbaWkyqkRgIDXZq30ub9yQ4l0InjJlSEgHBVEzfIsWNF9tJRVUqEBC1mAgH9PsUK8eDWfNki4WasG7bBlZf997j6Zff11aZO0lPJxEmd7VRPjxin3TC14h0M+dI2s8IC2sAB0jIaCrV6c6CjErrLw7d9L14Ocnz6cQ+WlpZPFVo3ZpsBQrWMTgdZTg3beP3EPULRr2UqMGDS9c0M6fPp0SZmQ3/JbYX0UxPz6PM2rfdHtiaDMMw+RnWPDmId59l8SXEKRt2tDQmnXm1VfJmijE48qV9JIrV46sfz16aEXVxo1kbdU3pZ85Q36lx47RtCXBC5B/5cWLJLYs8ddfZG1s25amf/uNXCvCwsjfFwA2bKCh2n/XEgMGkNVX74c8bx5ZKoXPs574eDom06dbFs3DhlHIN1dXsl4aDGQJV8fmDQuTCRgAx3X4WbKEjsd331GoMr1lXEyfOyet8GoLr6urDE2mj2IgBK8Q8fXrS1cVT0+yegNay7iiaF0ahJ/xlSt0TRw/Ll05HCV4DQZqPRCdBy0xZgy1chw8SC4l27fTdS0+CPQW3pMnqfVA3zpgL9Ony3F1Z8bHHbV4FwlnGIZhCiosePMwHTvScOtW8w5YRiNFLJg3j8ZTUmRa1tdeo8xZv/2mzdwFkODQ+/a+/LK2g5Le8qjGw0M7vX07xc7dulWKKZFQ4MgRGr70koyxKlwsLEVoWLeO/JEjI0n4nztnvr1atWyLpcuXycr9+efm+6nezp07FHpMCEp9fN+qVUm4Fy3qON/O0qXpY+btt2k/9X7BwtqdnEzHp3RpSkiiRrg1fPut1idXCF5h+dZ/lFjy41UUssDPmUOCWG3h/eADOtbiA8VRgvepp8j95u+/rS+zZw99nJ08Sa0brVpRh0AhePUW3tKlySdcRBrJKupY0fkpHBoLXoZhGAkHq8nDVK9O4bWuXSMBUKMGWbcOHiTf2ORkEoTvvy+D9bu4SF9Xe6lfX/bm9vYmoWMvK1ZQcgKjUTadC//fiAgS6mPHktAaMoQ6pj14YNnC+/77ZFmsXJmEzuHD0s/WEkajuagVzdNCvFlDWD8bNKBOdwcPUl0XLaLm9ldfJbFnMGizv+Um7u50PM6fp/pv2yYFriAkhI7R99/TR82zz9J8IXjFR0a1atr1ihYFTp3SCl4XF+DFF+W0OGaRkebRJbIapcFopG25u8v4x/by7rt0fbdoQS0P4eF0TYqoGnoL7xtv0DUvfKSzyuTJJLL37ctfFl61SwMLXoZhCjps4c3DGAzSyvvRR/TCj4igKAQiNFeFCtoYt506yc5HikLWtJgYssQ+8YSMv6tHhCNr0ED65NqDqN/69VIkCcHbujU1F/v7U3N9+fLkR7p5s2XBq45CEBJCzdqiKV7Nrl1k9RO+zmpEYgdrsX31qDuu7d5N4a+En7Gbm2PF7tWr5FvbvLlldwuAzm3XrnS+LO2DOEYAfagI9KmB9YL3hx/oWnj+eev1Cw6W0UFEHGUhgrNq4X3jDbJmh4VphZc9dOsG9O9PrjmvvELXynffSQvv5cuyc9l//9FH18WLWduGHnXIt/yC2sIbHe28ejAMw+QFWPDmcTp1oqG608lLL1HKXYD8XNUuCGrf0969SXQsXUpWsUOHZGcoPS++SEJy3Lis1a91a+oId+mS7CBnLZ3w88+Tb27VqtISa03w2sLNjQTh77+TlXv1auqEBthv4RWI0GSbN5M1/bvvtLGAHUlKCnUs3LXLcmIQgDoBrlljvf5CmE2YoM1Qp49soHdpEJE31P7Id+/SsRNxgQ0GuV3R+VBMJybK0Hf2MG+ejBahTiG8fDl1kJwwwf6yALIQFy9OZT18KEPabdtGnQMnT9bWO6uok3o4m1u3LCdqySrs0sAwDCNhwZvHadNGa3Hdv5+ysQnLY+XK1AkLIDEjxgEpJs+ckemD9REaBF5e1JlNREmwFz8/YNIkGhcdoPQhzQQTJlBTfNmy0hpsSfC++SaJJWs95hs2JIF77Bgdjx49yAJ+44bs5Kbu7GWLhg2BDh1IOMfHk3+tLR/mnFCxIgnB1auln3NWGTKEsuGJmMQCtfgtXNi2n7PgxAk6duqPJL1VWSTGcHUlMfjOO9r019YwGMiPOj1dG1P6yhUS2LZCi6Wk0AfI4sXaMGouLtKtQfjxig8cHx86j6VLZ02Y79tHx2rxYprOTPBu20YuOtkV1pnx8CF9eHl6Wo6bnBXYpYFhGEbCgjeP4+8vRWiFCtIiKSy8lSsDNWtSp7FTp7TiWIS0On1axum1JnhzwsCB5PMqsCZ4BR4eZOk8c0YrzNTN9ZMnay2DalxcSHiFh9OxqVWLymvZkgRV6dLUEc8eXFxIgC5YYJ6KODd4/XWZTSw71KpFVnX9eZwwQaalrl7dvEPcqVMUvUJtWfXyAho31maR01uWQ0LoQyAtjeIkz55NLhdCiO7apU3WkZamTRIh4sDevEnnSHS+tCX4k5LIP7lfPxKyajcMvR+vcI154glqwYiMlOmQ7eHqVa3Izax14Z13KIrEDz/Yv42sIBKdANbdXuwhPV3rhvLgAWeoYximYMOC9zFAiMmhQ+llaDRSJzaAXBoA8mnVh7lSpwPOzMKbEwwGcgXo1Im2WbOm9WUVhZI+jBlD9VULM7Xg7djRvrSoBoP0SxZWv+nTKQOdvXh6ks9oVrKp5UVOnqSh3n8XIIv61Kky6QUANGpEvtvLl8t5H31E50cQGEjH0mDQZtRLTKTj3aoVlSM+wH77ja4xtbAWrjVr10rR5eVlfT+CgqTvdnKy1tJfoQJZm4X1Ulh4y5eXmfXeftt2Nrbz5+ljacYM6hCqxpaFNzlZugR9+23uZDErVow6UKan03HNLrGx5vVjP16GYQoyLHgfA158kV7wIsSYurlenZhAj/jvxg0ZBio3BC9AonHdOrIk2hKbiYkU7uvLLyl1rxq14M1KYoIXX5QRIjp3zpkF9XHm1CkaWhK8lSpRqLFBg8iqqQ/DJihdWvoJe3trreyiM9+PP9I5XrWKhFlSEnUuu3+fRGRMjNZHWbhF/PGHfYIX0LpoqD+gxo6l7X3yCU0LwRseDowaRRbr2FjghRek28GNGxT5QXRoXLCAxiMjpS+w+HC0JXhPn5ZW19OnKTtbblChAn1gXL+efbcG8ZHg6yvveXZrYBimIMOC9zGhUCFpgVS7LejDVunXEVai1FTy8bVlfc0pBkPmVlJfX+oUVq6cefOxuglX7YucGZ6eZGHu2pWa3B93S212WLtWRu5o1878/1KlyNfa3Z0s6w0bWs9WJ0KQidBtX3xBHxGic5twqxGh8ACyCpcsScu4u5PFXCDO5YYN5NYAZF/w+vvL6z8+Xlotw8Np/vLlVO8DByjEHECRLw4ckB8Evr7kSuPvLwVv3bo0tCV4hQVdoE5Y4Uj8/KhjJ0BuGtlBCN5ChShSBsCCl2GYgg0L3seQZs3sX3bnTrLM7dpFTdLC2uZMvv2WetbrO8h17Upi5a23pNiyl549SfCVKuWoWj5eiI5azZpJsWSJqlXp40dRSBiXLEmdywSpqdJFRLiU7NhBghqg8GcVK5LPuBDAX31Fw4QEEp7r1mk7IzZtSufz7l2ZDS0rglekFNYjLLZBQfJ6KVMGGDGCxlesoE5ga9aQRVu0PHzyiUwfLVwaWraka1K4RVhCCF6RAfGPP2x3vssOU6aQdVoI+ewKXuHyERzMgpdhGAbgxBOPJd98Q8LEno5Z7u7WUwE7C39/ijagp3hxelHnhm9kfqdFCwrVJsSNNZo2JXeSESNIoCYkkJuJwN1dupqIqBtvvUWWz0OHgHr1yGVC+Ow+8QS5Svj6UlkDB5r7Xru5USi9WbOkq4Pe31yP2i1G7aKhKBTj98QJikkNmKenfvZZ2r9t28jSuXMniXB1Su07d8j9QgjKJk3I99cWQvB270779PffZOV+/33b62WFbdsoCkbVqiR6rbmeZEadOuRy4uFBorxsWRnHmGEYpiDCgvcxxN8fWLjQ2bXIHexxi2DMCQ21LxQZQAJt+nQZGk4dw9dgIKvv9esyc1n37pRY5NAhcoU4eZIEb6dOsrPfu+/a3uaMGWRBjYkhFxR1ZAhLqLP9qQW0wUB+wPv2SZcMfSi1cuVImB8+TKLvjTdo/oIFsnOnq6s25rQ9LR9C8FavTr7C48fTdhyJsDj37Ekd/7IreMPCZDrvR8GdO8DRo2RRrlVLG++ZYRgmL8AuDQxTwHB1pWZzgT5L23vv0VB05AIocgBAgnfuXOo49scf9ifpMBiovMaNyV82s4+ap58GZs6kOMt63nuPfHUHDqRpSxnpRMplEZd5xAgSvs89R+J26lRtB85ChajJ/+RJ6WesZ+5cWq9OHfJjbtDA8WmnhU9x164U0u3WLRlSMC+zdy/w1FOU/U8dpo5hGCavwIKXYQogL74ox/VZ2t54g6IffP01TV+6BBw5QuMNGpBQzMwHN6cIq3HDhub/1alDsXmFENS7NABS8G7aRJZdkUL66FGyoiYkUKIK9faaNSN/YWt+s23bkn+zpXTXjiA+XvreVqkiXZFEfOWssGcPhaA7fZrcQO7dk6EJcwO18I+MzL3tMAzDZBcWvAxTAKlfX4atEyHdBD4+1PlLuDSMGiX/y0udAtUhyfSIBBUAdaoTkSUEtWpR1IoOHYD582leWBiFxhPJMTLj4EFKJPLFF1mtuWWEO0NAAP0GDaLpzz4joS64dYuE9/Xr1sv64Qfym/7tN7LEBwfnrotDp05A+/Y0zoKXYZi8CAtehimAGAwUxWDSJClUrNG1Kw0tZXBzJiI8mbXOWL/9RsJ3yRJzwVu7NonA9etlauWdO8kXVXSGU7NhA7B0qXQ5AChKxA8/ZM8Cq+bmTRK7omzhTyyy8qWmUvIO0bmwc2fywe7d23qZVapQRr6KFWVHRnXnRDVJSeTvnFPEhxMLXoZh8iLctYBhCii1a9MvM3r1ItcAEas2rzBqFFk5rYVh69GDfoIyZUikurlZTs5hS8zPnEmW0u++k9Ec2raldM3t25PbQHY+BtLSSIxXr07HGZCC12Ag6/OBA+SasHAhuXkI95Jdu6yX+8EH9AMoNFtSkmU3lLQ0cg/ZtImEe4kSFEmjefOs7w8LXoZh8jJs4WUYxiYuLiTucst3Nbt06iQjMNiD8OOtUkWbQc4e6tcnEagW/YUKAZMnk0VYLw5v3SIhuX277XJPnSIL75Ej0kVBHTEiJAQYNozG166VsYcF6mQt1nBzs+5z/fChzJbXqxd1KmzZMutW62eeoXCJAAtehmHyJix4GYYpEDRvTkORfVDP2rWUjGP0aPP/xo6l+MSNG9u3rUmTgJ9/1ib1sERAAEWQ6N9f+vDqQ6R1704h3UaMoIQfavQCWGBPLGujkYT6qlXk1uHpKTswqrPo2cPp03KcE1wwDJMXYZcGhmEKBO+8Q2l7n37a8v/R0cDmzdIaGhtLP1sxeqOiKCSXuztZnAGymC5fTuOHD9t2dyhbFpg4kcaF9VjfMbBiRZnGWGTBE/z7r+UoFYUKUZ0OHaL6/+9/5B7RpYu0GF+5QjGLixQBbt8G5s2jMHBNmgBbttB+2Bt2TS1y2cLLMExehC28eZmNG6ktNbv5RRlGTd++FJ7AWqDZfI67O1kyrWWjCwmh4Z07NPzpJ/L7tZWBbc8essCOGSPnbd1KAhIA7t8HLl7MvG4HD8pIDLYiYUydCly4INMb//uv+TKpqSTU79whgQ+Qi8WWLTKLHiCFqRD4BgO5fQQGUr3tfeykp8tjpi6XYRgmL8GCNy+zbBmZiPJrWrVHyeXLZLr67besrzt3LvV+sjde1aPk4UMyEYpu9ikpVFdL7fK//kpZAWz1dsoPrFlDKdWstfdbwZLgBbQJOPTUvrQa+9EQnudOmOYtWwaUwWXsRDN0w2qrwvHhQ0pPfOcOdR4sVYoEao0a5sump5OQ/vhjEuHCmmxJ8N67R0ODgcQrQN/NgErERkWhkf8p3Lun9TN2c5NieuNG6/ut5s4drQtFdDTVt8Bw4wZdLA8fPrptnj5NH7C2YtM5ih07KKXg7t25v63HnbQ04MwZ+3yKmEePwpgRGxurAFBiY2OdW5GuXRUFUJSmTZ1bj/zAxx/TsWzbNuvrlihB6/7+u+PrlVN++onqVrcuTa9fT9MeHory8KFcLi2N5gOKMnasc+r6qOjUifZzzJgsrXbmDK3m6akoGzfSuIuLoty8aX2dtEZNFQVQVqOrEhenKElJihIQoCif41NFAZR9aKh8+KFc3mhUlAULFGXrVkX591/aRkCAoqSnK8rdu4py/brl7aSmKkpgIC2/Z4+i/P03jVeqJJe5elVRwsMVpWhR+i8oSP53/748/VFRiqLUrEk7d+2a2bZmzaLlWrWy77iJ/QgKktuIjLRv3XzBCy/QTv/446Pf5uDBub+t5557dNt63Bk+nI7VunXOrkmBISt6jS28eRmRduno0QJmMskFdu6kYVYtIgkJMkXVuXOOrZMj2LOHhkePkmlP7GdqquwFBQAPHsjxAwceWfWcwv37NFS339tBhQqU2S0lBejYkea1bQsUK2ZlhaQkuB2mnMtP43fc2HoWf/4JxMUBLTzpGDdwPYyPB8ebVlm4EHj1VbLQrl1L8+rWpUgYwcHadMdq3N3JaF2mDMXTrVWL1nvySWlMWr6cGjKEO4U6IUdgIPkCA8Dp9ZfI0m80Wrymn3qKhrt32+f9IlwYSpSgxB1AAeu4JgIob9v26La5bx8NLeXediSKIu8j0XTAWEc0uXB+7TwJC968jBC8iYnA2bPOrcvjTHKyfDFcu5a15qbz5+V4XhS84sWnKCR21SJPXd/YWDl+4ED+bnIT+7p3Lwl/O3FxIY+XYsVk6/RLL9lYYf9+asIE4AIFnnOmY+NGwAAjGoAEr0v6QwT+R+foxg2K2wuQd4zw+61Xz776zZ8PfPQRidwiRciLZcEC2SFOuCAMGgR8/z11VFMj3Bri1mwxzZs3IQqbN2uXq1CBhHVamvZyun/fchg0IW7DwgpoLF7xnBYfn7lNZKRMM3jkCH2h5Rbnz8svKLGfjHXu3tUOmTwFC968wIMHFMNIj/qLWkSbf5wxGp1j+jl4UAqfxMSsWSrUovFRCN64OPs/bpKStE6cGzZorbfq+sbFyfHo6Cz7t1rl5s1H/3CPipIvYUsIwatOIWYtzZiOEiXIBdjbmyyupsQVMTHmvc8yrOm3fcsBAEpuWojzB2JQEefgk3LfbLmBA6lqIjOcENVCiGZGSAh1oLMUUzc5WRr333oLGDCA4g2rEcI64KAUvP9ujsLJk9rlDAYKzwZIo+XmzXQ81GmmBWrB++23lMTCXhGfp4iLsy+wsR4hBE+fdrwoTEw0v+7UVt3UVG3eaTXnz2tbdrKDuKiAx1/wpqWR5TU3P/bFMXoUx8popGsjPxsvHAwLXmeTlERxhZ5/XpvfU1G0N40jcn9aYtEioGhRoE+f7HdKSEy078E6cyaZgJYsyd52sov6oQ1om/oz41EKXkWhPL5Vq8LM7GaJw4e1HWUWLdJaNK0JXsByU+ixY9Tebq8YjomhlGVNmjy6DjsJCdSWX726NjSAGrU1e+dOMo36+tIwM2Jj0aBGEk6dosMbEAB6UT75JJ2X//6Ty2aYP/c1HY4jqAP3tCSs7/E9/hytdRk5t3Antm2jDmf161OM2xdekP/bK3gtER9Plt1du0j0Fi9uPfMcbUdB5ZtS8IYhymSVVTNsGF0iX3xB04sX0+U5a5a5QVFYc4sUIReQtm0pLJpd5BURdeUK7YCtfM2WUBQo6n1wtIvBs8+SL4r6uhOtOtamAeDkSfriiYjImSBSm/gfd5eGsWPJF2jFitzbxqO08H7+OeVOz05H7KySmEg+WI+yY2YuwILX2Xh7U25SAJg9W85PStK+WXLDwpuaSm/hyEgSoc2a0RstK9y9S+KjfPnMhZIQ1F9++Wi/SvWCNyt+vGrRePUqqQpHMngw0LMnne99+6jLvNFIWQYyO0biRdewIQ1FFAk3N/O6q0UgYO7HqyiUtmzhQuD11+07P/v3U7nnztnfpT+nrFhBVuWYGFJheoxG7cfXunV0LAFg/HjbvvD379PHZ7NmCA+nZn0A9CFx+jTdL999R/PS0shlAkBa4xaYjiEAALcf5qJ8FM1Hhw4AgBLX9mHjH6lo0IAaG6pXJyHp70/bEL61WeX6dbIWP/008MMPNO+pp6zH/K1bF6iC0whLl9Zxa4K3enW6rFxd6ZBu2CAP0R9/aJdVW3izxOTJ5PS7alUWV8wFjh6le/v3301uKnYRHw+DWgRkXBMO4/BhOgHqjCNCVAsnbQsiO2V9RiDlvXuls3h2UAvevPJxkl1y2782NZW+QIFHI3iPHaPhP/84tlz9M1JRyCDXrRswcqRjt/WIYcGbFxCBPpctk8JE/3AREewdyW+/UYDOokWlyWnUKHNxZA1FIXF0+TI1k7/yim1BER1Nw1OnHl1orPR0KbRFBoHsWngVxb6gqvaybRswYwa98CdMoCCrgn/+yfxFJV503btrY2d16UJDWxZeveDds0fO27TJXNVYQv0R9uOPmS/vCL7/Xo7PnWt+T+hbGnbskC+fK1ds79fu3WTFUlvOU1KAcePkMj/+SFbmI0doWKgQAptWxwo8j1iXILoXhBDv2xcpASHwQRK6lqB4YEKMli1LRruDB+1P7qCnRAky4pUsKRNdiA5nlihUCHg2eItmnjXBq+bIEXnrAuYNNELwFilCl9y8eaQbM0Xcl7/8YsfCuYywXiYlZU0Q6Z/TjvTjffhQms9FC196urxPBw6koQXBe2OdqkVwzJjsvTuuXwcuXZLTMTGPd/O5uIhzy61OLXIfheAV1+zNm44r8/XX6UYWHTEBuuHXraPxb7/VXhOPGSx48wLNmpFJJTFRCgfxIA0Koi7a9+/LjgqO4ttvafj22xRHskoV2u60adrlzp+XX65qvv+e2mfd3SmA6M6dZL21hvqtOWdOTmtvmaQkekOLB/OxYySCAgJk13u94L182XpznRCNwnHSXreGyEjLlqJLl+RLTJ2tYNIk2TTVvTsNP/vMtk+heNE1bgy0bCnnv/qq3JYQbuIjRjh2HjqkbZ6aMoWGInDre+9RPMl//rHeKUbtZrN6tbmozg6KQpYYS2UdO0b77OZG19u5c+a5dsV+imtSINKY2WrBUH8ECHeJ+fPpeilenNKSxcWRuhStBs2aoVwFFyTDGwuM/Wie8Bdu3BiebZoBABrdWk0fS6pjXqIEEBpqoR5padr7LSWFsk3oMBjoG/nkSerMVqcO0L7KVZv+yh09yFXmdknyo7AoeDPunWPH6P33xBM0u1o1Gv7xh/Z9rly7Dj88QFgYfV+88Yadt7e4D3bscL6Qyq5bQsZ6RhjkuvZE1FEUOk+3blm3KN++LY+L+Lg8dYquDV9foF8/mnfxovbZCsD/vOpj9OhROiG7dmVNiIlrXPjIPHwor8vLl7XPhXPnHHP/5yZ5RfCmpNh+rt+/b9950gteRaGWqJxEdPr7b9r2r7/KsodQ6xWCgmSr8OPKIwiT9tjhlDi8M2dS/L6qVSlY57ZtNF25sqLUq0fjv/5qf3kxMYoyY4aiNGxIcXzv3NH+/88/VKa7u6LcukXzVqyQgUHF8t98Q/MKF1aUSZMUJTGR5j94oCi+vvTf5MmKsngxjbu6Ksq+fZbrVKSIDNTp4aEo0dHyv/h4CkaqKDScNElR/vjDvIyEBNpW69a0X6KM1FRFmTNHUYoXp/I7dVKUkycVJSKCpjt2VJSJE2m8Tx9a59QpRXnmGZpXu7bcRno6BVSNjZX17dCBhl9/Tf/rj6eagwdp2bfflvOuXVOUvn0VxWBQFH9/RfnoI3kcWrSQ22nbls6dCLr655/m5d+8qSjHjtH/BoOixMUpytKlMhhqaioFkwUU5cIFWuerr2j65Zfp/AKK0rOnouzdqygHDlA5IshrWJisD6AopUtT8Nhr1+i8C8qVk/sA0DKClBQ6hgKjkc6xnnXrFKVBA0V5911FWbOG9h9QlOBgRZkyhYLjnjqlKOfOKcqrr9J/zz5Lx1ac1+XLFWXDBipPBIUNDVWU9u1p/Ikn6DiIfTxzxvJ5E9cKQOUoiqKUKUPTs2bRNSmOR0iI6XpISaGiK+G0XD80lPZ5yhTzYzl9uvZYJCYqyunTtJ+TJtHxDwhQlEuX6H+xr3PnWq634NAhRXFzU5QXX5TzYmMVJTnZdA4SvIMVBVDmVaZ9OYsKpttOURS6hwoVUpR9+0yxiMVvzhxFqVNHUbyRoAxof5munWefVRRAuVGyoXLpkqLs3KkoXbooyrhxCl2HcXHW61u+vKnwy9sy9vXWLUW5fNn2/WWBBw/kY0zsqxITY77gP/8oSv36irJpk3b+J5/IHRXPhwzSE5KUtIQUbdni2t60SVEA5SSqKgmufrT+sWNyWUvvkHv35L0jrpUJE2i+mv37tc/L1FRFmTdPGyS5ShXzGOHJycpDFzdFAZTFeEV7EsuXp/qrMRrpuapn4EBaZ+hQ+Ty5fNm0z0rJknR9d+kig0Lr9yEpSb4zFIXigef0vXrvHh0LPYmJ2v1IT6cA1ALx3Gvc2L7tGI30rE1JyXxZRZHvbIDuQ/1xVhS6/jw8FGXYMDkvLk7GTE9Lo2DaxYtbvnfUN2upUlIzKIqMya6Osx4ZqSj//acoFy9q17WGeKdHRNB0377yGfrPP/IZun9/5mU9IrKi11jwWsApgjc2Vl5su3crym+/0XiTJory2ms0/skn9pWVmkovVvWDrmNHuqnmz1eUJ59UFB8fmv/SS3K99HQSfkIAigee+terFy27YwdNlyhB6xmNivL88zSvXDlFuX1bUQYMUJSKFRXlyhVaxtWV/hc36uTJVNbhw/TfwIE0Lfbd19f8pq9fX1uf116jskWSDks/Dw9KyCAeCK1bk5gQx1sIdbEf9erRPmzdSv+FhckX4htv0MPKYJAiS8/06bSsnx89LG/cIAFnqW5vv03HR9RFBCzPEBLKtGnasn/9Vbt+zZo0PyGBxPt339F0tWr0v6ijSLwxaJAU/vpfhw607P/+Rw9sPz/5klD/Bg3SZjIQwdZbt6b1jUYa9/BQlPHjSVDXq0cvzZ075TJTpsgHaFZ+mzYpytGj5vNPnKDyAUWpUIH2vUED+gBRFPlithRA32gkoafeRny8nL53jzI2CHEP0MdoVJSiKPTuBxTln8DWNNKlC5V78ya9LMLCpGgAFKV5c9pmSopG+Gl+kyfTPVu4ME37+CjK2bOWrzlFkddo2bI0HRtL190TT8jpjLKfcDmkKIASawjQltGxIy3z0UdKYiJd6m5utNuXLyvKwveOKwnwNq+ru7v5C7VJE9p+xj08bRrd+r6+9F320MfPtH5fw2LlyMgV2jI//9z6vqpITKTL3dubHiVKQoKitGtHiTWOHNEu/OGHVHa/ftr54qNCnNcM0pNSlAteVZUr7uWl6H3mGfogvX1bSV36s6IAyja0UI6GZnysiQ+TP/6g61s85wR//WX5fFeooD2Gq1Zp/z96lOoNKMqIEbSMmP70U7neITq3d1FIKYS7SnrdetqPWP177Zln6DyJDyxBt260/OzZMpvJkSPyw8/Sr3t3rdCrXZtO+Kef0rundGlF8fIy39aVK3T93r2r2CQqip5Lbdpo56elUfKdsDApcvv2pevyzBn66BN1LFfO9jYSE+ljWTyTn3iC9slopGdHv36Wxax4b4mfWmwL3n2X/vPyov8vXKBj37Ej/X/zplx/0SLtuu+9R8+CK1doWtQvMJCmxfu6e3eaPn5cvnMBeqfYQn2MvLzoWHtn3Ou7d8tjCihK7940HRlJ18kzz9A7xpoxIRdhwZtDnJZpTbyQ586lhwOgKJ07K8q332ovZEvcuCFvsMOH5Qvy88/p4gVIfKpvyMKFpSVLsGOHVgiKh+mcOfLFlpREby+AhKbg3j0ptIWgBhRl4UJ6kInpCRNo2LMnrTduHE27uZEVUVhTAbJoCOLi5PzBg+W4yDrk5UVi8+BB+uoFFKV6dXpRKIqibN8uXyxqi7ooJzqa9kFMN2pEwyefpIcPQAJTiJ527SyfCyEuAUqJJQRmpUr04BDCxNub0mMpCs1ftEg+SMX+ffSRtuxhw7TnZsIEy3UQL6sZM2haPAzFR9O//1IGpcBAEgY+PmTdFYgXb2IiWflLl6bzI64BIbzLlCElJOpz7JhiZhpU/556ispVWz5ffpkeoMWKUZ3OnaPzXqEC1S84mIS3qyutL+rWrx+9iMW1tmYNiQyAPoz0iPRkfn7mliiRZk38/vc/ehmJ8yTOy8SJVPa8eRorU+vWdIj2T9tDVjdLrRNJSXQfifvx4EFFWb2axl1dSXDXqkX3hThWBw5o69WoEb3cLdGkCS3j6Un1VVsIk5LI0gMoSV6ByqhBMdr/BHXq0Dzx8aOquqIoSurndC2nu7gqxuBg5XqTXko6Mj5aVOnVNqxNMc1PPfSv8ssv2t3wRoJmxjy8phxHdXksAG2GyYQEqxYqtXH26/HJ0rIPKMr332sX7t+f5nfqpJ0vPtbFL8M6HD1vlWnejQ3/0geIOH9//qnETKTn4m/orqwPf4vmjx5NZY4aZf6MVBT5LGnXjj54liyR21ULPvGMEr/Zs2U6O2GhFi1wQoAoiundsQltTLpYURT58Xr6tLY+olVs1Cjt/CefpPm//CI/oDdvls+gBg3oHn32WWodFM/Fr7+m9R88sP4cWL1au623Mo7dW2/pT68WYV3Wf2D9/LMse/NmmidE/pIllMJQ/O/nZ3sblp5fe/aYPiQUQFHOnzdfT1jfxe/iRe3/RqM09oh3mxDAok6i5Q4wzwoq3t8rVtCzR72t+HjSCuIZoShSQ7i40DAkhOanp9OzpVcvrXBXi23xXAZou2I58Uzx9aV7csQI7TotWtg+trkAC94c4jTBK276zz6TX9GvvCJvcnUeUTU3b9JLX7wghDgVgmzhQnlBenrSS/u//6w3cURH08OvbFkSo+LrVjxA9uyhZj/APH3rjh3yBhO/8ePpIQtQc77YnwoVaB1hzQRIvKqtfuLmVRSyLqhvXPHyEj91k3pCAj241C9zIWC8vGS6zM8/l5a9kydNokDz69eP9tnSg9vSg09Y5AGyhtaoIR9wguPHqQnbGnr3C4F4MX/zje3m4vffp+WENVOcr0mTzJc1GrVpiK1hNJIVBZBNqeIjTBzPbt3kB0uLFtKy3aWLvC42bJAfVRMmWLaWZAWRSviHHxRl2TIa11uARP3FudAfB7XoAOgjc9cuGs/MIqTY11poQnygDRokxe1778n/xTXo4SFfKE8+Kd1cFi40LzMuTmvNuXNH2xpw4YK876pWVRb8YFRSkfEBIz66FEXe48WLW667cAH68ktFUehU30bGOipr6vgBl03bfqncHsXPT+7y0aOKUjvgouZ4pxjI+p3i6SfTY5cuTYXdukXPjR49ZD3u3FGUmBjl+HH5HTZwoCKfoeKn/yB8+mmar/8geuop7XoZLSNRzXua5l2cuJzud5VguTHwC0UBlPl4VdneNMNNaehQKnPIEJquV0+7LXFv9+2rKApp6/sgMfrwpEqMqj+cAXoeA9SqJu7X5ctpXvPmcr0MEfU13lMmTlRtt1IlWnbrVm19hBAuV057L4rlt21TlGbNaHzlSnn9TpmiLWf2bJofHEzT4lh5etJ9FxIiBd/8+dp1W7eW69pyIfjxR3k81GmxxcceQEaPqCg5/eWX8t0hfpZcOATCPa9VK3IPAqgFQIhTcUz0fPmldhuiZUmgr0OdOlrDkHhniWmDQbuP4pk5cyZ9XKrLOntWfpSI++bzz2m6Rw+5XFKSfA8CWrefEycsv+PULS1GI7lcAGQUEJZ/YayrWNH6cc0lOLXw40rJkjS8fl12oggOlr1Fzp+33IHo6FHqALFnD3WwEZ1vRLiqfv0oCkDXrtRZacQI6rzkYuX0h4RQzMKLF4FPP6XeMQYD0KgR/b9vn+ywpI8w37w5hXF69VWgf3+ad/Om7DAQFkaxEAHqiBMfr+0VvXw53Wb161PnpP37gRMn5PIAhUADgK++Ikd6gCLti+0BgI8PRc9XR+kXeVuTk2WcpebNtemhLKWIqljRPHaUyKE6b5758uoyFi+m+nt4AM88I+fXqGE9YCog89neuqWdLzoolCpFca2sIeorOtmJzlwBAebLGgz2hQowGIC+fWn89Gkais5gY8fS9bRmDR1bg4HSgJ07R9fK778DvXrRst26UYSDJk0ozI21OFr2Inp+3bmT+X6KVGfffqvtLKTvqKROblG0aKZVsHYrWUQcw6VLZTiDPn3k/5UrU7yy1FTZsbRPH7mMOiarYOdObWeVmze14feuX5fXTvHiiIwyIAoZccTEvZmWJsdv3rQc5/gQRZsQwYPnzQPueGTcVyIFN4AW5eS2Iy/GIz6eUiNPmQLUrg2MepPukRhDMBSDAR4KPdd2VHyd7g1RB6ORQlk8eCBjU6ekANWqQalVC28PeIiHD6mf54wZAP76i5YRz0zVPqSlAVcP0f4lXNZ1XBIdgIKDabh/P3DvHoL3rjMtkn78FHUaE9y8iZRb9Jx2DQlGiy6BNF9cg2KoD4MozkPGPX7uHHAHIVTOvTvmy4l9Eb3jX3pJ3q/inaE69qKD2xHU1d4Glp4piiLzR1+8qI0yIa6F0FB5XGJi5Pr6nNsiLWFMDD3Xxf1TsiR1RI2MpCDN6rIFIvpNTIx8NltCHZFAdOLeu1cbDu7kSWiyqajfP/p9s4Q4luHhsmPg8uV0vwoshbbUdzTTT69ZQ8PGjemBId7bgqgobb0UhXqlAnT9i/N05455J+sbN+TxEJ0dxX7UqEHhT8Vy6k7b6o7w1jrKvfyyHDcYgOeeo/Hhw2lbYWEyI01OE53kMix48xKWBG+hQvTCDQykh7+lLFzqC3jzZnPBC1DPyjVrKBpEdmncmIZbtsgHv6WUSq+8QoFBGzSg6Rs3tA/P0FDaJ0WhKABin9TCYsQIEuiADDIqHopC8IaGUuiu8eOlMLCFp6cUt3Fx1JO/YUOt4LWUwatiRRK4QlyXLCljJi9caJ6+Vi14Rc/lLl3k+vZgTfCKh1jx4rbXF+m8RGpkUQ8RhSG7vPiijPMLSMFbpQqdd0GPHnSegoPlMu+9R0Px0TZ9es7FLkAfaABdY0JkWNvPF1+k8339OrBypZwvBK+IYhEdnSXBmyXataMyY2JIhdWpIz8CATomGTF8TS/EiAhZD0sv6y3acGO2BG9CoRKYPh1S8Ipe65GRdE8K1Fn8AHrJCtGVcd+XLAlUe6q43GYGzcvKbfd8Kh7t25NmEJdOtyZ0j3jXqABDzZoAgIdwxeSHQ2g/XVyAhw+hREZh7YyM+N5xcfS7fBmIioLh+nXc3ncJfn4ZYheAknHvJTVsoTlWUVEUyCT1Jk173NPta8bzVsmIiR792w5gxQq4PpT3tts5neC9cQOl/Wm9Tq8Ey2tOL3ijorSGCnFPZ9zDZ88C0QjV1FeUD0CGGRSo7zPxEX/9Ou1Perop89oR1MW776oiQFp6pqSkaD+URMy5hw+lqAoJsU/w+vtT9AixDXH/FClC17SLi7xX1R9Tqanad9hPP8EqasErrkURzlE8x0+ckEYSsY4+MoOtSA2qD0O0aUPDe/coeoIgO4JXhJl84w3L8QOjomS9PD1p+OOPdF7V+x0dbS541eI5NZXOk1inRAmttlCHHFPHzheao0IF+Vxu1oxiKKp5/nkaiuugXz95fViK5pSHYMGbl1B/rastDgaD/MpXP3AF6ofFmjXy61YteB2BELzr15P4DguzLbzEw1j9hS2sceIFv3w5lRUSIsOdhIWR2H39dZr+6Se66YWFt1w5uY3mzYFPPrGcb9US4hgDZKXy8ZER89WCt2VLssoCZIk1GKRFduBAMikVLUoPKH3QUSF41ZH4hfXDXqxZY9QPY1sIC++lS/RCs2X5zAqhoUDnznJaiFkAGD2aPiIAKW7VNGpEGcsAekiKD6Kcon6JZiZ4PT2Bd9+lcZF5LTlZpmcV4iIqyvqLPae4uWmvB7V1VyAEL0AivEwZee9YelkLwSssfzdvaq1+N26Yrp3/7hfH7dsWBK/+40oEtheIVp2yZeULDoBBfZ+rt5fB2y8/wF9/QRP+zDU6Q/CGFwFatwYA/IJn8PfZcMQnu5nE/dYl13Fmo3wpn996DemX5Au7Ck5j9OiM2zo+HoaMl/6OuxlW4gxhNWECGQFDQc8hd2OqNoxWxsv+3zL0kR16bDOUQYMAAJtAVkm/q6fMLIeu92m9sMo2BK/+2OiuqzNnpIVXIwTFOq1by+dbnTrSAg7I50BqKq177hyQmIhkF2+cQWUAKt1l6ZkirIaCn38mESxWMhjoY1+kzrt3z8xCrUG9DfEcVH8whloQ9lev0jtAiKy1a63Hgldf05cvk8AS4RxFaMUTJ7SthmqDi0B8hKxapRWygPYZ6+pKH8kCIeizKnivX6f7x2Cg56ewHJcoId+FkZGyns8+S8/SkydpP9XXz5075vGf9VlSb93S7oe4R21ZeEWZlSrJZ7NojVJTt640OgHAa6/JEJDx8dlLz/2IYMGbl7Dm0gBIwfvff3RBLV0qv870gldRqCxHv6gbNKAbVlgE6tWzbaETD2O9hReQN/nPP8vpN9+k2LP/+x+JzXbtSKDcuUPWXb1LQ3YoVUqON29OQ/EmVjdj165NsQhnzpQvmKlTSdQNGUIPox49aL46042iyAe9eFgEBgKdOmWtnuLc3b0rLcj378tMb5kJ3mLF6Nw8fEjH3lEWXkDuV5Ei8kEKkBD6/Xdqhmva1PK6ixdTSkx9rOeckBXBC8j0sbt2URPcgQNkaQ0JkR+JuWnhBeQxdHPTvlAFbdpIc2hEBA3FB5T+5R0TIwW7WPbGDXMLb4ZYCK5B146Z4NUHsNcLXp07gwn1fa7ensCS1Uedj/izz4CJEzGh2CwYjRm3U8azsGah63iyhBS8g7pfw6ppcrp56GkMHpwxkXG+4uGL627hNC/jWB08CHggBYFQiVxRh/R0k+jZ4d4WwzEZD+BHGdQMBuzrPB4AUCj6rPaYiIx/AAZ8FIxnXrMheNXHQycYz5yRFt7/dkSbL1e6tPywVFt3AXpOiufX9eum+p3xqAUj6OPH1MpsSfCKc+PhIS2ZO3ZI4R0cTKJPvIeuXpXrZCZ41RZegSULr2i5q1qV3nMpKZRUxhJ6C+/Jk3T+ihYllzE3N3rWCdcWsY4lwTtvHmW5VMdDB8xb0dQfpCJJlCXBK97Zwt1NLXiFm0aTJnQfP/ccxUZet06+99UW3ooV5Xvu4kXtObNk4bUleO218Ir6BgfTc3r2bK2boMBgkImqWrQggax2r7MRB9zZsODNSwjxIJrtAHPBe+oU+ci+/DKQYYHQCF7RTOdo6y5AF7XaumDJnUGN2J/bt+XDTwje2rVpKG7cWrXoofv55/SyB0hUCmF86JC5S0N2sCV41T68RYqQtU9YAwGyUI4ZI60tInOb+iEcFyebL997j77Up0+33wItKFxYWkvFsRPbCQ7OvDw3NymQbt1ynIUXIB/cSZPooaj/4ImIkILSEuXLk8BxhPAWqF+i9gj7ChXol5ZGllERZL1TJ3nMsujDm2Vq1qQPg1WrYDHVWUAA1cdgkL7flqxjgEzcULWqvCdtuDSUa14CigK8MtyK4BXXlt6lITPBq74PsiJ4CxcGRoxA5aYkFPbvh+kFHZpyHU1VgrckruG/v+T0i/VOmxpiRJm+5YrgtY+0wmrDBmDXaq0FTrmdUQeVha/X64UwFcNRHhfwb88xwJIlcG3aCA/gB1fjQ+0xuXED9y6QyLkYG4zIFBuCV4goRbFp4U24kiEEk5Lks7F4cXLZGjUKeOcd/ZHUipkM/+7/XKTrmk3BKyy8/v7y2rl0SV5j4t4S7yFh4fb1tdyHQFwLWbHwqp/rAwbQ+EcfkY+oOjkOYO7DKyy54v0hMk6qhZw1lwZxPYuhfhvi/VWzJiVZ+vFHEniA5WydQjCK1jW1FVb43YtWUhcXMvDUqaN9/6gNQ8KV4NIlcwuvXvDqW2euXZPHv3hx64LXkoW3cGFqVXrrLet9Oz76iPr3CHdDb2/ZkSEP+/Gy4M1L+PnJF7V4CFgSvMLHSWTfERew+gEkOpg5GnHDApkL3rAwumGMRulTpbfwCvTT+m3s3y8fYjkRvGqXBmGFtOTSYI/IUT/cBeIh4+dHD7Kff7bcLJQZBoOsgyjfXv9dgfoF50gLr4sL8MEH0probLJq4QWky8Cff8rUts8+q30hi2vB0S0lgt69zf0z1SxZQvdNM8rWphHjasS91bChtulSb3HVu8PoyxPXWatWNDx5Utuxz5rgteTSkBXBm4HYzRkzgKQQyy/oTjWu4YlQlQCOU3XgyyjTUKSImbAKCAAahGs/FBJFxzXxovf3R/Ey7hg8GIhGGBaWHg289BLCihhwCtXM9yEqCoYM14yIF4Lx8wY7LLyxsbKVplgxGI3khSAsvJWCMwSvOJY+PnQtP/EEdQy19KGrFjNnzgAATqRXMf1tJnjV/RTEufH11ZYjLLDiOIr3UEb5Vu8Jey28lgRvuXJkxBGubVOn0j4L9L6sly7JD5AMP3CNQUaItbQ02clWuCRERcl9EUOA3lU6H2sAJMRfeUV7jPQIwStEt9rCK/pSWHp3qe9DcS+GhWkFrzULr7V+IUeP0r64utI5VNc7s05rKnclq/j7U8p10VfEYNC6NeRRWPDmNcSFKSy1wndKCN7Tp4Ft22j8+nW6uMTNJ5oZgNyx8AJaIZ2Z4HV1laJNNAWKB2iVKtrOT9YEr3i5rlpFTVdeXjmzuImHSPXqsunJkktDVgSv+iFs4UWebfQWGb3lwd711WlAHWHhzWtYEryZ7acQvD/+SMfV3586koiXz7178sWQGxZeewgIkPc9IO+dhARts6F4mVepIq/J48e1HaWuXctc8Ir/mzSh45GaKjuU3r8vXYr0931mLg2WLD4W7pPXXyfj2I0bwJc/0jWecPyCRqD1qH8VHaupLFSnT8tnpdqiKK6JxER5rHSW8bhzGcsL8ZDxrBWplGfPpmzkJ08CVXqqzkO1atT6oigISqUyO74UjGJV7BC84hgHBQHe3rh2LcOY60r1DUiJ1i5XvHjmHTvVfT8yroV/Uyqb/rbLwuvnpxVF1iy8wr0qM8F786ZtC6/apUF0PitXjt4ZEybIjmhq14S7d7UfYNeuSaOPJcFbqZK8xsX7R9xPkZHyvomOlmIvOpqsygaD5We4aCGMjNR2VlYUcwuvWvCKe0cIRDXWLLzh4TRuy8Kr74QuyhIfp8WK0THNSqc18V7MKkLwsoWXsRu1BRKQD5pSpeiCSk/X9i7es0daDISvkcFgboVxFC1akIWveHF5Q9pCiDNxg4oHnoeH7ATm4qJ9sasR+6F+KGYpBpSObt2oqey77+Q8S1Ea7BE56oe7IDcEr96lIasWXrUFw1Yos8cV8VK+f1++SDOz8LZqRf7h4t7p2pWmg4Pl9SWEoLMEr56AANmRUi3exPmtXFleG+J+EW4xt25JsSCuC2sWXnVHGiEURIe1MmXMX4him1FRtI30dMt+omos3Cd+fuTl4eYGnEum56Drgb3a9a5d076k792TxyKjzB1niuDJDv4wutOx+mXOHQwZApzeadvCm+AVjK++kv+npJArxKlTQGBj1fOpRg0zwVezparTWkoKiV21IBKC14I7AwB4FNP5tmalNUe8M65eNRX45aoqpgYsU988Ued79+R1LwSv2sJ744a5hVcYXgQ5tfDGx8s6CAuvOhqA6Bh7/Lh0axDHpHBhug/S02U4MiF41QKwRg15/IQIE/+fOqV1CxAnQjxjw8LkvaOmcGEZQUH93H/wQNZTb+E1Gm33P8nMwnv5svZ+SkuTllm94G3ShIbCp1/sv3gPnz6t7ax57578MNP3G8oq4t3CFl7GbvTWO9FkoY4SoGbTJhoWKUI94EeMoA5BuSVsKlYENm6UsVYzQ//AFg9QQL5UK1aUcQL1VK+uffDkxJ0BoAfl5MnSFwvQujSIB449glXsm/oFkpsW3uy6NIiHuZ+fffF2HzcKFZLXohB6mQleX1/tNfDsszR0cdEKOoNBG23DmRgM5j6QiqIVvPrnR/Xq2pYU9YvcmoW3eHHpYy8saNbcGQASMWp/86gore+lnYIXIOvqF18A10Hiy+vODe16ly9L8Siap4V/ZIbAOnW3CPbsNSDVn8TV3t+j8e23wO0T2rjCaTcy6pDxor+VEowRI6gBTRirhg7N6KdUTWfhVd+Dbm5YuNIPH45TPXP1Pp5WBK8woCshdF4TrugsvPa05gihuncvmYvd3VGtc1mTt4zJ4BYUJMWaEKPi3Pj5aUOcWbPwCqwJXrWblyXjQWCgvB6FqFa7NAjKl6fzm5wsD5I4JiVL0ocXQKJXbTBRW3jVglcgBKIQhAJh7c3suBsM8nirz7EQt15e8n8x79Yt2g83N1lvNeIeuHZNik9bPryAPCZ6wSu+ckSrhth/USdxMQQHy+ec+IDMikuDJdjCy2QZtYVX/XAA5E3t4iK/gIXgLVWKbsaJEyG7LecSbdrIL+rM0D841IJXtB2KoSU8PbXbUj8UHYV44CQnywgU9oicoCDpUydeZI/CpSGrglc8zB3ZUSwv4eoqH95JSTS0Z1+FW4OfH5ARfxWA9tyrxVxewJJV9sEDOgbly9P/6haQ0qW114t6XF2WvjOVuCcPHqShpdjeAhcXea3po0MA5oI3OVm+2C3cJ++/D3z7q66lS1jNLl4kMe3mJp1+xfWdce+5FKMyH3jRs6ZXizsYPhyoXJhE3EMDPVMN0VoLr2exYDzzDF0WwmujTh161E7ZYF3wpgcFY+kyA76e4oo0rwzRq242BswFb8b64lvlgScJSyVa58Nrz70unrFqP1F3d5NXj0l/WOoXYMnCa8uHV5CZhVedJEl9jg0GrR+vOr6t2sLr4iI/ukQrg/qYqFsXK1WSz+Hy5aWor1HD8gcgoG0lBeSJsMeoYMmPV+0OoI/SIM5LmTLa97lA3IfCCuzqSh/xYh9v35biWtzbosyiReX23NzM36Vi/8PCtNsuXVqKbyF4c+rSIIxsLHgZu1ELXn0zkrCItmpFcWIBaYFRRx/IS9iy8L79NsVO/PJL22WofQZzauG1hK+vtBYB9oscg8HcrSEv+vCKB1p+9N8ViJeowB7B+/LLJOBGjdK2MKiv0bziziDQW3jFi7psWXrRq/3mAXqeqK8X9bgoKyWFhIcQ0cWLS2H7zz/0ESiEr7W+AWp/9swEr9iOh4fFTjcGA1Cnk+65oQ9zV6qUFC86wetVhu69GBe6JppWjMbkyUAx14xjVpn8WysHai28pWoFY+VKMvYL3fDPP3RIP51XBnHIeKHXqqU5jufuBpse1cleGdedELzCBeX2bRLqFkKSAUC1lnQu/JR4KEnJWRO8Oje4xNJV8OWXMs+BRn/onymWLLxxcdLqKu6rwEBti15mgle4cwQEmLfeqf14xXaKFqUOemqE4BXWWPXzTy2O1QYRV1fqy1KyJL0j1cfPUiupsErqLby2jrt416qvcyFuCxeWHwdxceR+YMt/F5CCV8SvDQkhYRscLEWkaEEUH37iYyI4WNa1dGlzl0jxn4uL9t4vXVoKauEekVMLL7s0MFlGfcHqL7w33qAerHPnmh7aJvKq4FXfZD4+2oeapycwbJj5TapH3YyaG4IX0Fr1siJy9JEa8qKFV5BfLbxA9gRvWBhF//jgA+18teDNrQgN2UUfi1ftziBQ33MlS2rvL/W14+MjX/jHj5PVy82NjmWVKvRfQgKwfTt9NNnqG6CO1CCEgLjX9RYfdWIWa25RXl7ac1qpkvaeKl1aZsXTCd6ASnT/3k7XdZDKOGZutapr66FPKwwpeGfOJL0/dLgL1vVehriJs7S+0gDiPYJNl1uSh07wlitHxzQ9nbZnxYe3QbtApIEscA8u3ZGWRns+bnXL3A6qgpEjgb//pmm1y6bZM0Vt4fX3l/eNiH4g7gUXF+3HibX7Qu02AVh+DqotvJbcGQR16tBQL3j1Fl59a+OiRWQRLVxYe70HB5s/2zt2pGFWBK8lC69a8KoNVffu2Y7QANDxUN8H4h43GLTC3t/fvN9MoUKyrmXLmp8X9X6onwOlSsmyrlyhljHROsad1phHhi3B6+dHPVgrVHh8BK+lJtSs8igEr/rBnB3Bm9sWXnVHoOwK3oJi4XV1NbcWZYXsfvw8CvTZ1iwJXvX1oQ46r/8PkPsqfHRFWl9XV6n6Zs2iYZUq1q8hdaQGIQREnfQWH3vvEXW9y5TRPuPKlJGCV+fDG1qDyr2WRNfElUPR1GouPhKEn6c4hhkW3jvphUwt3UJrAWR4++IL4MVlXRAw4h3t/gJI8go2acFEtwzBKJqg1Ra469c1gldRgA8/pMSN9eobcNdA9b137k7WPm59fDTvCrfqldG/v+y/ZJeFV7RwiWMuxI/6vlK/j6wJXnWrF2D5/rFk4bVH8KrdDdRC0FqEH8C8RcPLS3sNd+tGwwsXyCptz4dGZoLXzU1+HNy9m7mF181NKzLVH9xqgVusmPY/gASvqGvZsqQRhPDU74f6flK7NFy+LD/6XF2z/55gC2/mzJo1C+Hh4fDy8kKjRo1wQPiKWWHlypWoUqUKvLy8ULNmTfz555+a/+Pj4zFw4ECULFkS3t7eqFatGubMmZObu+BY1BeoraYFYTkQ5FXBa6kJNavUrEkP3pAQ+yJDZAf1yzcrYvVRuDSI6BGig4a9ZetfNgVF8AYE2Neh0hp52aVBb+FVhyQT6K066hed/kUurGOzZ9NQLVaE+8Lq1dppS6gtvEI0iDpZE7yZfQBnJnhF8/SVKyReMzrqlKhH98eFB3QeN/x0h6IvZFh675XIELxxcdRUnCF4R3wdbEq6VbUqsGABZa01JbawtL8AUv2k4H3gqhO8gYHazmAqIWswUF6bGTPoUR/rnpF84vQ12flSLexsoTpWpdtXwYIFMpmhTcGrDkumKweA9l6wR/AC2usvJxbeGjXoeSfCRdpr4bVWF7Ev6n1q00ZGP7p4MWsWXkud1oRwVfvxZmbhBbTHSX1fqM9/8eKWBW9EBLmNCGu1+tzoP34Fagvv5cuy/uoOwFmFLby2WbFiBYYPH47Ro0fj8OHDqF27NiIiIhBlKVc8gD179qB379547bXXcOTIEXTv3h3du3fHCRF4HcDw4cOxYcMG/PTTT/jvv/8wdOhQDBw4EGuFQ1Nep1Ah6fNkS/C6u2tvoLwqeC09cLKKlxd95R85om0ucyR50aVBNPmmp8smxiJFLHd8sISXl7Z5raC4NOR0P9XXQl5zabDHwmuvSwMgM3eJl7L6/wYNaCh8C20JXksW3swEb04svKVL0zkX96owfPj4oGQVP7i5AZHpdE2EIhpPPw3TR0J6eHmkgFTsw5tRJsEbg2BTBl+AsqqK7OFxcfRtYdI4quP0MFAK3jjoXBoCA7UWQZ1Lg5r4jE527ru20j0fEmK/v776WGVcC2XKUIPgp5+qltOHOrRm4RVYsvB6eNh+N2XFwiuea/oWS4As12L+0aNaH97Klen5VqyYbSOIpfePuL8DA6l+atcYR7g0qIdqwWvNwquuk7qegFbwFiumPR8GA+3Dc8+RyOzZUy4nsObSoPbhvXIl5x3WALbwZsaUKVMwYMAA9O/f32SJ9fHxwYIFCywuP336dHTo0AEffPABqlatinHjxqFevXqYOXOmaZk9e/agb9++aNWqFcLDw/HGG2+gdu3amVqO8wzqsCf6Tmt61A+JvCp4AwNl83J2BS9g3jTraBzh0hAfL8PBOELwurnJYyaanO11ZxCoH34FxcKbU8H7uFh4k5Nlh5PsujQ89ZTWOmzJwisQAtgSasErVKEo98EDba94ewWvEHtublQvvYUXkJEaRHrookXh5kbvcpG9rEmFO2ja2GgSJYUqhSI5gI6j8VYk0u9IwWstQeX48WT1FfkQ1ELUECwF7z2jBQtvxvFP/fe0tKgWK4aNG6kvoOjflexH13Dw4Y00o25d+61t4hyHhSHevRASEuhS+fhjSuhhIisWXm9vbWdeIXKLFrVdL/U1ZMvCe/Om7HRt7WNKdFz75x9tqtxChejg7dljOy57aKg0EOgFb5UqtB/i3jl+XNtx0xriOrx9W8a21sewVWemE07Utqz12bHwBgbKfVeHmxTH39tb63dtzaXhzh35HMluhzWALby2SE1NxaFDh9CuXTtZGRcXtGvXDntFMGkde/fu1SwPABEREZrlmzZtirVr1+LGjRtQFAVbt27F2bNn0V4ddkhHSkoK4uLiND+nIi7MzC4+8UJRhwXKaxgM8uGRE8Gb22RX8FrKLKTuDJRTRPmOELxs4bWPvCx41Rbe8+dJSAYFaV+S4hoJCtKGmwLMLYYGA6Vz1a8L0Itd3BceHvb5Sp4+LZupxfPJaCRxfvUqxQkXqZzttfCWKkUv9NKl5X/iZf3kkzQUPbQyymzcGLgDuiaKuUWTIMmwVLsWCUFgRVrO434U0qMywpIVDbb6GNUHx4C/P5LdSAy6hqoEb3rGR6WIQxwYiBsutB8xP/5uWhd+fnj3XdJ5W7bQ7LQg2kjhmxktlmpzc2aIY1WlCkaNosfPiBEWlsvMh1d9feg7ggoDTGbvGnstvNu3U7SB4GDrzf3Cj3fhQm2qXIBcHjJzcVO/G/WCVwhdcZ0uX05Dd3fzfVcTEkL3g6JI9x3RMVJv4RUtyyVLWo81r66Tup6Adv+KF7fuU61G7K8+S5+4RsQxCQyU4v2PP7T1zg4clsw6d+7cQXp6OoroHnpFihTBbXWubxW3b9/OdPkZM2agWrVqKFmyJDw8PNChQwfMmjULLdRB5nVMnDgRgYGBpl8pZ1tL27enG0ofikePuGGLF7e/mdsZiIdoXha86gdOVqyzapcGteUqJz6kasTDa906GtrbxKlfH2ALr73kZZcGtYVX+O9Wrqy93p54gpYTsbpLlCBL2RNPWH6R9+kjj5l6fw0GaXmrU8e2O1G5clpLcc2a2hBQ8fFkavzqK/o4tOf51rgxiY9WrWha/VwW48LCK8ykGffunDnA97+pVKpQqkFBVKYq2YzrA+qwU7a+dQODPvwxDAbc8aB736OojNIQnaa79gIDEdCpOVLhjqIPM8RRsWJIS6MW7sKF5SFWCuvOjQXBm5xMqY7NaNuWPrR79DAZFAMCyBNgxw4Z1cp0fqOiyG3CloVX/7wWAisrgteWhVfEYm7Y0Przsnt3EoriI0qkys0KeoPLU09RmaLDWpcuVOapU3IbtqzGLi7y2t61iz5uRNg+4bbQujUNd+/WzreGPRZefac1ay3AasGrRmQIbNdO6oU2bWgoBK8jLLzs0vDomDFjBvbt24e1a9fi0KFDmDx5Mt59911sEgkaLDBy5EjExsaaftf0WXIeNSNGUDNIZi+EFi3oxWFDzOcJhBXGVpOos8mpS8O9ezLerSPcGQSNG9NQWIzEtL0UFAuv+kWQU2H/OERpSEwEtm6lcX1a7sKFyfK0ZAlNu7pSauD9+y2/yP38qK2+cWNKsaxGtKjpWtbM8PAATpwgS2pMDDVVu7tLy2F8vBQtX3xBTf7W/AcEVaqQUJ0/X+5nUBBFbRHWsjp1tM3uGfeery9QsUmGsIqJkR+jGccv3o+Wu3PgAlzTqVm62pPWXcj0rtMAsMetBVLhDveGdU0W3qgU7T2mBATCr3UD9Kr6H5biRSgGA9CkCdzdye04OlpqDJcwneBVh4rI4NNP6btF6CgTTZuSgBw61CR4AwPpe6BlS2mIRGgoiUujkayStnx49R9H4nw1b25WLw1qoWXLwqsv1xKVK9N1JTIhqmOy20uLFnTdiy+LZ5/V+rzWqUOuERUr0rQ9yY1EGru1a2ndmBg6keL5/Oqr1BtRCMvMBK81C6+/v7S66n14rQnepk1pf/W6wN+fXBfWr5fzxH0tXPHyuYXXaWbBkJAQuLq6IlI8iDKIjIxEUSsvmaJFi9pcPikpCR9//DFWrVqFzhnWjVq1auHo0aP45ptvzNwhBJ6envDMrc5Q2cWe+lSoQE/g3Eoj7CjGj6d4u7aaiZxNdgVvYCB1nkhOltmoHCl4R42iTgnJyXSeM3tw6mELb9YpXJjiRbm55b2PBD8/eb39+CPNEy9fNfoWH1sWK4B6aPXvbz7/3XfJmpWZyAFkhih9fRMSSFiJZ/czz9gfolB9/AMDKXqByKoF0H42aiT9AtT3nnh5K4pMxZohJvZeKIKnANzedhohAFLggfrNrYey0wfHiI8HXoibhwB8g3Odg2Rm8STt9XItLhBPFAGio8tjHZbi+KvT8eVceYzUhk2PEiqh4+MjBZiKJUvo1JtcK9RknHO1hbdiRdIyIoEkXF1JmN29S4I3KxbeLl3ow95CshAN9lp4BbY6QwIkQH/+mcRadj5Av/qKnJnV9dZbiRs2pI+0RYukddYWXbtSj8ANG2SdOneW953BQPHm6talsH5qtyFLWLPwAmQA27qV4syJ8wVYF7zNmpEAt/S814ccERZeQU4svPm101q5cuVwV/RKVHH//n2UszP1q4eHB+rXr4/Nmzeb5hmNRmzevBlNRABBHU2aNNEsDwAbN240LZ+Wloa0tDS46B7urq6uMIqexvkNteN6XkWdTjKvUrIkWTlCQ7P2lav2UZ47l4aOtGSL7EB162Zd7AIFx8LrSMEL0EtywoScl+NoDAYpROLj6ZoV4YhyA1dXagJWi8ysIIRUVJR8Eebkg1Cdzlsg3BoArSByd5ciRzRXZxw7QzFarsRZspLHIBj16lt3Q9JnYT55ElBggHfRIISGqsKupmuvvV3HAzXidP3BEMDV1dSar8antOoarl3bYtP9Z5/Rd4kF468JteA9coT6TYkEXQC0YcH0Ft6gINnJ2NIzOygIKSlkdBcNWmaULEnvJHd3xwheQXh49q5DgyFzkQ7QMXj3XfMWE0s88QRdaw8ekP8MYN46AlDr5rJltv3fAesWXoBybf/xBxnBgoLkdWGrU7s+M541ihfX7i93WjPn8uXLSDd9MkpSUlJww9R2kjnDhw/HvHnzsHjxYvz33394++23kZCQgP4ZloY+ffpg5MiRpuWHDBmCDRs2YPLkyTh9+jTGjBmDf/75BwMHDgQABAQEoGXLlvjggw+wbds2XLp0CYsWLcKPP/6IHiK+DMNYws+Pmnwz6/VrCSF4k5LoYZ7Z1/yjpKBYeP39ZTro/CzsAe3LsWtX251hnI2w+ojg+56ejm+RUgtevcAS4kEkp8gQWyWGPosoQxEUUsh/N9Er2OZhFMWkpZHngIimJXSMnx+J0GQP7bXnGhyIPXuAVato+vhxMr6VLUv97oSXBwD4lZVC55hLXQwfLvM/CAYOpPjAZcrAomgG5Hyrt7s6LJjewquOEmSlz0XPnsCAAcBHH1kpPziYKrlkieWWSg8PWbny5fO+McQSLi6gWHegi8LDg+LhZhdxzH18bItzFxdpkMksipO9tG0rx/N5WLIsuTSoY9n+9ddfCFS9WNLT07F582aEZyExwPPPP4/o6GiMGjUKt2/fRp06dbBhwwZTx7SrV69qrLVNmzbFsmXL8Omnn+Ljjz9GxYoVsXr1atQQmXMALF++HCNHjsRLL72EmJgYlClTBhMmTMBbb72VlV1lCiLVq2dvPbWoHDUqbwnLgmLhFa0It27l7/0EtELkueecVw97EEJKKDtb6YSzS+PGJASMRnPBGxICnDsn/Z0zPhaqtiuB1GPbkdSqDbxjbiKksu0Xvbc3XVaxsbQror+gELwGA1lTfxweCEyV6206GIh5qkR1p0+Twe7ePXI1UHsQlG0ghd/VkLqYOhW4f5+0o5qDB4F+/egxYymgkdrCaxG1hVedWlhQqhS5gFhwO9myRYY8XrFCBjYwo29fK39kEBpKFc3Mjzsv07UrMG8ejbdunbMPuRIlyFJsz/0RGkpNDTmxxqpp1478jQHHWXgVxfH3uSNQsoDBYFAMBoPi4uJiGhc/Dw8PpVKlSsrvv/+elSLzJLGxsQoAJTY21tlVYR4HhgxRFEBRypZVlJQUZ9dGS1wc1Q1QlBs3nF2b3KVmTdrPZcucXZPcpU8f2k8/P0VJSnJ2bWzToQPV9dlnafjEE7mznX79FKVSJUV58EA7v2tXef2XLq0o//6r/f/cOUXp2VNR1qzJdBOdO1MxEycqitGoKNeuKcr169plXm97UW4PUMq5XFKio+m/N97Q/KX07avbQHKy6c+j8w8qrq6Kcvq0/PvMGUU5cUJRLl9WFBcXWvTiRfN6BgTQf2fOKMpHHylKrVqKsny5upKv0wKjRsnK3L1r+nvrR+uVe216KMZbt83K/vdfuUqVKpkeMus0bkyFTJuWg0KcTGKionh7037MmvXottuyJW3z++8dU979+/KCOnQoZ+WIiyM52TF1s4Os6LUstd0ajUYYjUaULl0aUVFRpmmj0YiUlBScOXMGXSx1oGCY/Mwrr5CVacECK3lInYi/P4WD6tUr74XYcjQtW1ITanZ6cj9OCLNgt27Z9619VAirj3BpsLezWlZZuJDMp/r41/36kf/79OlktdSnoa1QgZJWWPK/1CFcpdevly3/+iiBQ0ZpWxdijIEYMIDGW7aU8z/4QAafMOHpSREEmjVD7T61kZyszSfy1VcUWWrhQhmpTYQ0FhiN0oUyIICSgf37rypKAyBbCNROuBkW3sREoNO3HVBoy284EW3uf1uzpgwJLrrxXL5MBkJh+bWLAQPIupvXWyhs4e1NTtUtWgC9ez+67Q4YQH7POXGhUBMYSP4pHTrYTtOcGepWgrzqx/sIBPhjB1t4GeYxxGhUlPh4Z9ci97l5U1FGjFCUW7ecXZPM6dePLD6BgTTs18/ZNco2Fy7QLri6kjFLT58+ilI8LE1jxnXBQ+WFF+j/lBRFGTlSUdaty/q209OlUXTFCkX59lsab9tWu5y6QSchQVHeeovGx4xRLTR5Ms0UlkI3N7p3FLJad+umKNWqmWaZcf26PA5Go6L88gtNN22a9f1i8hnC4m2p6SGXyIpey3ZYss2bN2Pz5s0mS68aa6mBGYZhcg2DQWtlyK8UKwZMnOjsWtiH8GsUPakcGbLvEVOuHEU7OHuW+hV99x3w9tvy/7g44GaUG9I8feGekgDFzw/L5rtCJPn08KAQxFnh2jXqA3v+PFlrAepUL3yHd+2ijm2iw53w33V1pXni8GuShwoLr0gn6+tr8rcsWRJYvZr6YYm+WIING6hPk4iWlp5O5YokYyEhVOTnn5P1Oq8HD2JyAT8/uiDzaMe1bF2SY8eORfv27bF582bcuXMH9+7d0/wYhmEYxszFILdcGh4R6ghwO3dq//vyS8ps5hpMbg2GwEA8/3zOOtMHB5PQPHmSvhlcXEhwVq5M4jQlRdbjwAGZR0BEpbKYC0B0WhMJlnTn6JNPSOiqAiQBAF5+mVrSL1+WAjsmRptVt00bcrn4/ffs7zPzGJPHk09ky8I7Z84cLFq0CK+88oqj68MwDMPkF/KZ4B01ilz2d+0yzwth8rcNCgRu3XRItBBfX4oaJfxjK1SQkb6eeorE5d9/k9Ds3VsGwxARGsTQouAVLbMZrSLXrpGAFuWrjXRJSeTeeeYM7XdwMPkFx8TIJBhhYcALL5DPcOnSOd515nEkj4cmy5bgTU1NRdPM0t4yDMMwBRu94H2MXRoAEnrBwZTd2CpC6DooPN7TT0vBW7WqnC8E7/ffU46Ub76h5HvPPCP7pwr9IaywAMzi61656wdcobTFP/0ko0mpNYu3t4zsBsjs1SJhmyh22DB2ZSjQ5PHkE9m6NF9//XUsW7bM0XVhGIZh8hP5zMJrFw4WvOrAR+qkWCJfwIMHFKwjOJgSXLz0kswYKwTvpk1SON930yZ6uHLXF+HhJHYBua46i60eEa5VbeENCcl9sasolNDy5Zcp38jYsbm7PSaL5EcLb3JyMr7//nts2rQJtWrVgrvIcJTBlClTHFI5hmEY5jFGH4yfBW+WKVmSLMqHDlHGYYH+UFrKm6M+/OvW0e+vDb5o5+EJl9QUAMBDLz8gmcp+4QVKHLl5s1azpKdrMx0Lwau28KoTph05Qtlw+/RxrHvD6dOAOofUnj0U4k1kQ2acTH608P7777+oU6cOXFxccOLECRw5csT0O3r0qIOryDAMwzyW6C28VtLV5iscLHgBYPFicll45hnt/GHDaNi2reUMvfqgJeXLA2kPDUgJkOehdWdfREdTh7sRI2S11YK3Vy8SrmvW0PRHH1Fnuu7dtS4NgqFDKUStozuv3b5Nw2LFyD9ZUSiCBZNHyI+d1raqnXkYhmEYxhJqwVu4MOCW7UiYjw8iMYg+K0UOqF7dsgV33DjqyPbii5bXq1iROqF5e1M2WtEYe8c7BN6gOGcGfz+NWBanTO3S8N9/1KlN/NewofxP7dIg6NQJ2LGDXCjefdf6fl27RiL6zTdl3dQcP04W3NdfJ7F//z7NDw+nPnf791NHOhGmjXEy4gLJTy4NgvPnz+PChQto0aIFvL29oSgKDHkxfzLDMAzz6FEL3oLgzgBQ4Nzixcksmsv4+gLvvGP9/6JFSawGBmoF5T23UJj0qc4MrNcsaWky+oM68xtAmdmSkmhcLXg7dyZr8ZYt2jjBenr0IFeNixcBvSfknj1Uzv37VIZa8AYG0uW0fz/FRWbyCHncwpstl4a7d++ibdu2qFSpEjp16oRbt24BAF577TW89957Dq0gwzAM85iiFryPeYQGuylUiEySOQnA60DKlpU+t4JoxYJJNwOhf4XgvXABePiQ5guj9ZUrlEl97lya9vDQ+gtXrw6UKgUkJ2ujO+gRaYqnT9fOP3iQYgoLgRsTQ0ORvyQoSIrvM2esl59XOXGCzovaJztfkMctvNkSvMOGDYO7uzuuXr0KH5W3+PPPP48NGzY4rHIMwzDMY4xaBRUUC28e5fhxckVo1QrwD1cJ3kwsvEJQVq4sQ5YdPgy89hpZcQGy7qobdw0GcmsAZEg1PUK8AuSeIIyCRiNlsEtKkqJW5LNq3BgYMwbo2ZOy3gGZW3hTU6WFOi/www8k8C9fpg+HfEUet/Bmy6Xh77//xl9//YWSwlcpg4oVK+JKvjuDDMMwTLYoiC4NeRRPT7Kc+vkBNT4IBbZl/KGz8IrJ5GSKziAEb5UqcpnwcBK0Dx6QH27x4ubb69yZLMB//AHMmKEVxAAJcMGHH1LSC39/6qB36BB1Slu4EGjaVCt4Gzem8evXSTjWrGl7v19/HViyhNwrWre2vWxuk5RE8Y5F57u4OOp4l288QfNjWLKEhASNZVcQExMDT5GmhWEYhinYqN8TBcWlIY8i7FPx8UCSbwhMZ8aKhRegjmsiA3F4uJxfty4JWVu0aUPxgS9fpmXV8YQB4NgxGnbuDHz1lZzfvj1ls6tTR1p4ExPJUuvhod2fwYNt1+HGDRK7gFawOws3N2DiREoWsncvid34ePPofQBlrIuJIYv8Y0N+DEvWvHlz/Pjjj6Zpg8EAo9GISZMmobWzP6EYhmGYvIGLixRUbOF1Kj4+FCgDAM7eU8UQ01l4PT1lAon4eGld1fsBZ4avrxSk779Pnd/UCMGr92MtUYIyxg0bpo3sdv8+WZtPnbLfgFiiBLBvH/DFFzL7nDNxdwf69QN275ZxjePiLC9buzZZpC9fflS1cwB53MKbLcE7adIkfP/99+jYsSNSU1Px4YcfokaNGtixYwe+Un+qMQzDMAUbIajYwut0hJV36ATrPrwGA/Dzz5SkolAhKXgt9cFLTSWfW2t88gl955w5A8yerf1PLXhjYykT3NWr2nq4ukrRe+8eRaSoXl3G9z1zBli2jHyKrdGoETByJI2np1tf7lFiMJDLBqD1ZX7syY8W3ho1auDs2bNo1qwZunXrhoSEBPTs2RNHjhxB+fLlHV1HhmEY5nFFdO0vW9a59WBQqhQN78B6lAaAIqp17kzhxKwJ3mLFyBocFkai0xIBARQrGKDOZkLcpadLH97atSnk2Lp15Mqgp1Ah0uTx8TQMDpbW5pkzKZXyihXm66mFeHw8ieVy5cg9wlmcO0dZ6GJipJC3ZuG9epWW13WVytvkx05rABAYGIhPPvnEkXVhGIZh8htLllA7NGcHcDpC8PYeFArMyJipT8emw5rgFXF9796V4cMs8dprFGP3zBng11+BV1+l7GgiPm+FCsDHH1Mnuc8+M1//3DmZr2TtWu1/9esDLVoAZcqYr9e2Lfntjh1LUST++otE5K+/WhbWj4IvvgAWLSI/3swsvOJcPVZUrUpq3sJHVF4gWxbehQsXYuXKlWbzV65cicWLF+e4UgzDMEw+oVo185y4jFMQIurCPZVDrgVxsnkzRUu4csW64BX+wG+/DXToYH2brq5Anz40fvQoDYU7Q40a9H/r1sDOnRR7V4+t5Hz9+gHbt5sn33j4kHx358whQeniAnTrRv8dOWK9vNxGfSwzs/D++CNFdFBHs8jzuLnRzllKm5cHyJbgnThxIkIsJO4OCwvDF198keNKMQzDMAzjWITgvXzDnUIgeHpaTIE8diyJyQMHZNIHveAVbgXNmpGrgC0GDCCr7rff0vQTT1BIMVtph3PC+fNkMfbxAYSXZcWKNDx3Lne2aQ/iWAYH27bwxsYCffsCEyY8ZoI3j5Mtl4arV6+irAV/rDJlyuCq2uucYRiGYZg8gRC8W7cC53dtR4XQWIu90Ro1Ik+HwoWB5cvJMqkPsiEsvELE2SI0lH6CcuUyDykmmD8f+O03Cmu2YAFlWfvjD9LqgvR06ggmoksIC3LNmnJehQo0PH/evu1a4rXXgKgocq3ITuxcey28YjmAQsMxjiFbgjcsLAz//vsvwtWB+QAcO3YMhcVdwDAMwzBMnkHtF5ocWASoZDlyxtdfZ15WUBANZ84E3nhDGyPXGikpwJ49WUsAcfYssH49WUQPHSIXCPW2Klcmq+3x4xTBAaAYtoDWbVxYeC9eJIEswoLZy927JLgBik1cujT5IUdGamMU20IteG1ZeFNS5HgejfD1WJItl4bevXtj8ODB2Lp1K9LT05Geno4tW7ZgyJAheOGFFxxdR4ZhGIZhcojae6F06ZyVJSycZ87YZ+1MT6eEFW3aAD/9ZP92evWidLydO9N0UJD59hQFuHNHTlsSvKVKkVBOTdWGP7OXwoWBVavIFUNYq1u0oOAjwqKcGWqXBlsWXha8uUO2LLzjxo3D5cuX0bZtW7hleJQbjUb06dOHfXgZhmEYJg/i6Qn88w8lgRAWRlvcvAns2EFi8ckntf+pw37Z00fJ1ZVCkF27lrWQzI0a0W/PHppWJ6MApGvF3btynhC86qQWrq7kSnH6NLk1ZCdKXvfu2ul//qHh4sUUicIWyclkEQbIwvv005SSuX59y8sK2KXBcWRZ8CqKgtu3b2PRokUYP348jh49Cm9vb9SsWRNlLMUGYRiGYRgmT2BJYOkZP57S/RYtSuKwUSOKeqDGVsIJayxbRtZLL6+srytCnwlXCoFe8N6/Ly24NWtql61YkQTvuXPAU0/Zv21FoaE1S7Y9ySOEO4OLC31sPPmk+UeEgC28uUO2BG+FChVw8uRJVKxYERWFYwzDMAzDMPmC+HgSei1bSt9YNS1aSJ9WezEYsi52798nsb18OU1nJnhFVIPSpc2XFXIlqx3Xzp6lkGkGAzBqFIlltX0vK4I3KEh2pLOGWvCyhddxZFnwuri4oGLFirh79y6LXYZhGIbJZ4hcFA0bWs+i9sorFO+2WbPcrcvZs0DHjnI6M5cG4U9rKc+JiNSQ1dBkW7cC16/T+IABFDVC7QOdFcErgmLExpI4NxjMLb1qlwa28DqObHVa+/LLL/HBBx/gxIkTjq4PwzAMwzBOROSisCW2XFwoTFflyrlbF33UNL3VVqQEEILXkv+uILuxeLds0U4nJmpFqT2CV91hDaAkHM2bA6+/br4sW3hzh2x1WuvTpw8SExNRu3ZteHh4wNvbW/N/jD2B+RiGYRiGyXMIwZsXxJZe8Fqz8IooDZYiNAiyE5rMaCQLr9jW3bt0XNSiVB031xp6C2/hwmRxthTSjC28uUO2BO+0adMcXA2GYRiGYfICQvBu2UIJJ778Enj1VefURW/RzcyHV1hvq1QxL6tkScpeVr48RUywkFXZjBs3SEy7uVH84F9+IQtvUBDw339A1ar2deDTC94aNaxbmtnCmztkS/D27dvX0fVgGIZhGCYPIHx4ASA6OntZxRyFmxvg7w88eEDTtgSvogBffEGhzyyFHXN1BT7+mFIcN2sG/O9/JFhtceUKDUuVktsWIrRSJbLGqrO+WePNNymmcGYd1gCO0pBbZMuHFwAuXLiATz/9FL1790ZUVBQAYP369Th58qTDKscwDMMwzKNFb/m0kH34kaLevq1OawYDCcvx40kkWyI5mTLJHTsGDB9OotcWIsRZmTKAjw+NJybS0MXFPrELUHSKkiUp9m5mqF0aODaA48iW4N2+fTtq1qyJ/fv347fffkN8xifIsWPHMHr0aIdWkGEYhmGYR0deFrzWLLwxMfa5Fnh5AQcOAC++CGzYQALZFsLCW7q0tHwnJFDSicaNc+bq0bQpJcMQ2xCEhVGEjM8+A9ats76+SGTB2Ee2BO+IESMwfvx4bNy4ER6qpNZt2rTBPn10aoZhGIZhHhvULg1A3hG8YWHmUSGE4DUagSNHgO3bKUOcLYoVA+bOpfEHDyyn9xWoLbxqwRsZCezfDyxcSHF5//zT9janTSOL8tGjct7Fi8ClSzKphuCll6jszz+3Xt6335LFef1629tlJNkSvMePH0ePHj3M5oeFheGOOqE1wzAMwzCPFXnVwjt6tLnPracn8OOPwNq1wOrVQKtWwKefZl6mn5+0Ft+4YX05tYVX7dLwxBO0vbAwYNMm4NQp29v7+Wdg6lQSuAKR3tmesGZ6Vq2i4enT9q8jMsYVVLLVaS0oKAi3bt1CWZ1X+JEjR1CiRAmHVIxhGIZhmEdPXhW81sJ/vfIKDc+fJ5/X8uXtK7dkSbKuXr9uvfOa2sIrxGpCAlCkCNCtG4nW69fJBcEWr75KcXerVZPzhD+yJQuz0UiRHBISyHIt4vcKxDHRRYW1SnIyifS6dYElS+xbJ7+RLcH7wgsv4KOPPsLKlSthMBhgNBqxe/duvP/+++jTp4+j68gwDMMwzCNC5akIwNzF4VEjLKEnT5KV0lrUiGHD6GcvJUoAJ07ILGp6FEVr4c3on2/qtAZQqDJ7sJRgwpqFd+RIynAnxHZ8vLngFZEc7O00t3MnHb+TJ4HFi+2LFpHfyNYuf/HFF6hSpQpKlSqF+Ph4VKtWDc2bN0fTpk3xqT1tCQzDMAzD5EkMBmDoUBr38XFuWDJANsX/73+WO6YdPAj89BPFxc0KJUvS0JrgvXdPhgVTuzQkJJAv7k8/AYcOZW2baqxZeKOjSex26EAd7IoUMV9XJLq15eerpk4dbfkFkWwJXg8PD8ybNw8XL17EunXrsHTpUpw9exZLliyBqz2pSxiGYRiGybN0705DIQqdidribEliTJ1Kbg1Z7cCVmeD18gJWrKAOYt7e5Orh7U31+e032uaMGbTdFSuonBkztHF0ASAtDTh8GLh8WetHa83CO3o0ifj584EGDSxbcUXHvMuX7dvX0FDqrGdrfzPjcfcBzrZR+4cffkDHjh3Ro0cPvPzyy+jevTvmz5/vyLoxDMMwDOMEhL+svindGYwbRyLSWtixOnWAJk2A994jgWhvuK7MBK+PD/Dcc8CgQTT91FPkzrB1q0w+ER8PdOoE9OsHdOkCDB5MLgNqbt8G6tenRBVqrFl4S5Uif1tbXaJE3Tt2tLmLFtex1UnPEoMGkZV/zJisrZfXyJbgHTVqFIYMGYKnn34aK1euxMqVK/H0009j2LBhGDVqlKPryDAMwzDMI+Svv2iYF2K9enqSVdWaa8WHHwKLFtH46dNkmbUHISiF4D1/3v5UvmI5kRgiOZmSWQBkzVUTE0PD4GDtPmQWpeHXX4FJk4AzZ6izWdOmsq5iXeF6khkXLpDVGMjcwvv338Brr0l3DpGcQ79fjxvZ6rQ2e/ZszJs3D7179zbN69q1K2rVqoVBgwbhc3udShiGYRiGyXPMmUPDzMJt5RWuXaNhqVL2+xyrLZ579lAUhZ49gZUraf6uXcCdO2SdLVVKu64QvIULU8QEdQQJfcJZ8Z8+2oU1C+/SpVSnqVPJOhwWJuP3Hj5M9c5qpzXxAQNkLngjImgYGgp8+SVlsQOkYH5cyZaFNy0tDU888YTZ/Pr16+Phw4c5rhTDMAzDMM6jVSsaDhni1GrYjRBxWfE5FsvevQuMGEEuE7/8IqMwfPst0KMHWVoBstR27gy0bSsFr6+vTBcsBKyIJiGw5h5izcI7bx7w0UckdgGyHot1RaSI1FQaHjlCojwzQkLkuL0uDRcv0lCIar1LxuNGtgTvK6+8gtmzZ5vN//777/HSSy/luFIMwzAMwziPrVtJtH39tbNrkjm7dpEPLWBuibVFUJCMvKCOPbxrFw0rVCCf4CpVaNpgoIxqW7bI7Gi+vpRi2MUF+OEHGqakSDcGQI7ba+FNTqahiLGbkgK0aSPH1cNhw+hcZcZzz8n4u/Z2WktPp+HgwTTMLNZwXidbLg0AdVr7+++/0bhxYwDA/v37cfXqVfTp0wfDhw83LTdlypSc15JhGIZhGMYC6uQLWbHwGgwUbiwujjrGBQeTO8HGjUD79sAXX9BP4O8PLFhAInnqVJrn6wt89x1FVihViqImlCihjXMrokeUKaPdvrDw6gWvELOFC5M4jY+XVla94AWkJTgzstppTXQSFJExhAAWfPYZMH48jT8OERyyJXhPnDiBevXqAQAuXLgAAAgJCUFISAhOiOBwAAzODt7HMAzDMEy+Rt1cn9UwaidPSnHauTMJ3k2bLC/r5gb070/jX35JQ19f6lAnLMt6C/OJE9Il4p13tP9VrUpxdEuX1s7XC94tW+gHSOuvWvBGRma+n4C2k56tBB716pGvcOXKNC0s1MKNQnDggH3bzStkS/Butcd+zjAMwzAMk8sULizHsxpGzcWFsqmVKUO+uQB1EFu5EqhZU7oz6BF+vplloZswgYbPPANUr679LzycrKR6hKgV+yXELpB9C+/rr0vhnZBAVmXhUqGncWMSvMKq/P33NNy3T7tcz54U0eFxoQAml2MYhmEYJr+gFp1hYVlb99YtEp5VqpDLQu3aNP/55yk6w5492uW3biXhKKJC6AXvyZO0bp8+FE5sxQqan5UktGoLrx4hhm/fllnW1BbemzfJUr1hg3a9yEjpdxwcbDvbmgjrJrYl0Kec7tVLjj8O8Qqy7cPLMAzDMAzjbAwG6lx34QLQrFnW1hXW0zNnyBe4XTuKp6soFGO3fn3t8q+/LqMXALLTm8BoBH7+mayn9+9TOV27SiGt5+FDYPt2cg8YOZLm2RK84r/gYJkuWG3h3bsX2L+f/G47dJDzRUzdxYtJjNti3jzzcgHA3V07LXyQAeDBA/NOeXkNtvAyDMMwDPNY8/77wOzZ9sfgFXTvTqHXDh2iaRGD1tubEi7o49zqLbr66UqVSHy/8ALw++8kEidOtL796GjK4Pbxx8DVqzRP79KgRm11LVKEhmoLr9FIYdb0oc6E4LVUpp4HD2h465Z2vl7wqoW/teQZeQm28DIMwzAMUyDx9QWmTZPT7doBM2cCtWpRpzI9aouui4u54PX0lCmOAeCDD4Bq1axvv1gx8oUNDpZRETKz8MbGUrkiJm9kpOyE9uSTwNq1VK4aIXjV4des4e1NGfYaN9ZGX9AL3mefleP6SBN5ERa8DMMwDMMwINH47rvW/xcCd+lSQJVs1qyMv/+mtMCffJL5Nn/5RY6np0t/WGsW3rg46XYAUPSE+/fJpWDlShKsTZpo1xOCd8sWsjg/+aTlDnOA7JAnyhboBa9a5LKFl2EYhmEYJp8gBG9iom33ieBgGbosK6ijL1iz8Pr7U9xgo5HiAd+/T/62QUEkYh88oDTJ6nBtQvAmJlKaYTc71Z/aheL997X/qUUuW3gZhmEYhmHyCcKlQaQWdgSKQm4JsbFakSt8dNUkJ5OwFVEfli0jwRsZScsL/9u//pIuGYoi53fpQuHRrIVbUxTahqcnuWyoBW+LFnLcaHz8LLzcaY1hGIZhGMYOhIV36FDgjTccV27JkiRCb96kjm9lylCECJGlDQA6dZK+wYKiRWl4+zZw6ZKcP2yYzIyWkiLH69ShNMwZSXLNiIoiUe/qCrRqJQWvl5fWoh0fr/XvfRwEL1t4GYZhGIZh7EDdac1RObgMBrLa3r1LrgZnzsj/RGiwiAjgjz9oPD6eQrD5+0sr8O3b5j628fEUHk24MwCZJ8pQu1TExUnBm5wM7N5Nvr+AucB9HFwa2MLLMAzDMAxjB0IwFi4ss6g5ApH1TC8kRWgwddSFf/4hS23nzsD06WSVHTwYuHxZu65wYxCC19ub3BRWrSJXCH2qYEA7788/KVqD4Ouv5bi+no+DhdfpgnfWrFkIDw+Hl5cXGjVqhAOZJGdeuXIlqlSpAi8vL9SsWRN//vmn2TL//fcfunbtisDAQPj6+qJBgwa4KgLcMQzDMAzDZAMheHv1Ap57znHlCsErsqEB5Ibw8cc07u0t5wsrrKcnuTSEhpKQVbs0AOaCV4Qk69kTeOkl7bb0ZYeEUNlqH151eDW1wP3hBwpRtncvZa1z5HFxJE4VvCtWrMDw4cMxevRoHD58GLVr10ZERASiRHA5HXv27EHv3r3x2muv4ciRI+jevTu6d++OEydOmJa5cOECmjVrhipVqmDbtm34999/8dlnn8FL5MpjGIZhGIbJBrnRaQ2QgnfXLsrK1q0b+dEKzp4lsV25slbwqsnMwuvnR8JYyCG19VYgLLwijbAQvFWqAF98IZcTgrdePeDVV4G6dYHr14ErV8wTVuQVnOrDO2XKFAwYMAD9+/cHAMyZMwd//PEHFixYgBEjRpgtP336dHTo0AEffPABAGDcuHHYuHEjZs6ciTlz5gAAPvnkE3Tq1AmTJk0yrVe+fPlHsDcMwzAMw+RnhIX355+Bjz4CatZ0TLlC8F69Cvz7rxSja9eSQPXyoigJiYnmgnfuXHJR2LFDW6YQvGXKUBY6IXS9vUnIWhK8ouybN8m6/OGHlPpYH8ZM+Oyq0wsLf2PRkS6v4TQLb2pqKg4dOoR27drJyri4oF27dti7d6/Fdfbu3atZHgAiIiJMyxuNRvzxxx+oVKkSIiIiEBYWhkaNGmH16tU265KSkoK4uDjNj2EYhmEYRo2w8KalAV995bhyheAtVYqSVnz/PU0//TSlHm7YkFwW/vnHXPAeO6YVu8HBNBSCt1gx4K23KDoDIN0j1AkmBGof3ilTqDNdixZA06ba5YSF9+FDYMMG6sAnLLsseHXcuXMH6enpKKILNFekSBHcFp8JOm7fvm1z+aioKMTHx+PLL79Ehw4d8Pfff6NHjx7o2bMntm/fbrUuEydORGBgoOlXqlSpHO4dwzAMwzD5jd69ZQzczCIeZAUheA0GEritWmn/9/Qk/9giRcwFb58+wPjxctnq1Wmojs6gRgheWxZeMW40AmvW0Ha7d5f/CcF77hzQsSMwfLi08OrTGucVnN5pzZEYMxJRd+vWDcOGDUOdOnUwYsQIdOnSxeTyYImRI0ciNjbW9Lt27dqjqjLDMAzDMI8J7u7SCpobgteeaAd6wdu4MdC+PY0XLy4zrAkL7+XLlFL43DmaFlbqzAQvABw6RJbeqCggJkbOF/WsWJF8jqtUyfsuDU7z4Q0JCYGrqysiIyM18yMjI1HUytEqWrSozeVDQkLg5uaGauquhACqVq2KXbt2Wa2Lp6cnPPXe3wzDMAzDMDpEh7XcELwHD5I7Q9myZOlVb3PsWPK9DQ+neWrZIiI0lC1L8XkBKXh/+QX44AOyBC9ebNvCqw9VtnGjdJcQySsAKu+VV6gjXMmSNK9uXRqyhVeHh4cH6tevj82bN5vmGY1GbN78//buPDyq+t7j+CchJGwmASIJQfZVZFMgIWABa67BB1GqUooICAgXBUWCkaUCtffeRnsfKFxKpdZWbK2iKKJSL5aC6FUDYZVNU6BIEAlBkSQQCGFy7h/HM0syM4SE5MxM3q/nmefMWebkN5wm/fTb37JJKSkpXj+TkpLicb0kbdy40Xl9ZGSk+vfvrxz3WZsl/fOf/1Tbtm2v8TcAAAB1SW6utGKF+f5aBt7YWHObnS39+79LS5d6nnc4zHlwly93BdnydboWLcywWT7wxsSY3RysGOSvD2/5Cm/Llq6f88P/ie5sb7durrArUeH1Kz09XRMmTFC/fv2UlJSkpUuX6vz5885ZG8aPH69WrVopMzNTkjRz5kwNGTJEixcv1vDhw7V69Wrt2LFDL1i9uyVlZGRo9OjRGjx4sG677TZt2LBB7733nrZs2WLHVwQAACHCPSTWRIXXUn4mVfdwa3UncD82ZIg5wG3WLOmVV8xjVuCdMsV8Wa6mwjt4sFkhHjHCs8JbnsNhdnuQCLxejR49WqdPn9bChQuVl5enPn36aMOGDc6Babm5uQoPdxWhBw4cqFdffVVPP/205s+fr86dO2vdunXq0aOH85qf/OQnWrlypTIzM/X444+ra9eueuutt3TrrbfW+vcDAAChw/3/rq/JwFu+emvNiyu5pgRzvyY+XnrxRfN9bKx5v/JTiVmupg/vhQvm3L2SZ+Bdvlw6fdpcwOKee1zLIYeHm5XmQGRr4JWkGTNmaMaMGV7PeavKjho1SqNGjfJ7z0mTJmnSpEnXonkAAACSzCA5ZIg5N+21DLzJyWZ3hhdfNPvwlg+8YWHmsZIS7xVed3PmmC9f/FV409LMWRnuucfcP3fOe+D94x/N6dAGDXJ1ZZDMVd/cF8wIJCE1SwMAAEBNqqlBa/37m7MsSBW7NLgf81bh9WfKFLMPr7Ukgb/A27atdPfd5uwLkvToo+a0Y5JnH95x46Tp06WOHT2r04E6YE0KgAovAABAsNixw9zWRCXT17LB7sfmzDEHtVkLTFzJv/4lHTzoCrgNG5oV49JS35+xQvH337uOuVd4Z892vXcPvNYcwIGIwAsAAHCVKjNnbmU5HOZ8tz+M0fcbeKOjpRtv9H2vPXvMJYETEqQ//9m1AEWTJuZ2yRJp2TIz9Ja3e7e0f78ZkCXp7FnPNnpjLS/85pvSfff5bpfd6NIAAABwldzGy1dbeLg0f75r31vgtbo0XLzo/17Fxeb8uZ9+au6XD7wREd7DriStWWPO13v5srnvLfBevmwuYpGfLxmGq8JrdbUIVAReAACASjpwQPr7369t4A0Lkx5+2LXvrQ+vFYJffFFauFDatcv7vbp2lf7yF9d8weUDrz8dO5qrtoWHmwPp3GeHsALvqVNSly6u/sZXs0qcnejSAAAAUEndu5uva+35581w+sor/iu8L79sbjt0kG65peJ1zZtLDz7o2rcCr7UgxcaN0u9/L/XrJ82d6/nZyZPNlyUtzQz3kmvQmhVso6PNoG51aZg1y1xm+LbbKvd9axuBFwAAIABUZtBaaqpZxa1s6C5f4T12THrrrYpz7npjDXQbPFiyZnu1Aq9V2XUftOZr7t9AEMBNAwAAqBtKSsyliyX/Fd6JE6UHHvB9H8OQ3nvPXGnt7rtdq6dZgXfQILO7Q8eOV26T1V84I0O66y7zvdVX1wq6VoW3UyezwhuoCLwAAAA2+9nPpG3bzPfWamjuevQwK65Nm/q/T1iYNGqUGXQ//9x13Jo3+MYbfc/y8NBD0tq1ZjiOiJCOHzePu/cp9lXhvflmV/gNRAReAAAAm1nB8dlnzSV7y1u61Nzm5ZkDx5o1k+rX936v666TvvtO+uYbcz8qyve17s6dMyvDly97LkyRnW3OzTtokO/AG+iD1pilAQAAwGaVDY5Dhphz7G7d6vsaa4DayZPm1n2GhsJC6cMPzeWRy7P69T75pLR9u2txjZ//XBoxwnxvrTRn3dPq4mANbgtUBF4AAACbVTbw+hvYZvEXeHNypB//2Jxvtzyrv2/nzuYsDu6ruVnLDVtz9FoV4/vuM6coe+op/+22G4EXAADAZlbg/d3vpH37Kp5fsMAMlseOmfuVCbw7d5rbVq1c56xlg927LFjKh2lr0NqhQ67+xVbgtaq/CQnS119Lzz3nuz2BgD68AAAANnOf3svqNuDu3DlXxVaqXOC96Saz321cnOucFXiLiyt+zqrw5uSYAXbkSGn4cKllS9c11gIU7lOQ+Vq5LZBQ4QUAALCZe+Dt1Kni+VmzPFdXq0zgjY+X0tM9uy+4V3gNw/NzVoV3715zUYozZ6TRo10zPEgVK7zBgsALAABgMyvw9uzpWZG1tGljTv1lBU33ZX/Ls/rsFhVVPGdNeVZWJpWWep6zAq/VlgsXpNOnzSnRrKWUrcAbyItMeEPgBQAAsFllBq05HK4uBZWp8D7/vPSvf3mesyq8UsV+vFaXBqstmzdLb7whHThgvgzDe5eGYBBkzQUAAAg9sbHmNjfXHCzmvtiDZA5Ae/tt135lAm9urjl7wptvus5FRpp9bg3D7Mfr3pWifIVXkmbMcL03DOnRR82+vS1aVPabBQYqvAAAADazQqrkvSvCtm3Sf/2Xa78ygVcy5+11Fxbme6aG8hVeSerf3/Xe4ZBuuEFKSpLatfP98wMRgRcAAMBmVoVX8ux2YClf8fW3cpoVeO+/X3rssYrnrX685QNv+Qpvu3bSxo2u81Z3hmBElwYAAACbNWpkhkuHw3OhCIt7RTcqyv9UYFbgLT8ozVLZCu+FC56zMTgc5opqn39uTnc2cKDvNgQaAi8AAEAASE31fc69wuuvO4MkjR0rPfigFO7j/8f3NRfv88+b/YfbtjX3L170DLxlZdLatdLvfy898wyBFwAAANdQ+QqvP1eaI9dXhXfcOHN7/Li5LSjwDOEOhzRggPm53r2v3OZAQuAFAAAIcO4h9513qncvX314Le7VZPcqsMMhPfSQ+Qo2BF4AAIAAZ4XQLl2klJTq3etvfzO7O7j3FS4tlT74wJy2bMAA1/HyfXiDFYEXAAAgwFkVXmsmhepo2rTisYICacQI7z/DmrfX4TCrwmVlZnuCafEJpiUDAAAIcFaF99gxc/WzmtC/v3TLLZ7LFtev76rylpVJEyaYleGVK2umDTWFwAsAABDg3Pvw/uY31bvXK69IDz8srV/vOhYXJ2Vnmyu6SdLy5ea2TRtX4HVf2jiYqrsSXRoAAAACnvtAsjvuqN69PvlE+uMfzTB7113er7l40fVzf/5zM+hGR0uXL5vHrzQTRKAh8AIAAAQ4q8IbFib94hfVu9c995hhd/Bg39dYMzg0aCAtWOA6ToUXAAAANaJhQ6lDBzP4OhzVC5x33mm+3H3+uXT33VL79tKWLdLChebxffs8r6PCCwAAgBoREyN9+aU5cKwmwua5c1JurueANcms9B46ZC473LGjK/AGW4WXQWsAAABBYPlys4vBgw9W7z5nzki7d5tB1nLpkrm1uk706mVub71VGjRI6tFDOnzY1aUh2Cq8BF4AAIAgYM2Pe6Wlha9k9Wpz+rG5cyve26rw9utnblu1MmdwiIsz+w8Ha4U3yJoLAABQN82fb27z8qp3n4YNza370sLlK7zug9YOHnRdF6wVXgIvAABAECktrd7nGzUyt+6Bt3yFd+pUaejQissYU+EFAABAjenTR9qzR+ratXr38VbhLd9dYuhQ81VesM7SQB9eAACAIDBwoLlt1qx697ECb3Gx65jVpaH8LA2SNG6cNGSIOUUZ8/ACAACgxlyrQWv+ujR4u3d2tvTPf0pnzwZvhZfACwAAEATeeMPcnjxZvfv4G7TmrcIb/kN/AIdDWrlSKix0TVsWLAi8AAAAQaCoyNx+8UX17lOZPrzurGquw+G9X28woA8vAABAHXK1fXjdA2+wosILAAAQBBo1MkPqv/1b9e8jSRcvSoZhLihRmQpvWZm5aEVJiXTXXVLz5tVrR20i8AIAAASBgwelTZuqv7SwVeGVzNDbsKGUliZdd510880Vr3ev8M6aZS58sWcPgRcAAADXWNu20qRJ1b+Pe+AtLjb3b73VfHnjHnhTU6XvvpNiYqrfjtpE4AUAAKhDIiKk2FhzmrG8vCtXat0D71/+UtOtqxkEXgAAgDrmo4+kli2luDhz//Bh6fvvpTZtpPh4z2vdpyULVszSAAAAUMf06iVdf705YE2SnnlGSkqSXnml4rXug9aCFYEXAACgjmvWzKzuNm1a8Zx7l4bYWKlxY+nrr2u1edVGlwYAAIA65ssvpRdekJo0kX75S2nZMvPljXvgPXfO3IYHWcmUwAsAAFDHnD4t/eY3Uvv2ZuD1Z8QIqVMnqXNnVz/eiCBLkEHWXAAAAFTXjTdK6elS165Xvvaxx8yt+6A1q+obLIKsIA0AAIDqiouTFi+Wpk419ydNMgetbdni+zOXL7veU+EFAABAUDlwQNq+XSoqqniuqMhckc2a0UGiwgsAAIAgcOaM9Nln5gC2khLzWFRUxesmTpRatJD++EfXsWCr8BJ4AQAA6qBnn5UGDTK7Nhw7Zh677rqK11nV3EuXXMcIvAAAAAh4HTua25dfNpcZ7thR6t+/4nWvvWYuOjFtmutYsHVpCLJ8DgAAgGuhUydzW1pqbjMyvFduyy8tHB7u2Z83GAREhXfFihVq166dGjRooOTkZGVnZ/u9fs2aNerWrZsaNGignj176v333/d57bRp0xQWFqalS5de41YDAAAELyvwSlJ8vDRhgv/rrVkagq26KwVA4H399deVnp6uRYsWadeuXerdu7fS0tKUn5/v9frPPvtMY8aM0eTJk7V7926NHDlSI0eO1P79+ytc+/bbb2vr1q1KTEys6a8BAAAQVG64QYqMNN8/8YTUoIH361aulEaNktasMfeDrf+uFACBd8mSJZoyZYomTpyo7t27a+XKlWrUqJH+9Kc/eb1+2bJlGjZsmDIyMnTjjTfqP/7jP3TLLbfot7/9rcd1J06c0GOPPaa//vWvql+/fm18FQAAgKBRr540fbo0eLD0yCO+r9uxQ3rzTcmqLQZjhdfWjH7p0iXt3LlT8+bNcx4LDw9XamqqsrKyvH4mKytL6enpHsfS0tK0bt06535ZWZnGjRunjIwM3XTTTVdsR0lJiUqs+TgkFRYWXuU3AQAACD5Lllz5GivgNmtmDnALt71cevVsbfK3334rh8Oh+Ph4j+Px8fHKy8vz+pm8vLwrXv/cc88pIiJCjz/+eKXakZmZqZiYGOerdevWV/lNAAAAQpMVeBs1ksaPlx580N72VEUQZnT/du7cqWXLlmnVqlUKq+QQwnnz5qmgoMD5On78eA23EgAAIDhYgbeszN52VIetgTcuLk716tXTqVOnPI6fOnVKCQkJXj+TkJDg9/r/+7//U35+vtq0aaOIiAhFRETo2LFjmj17ttq1a+f1nlFRUYqOjvZ4AQAAwBV4z5yR3ntP2rzZ3vZUha2BNzIyUn379tWmTZucx8rKyrRp0yalpKR4/UxKSorH9ZK0ceNG5/Xjxo3T3r17tWfPHucrMTFRGRkZ+uCDD2ruywAAAIQgK/B+8YV0993mUsPBxvaJJdLT0zVhwgT169dPSUlJWrp0qc6fP6+JP/xrjh8/Xq1atVJmZqYkaebMmRoyZIgWL16s4cOHa/Xq1dqxY4deeOEFSVLz5s3VvHlzj59Rv359JSQkqGvXrrX75QAAAIKcNUgtKkpKTjbn7A02tgfe0aNH6/Tp01q4cKHy8vLUp08fbdiwwTkwLTc3V+FuwwEHDhyoV199VU8//bTmz5+vzp07a926derRo4ddXwEAACBkWRXebt2k3/zG3rZUVZhhGIbdjQg0hYWFiomJUUFBAf15AQBAnfbzn0u/+pX0+OPSsmV2t8blavJayM3SAAAAgGvHqvA6HPa2ozoIvAAAAPDJCrybN0utW0vDh9vbnqqwvQ8vAAAAApcVeAsLpRMnGLQGAACAENO9u3T//dL582bgjQjC9EiXBgAAAPh0773SmjXSww+b+1bFN5gQeAEAAHBF1qA1KrwAAAAIOYYhlZaa7wm8AAAACCnLl5urrY0da+7TpQEAAAAhJSzMc58KLwAAAELKpEnSqVPSkiXmfjBWeIMwowMAAKC2NGrkeklUeAEAABCignmWhiBsMgAAAGrLtm3Sn/8sbdxo7tOlAQAAACElJ0f63e9c+1R4AQAAEFKsim5srPT001K3brY2p0oIvAAAAPDJCrw33yzNnm1vW6qKQWsAAADwyQq81qC1YETgBQAAgE9W4P3qK3MA27FjtjanSgi8AAAA8Cn8h7SYmysNGCAtXmxve6qCwAsAAACf3Kcha99eiouzry1VxaA1AAAA+GQF3r59pR077G1LVVHhBQAAgE8MWgMAAEBII/ACAAAgpFmBd98+qV8/6Q9/sLc9VUHgBQAAgE/hbmlx504pL8++tlQVgRcAAAA+NW0qDR7s2neftSFYEHgBAADgU69e0kcfSRMmmPsRQTjHF4EXAAAAV2QNWqPCCwAAgJB0+bK5DcYKbxA2GQAAALVl/37pxz+WTp8296nwAgAAIKSUlbnCrhScFV4CLwAAAHzq0sWcg7dbN3OfCi8AAABCSoMGUo8eUocO5j4VXgAAAIQkBq0BAAAgJH3/vbRsmfT3v5v7dGkAAABASCkokJ55xrUfjBVeAi8AAAB8cq/oPvWUa/BaMAnCjA4AAIDaYgXeevWk556zty1VRYUXAAAAPoX/kBatpYWDEYEXAAAAPrl3aThyRLpwwb62VBWBFwAAAD65B95OnaRPP7WvLVVF4AUAAIBP7oE3IkKqX9++tlQVg9YAAADgk3vgLSiQGjWyry1VRYUXAAAAPrkH3mAduEbgBQAAgE8EXgAAAIS0cLe0mJZmztQQbAi8AAAA8Mm9wpudLZ0/b19bqorACwAAAJ/CwqTu3V377gE4WBB4AQAA4NeBA1LTpub7iCCc44vACwAAgCu6fNncUuEFAABASLJmaKDCCwAAgJAzYIBUXGy+p8ILAACAkPPll673VHgBAAAQct57z/WeCi8AAABCzsCBrvdUeAEAABByrBkaJCq8AAAACEEvveR6T4UXAAAAIWfePNd7KrxVtGLFCrVr104NGjRQcnKysrOz/V6/Zs0adevWTQ0aNFDPnj31/vvvO8+VlpZqzpw56tmzpxo3bqzExESNHz9e33zzTU1/DQAAgJAUGWluu3enwlslr7/+utLT07Vo0SLt2rVLvXv3VlpamvLz871e/9lnn2nMmDGaPHmydu/erZEjR2rkyJHav3+/JKm4uFi7du3SggULtGvXLq1du1Y5OTm6++67a/NrAQAAhIwmTcztH/4QnIE3zDAMw84GJCcnq3///vrtb38rSSorK1Pr1q312GOPae7cuRWuHz16tM6fP6/169c7jw0YMEB9+vTRypUrvf6M7du3KykpSceOHVObNm2u2KbCwkLFxMSooKBA0dHRVfxmAAAAoaFLF+nQIenjj6Uf/cju1piuJq/ZWuG9dOmSdu7cqdTUVOex8PBwpaamKisry+tnsrKyPK6XpLS0NJ/XS1JBQYHCwsIUGxvr9XxJSYkKCws9XgAAADCFhZnbYI1Itgbeb7/9Vg6HQ/Hx8R7H4+PjlZeX5/UzeXl5V3X9xYsXNWfOHI0ZM8Zn+s/MzFRMTIzz1bp16yp8GwAAgNB04oS5vesue9tRVbb34a1JpaWl+ulPfyrDMPT888/7vG7evHkqKChwvo4fP16LrQQAAEBNsrXbcVxcnOrVq6dTp055HD916pQSEhK8fiYhIaFS11th99ixY9q8ebPfvh1RUVGKioqq4rcAAAAIbZ07S3v2SGvX2t2SqrG1whsZGam+fftq06ZNzmNlZWXatGmTUlJSvH4mJSXF43pJ2rhxo8f1Vtg9dOiQ/vGPf6h58+Y18wUAAADqAGvuXWt6smBj+8QS6enpmjBhgvr166ekpCQtXbpU58+f18SJEyVJ48ePV6tWrZSZmSlJmjlzpoYMGaLFixdr+PDhWr16tXbs2KEXXnhBkhl277//fu3atUvr16+Xw+Fw9u9t1qyZIoP1SQEAANjECrxlZfa2o6psD7yjR4/W6dOntXDhQuXl5alPnz7asGGDc2Babm6uwsNdheiBAwfq1Vdf1dNPP6358+erc+fOWrdunXr06CFJOnHihN59911JUp8+fTx+1ocffqihQ4fWyvcCAAAIFbm55vbxx6URI+xtS1XYPg9vIGIeXgAAAJcGDaSSEvN9oCTHoJmHFwAAAIEv2Ot/BF4AAAD49dZb5rZLF3vbUVUEXgAAAPjlcJhba/BasCHwAgAAwK/Ll81thO3THVQNgRcAAAB+zZljbvfts7cdVUXgBQAAgF+ff253C6qHwAsAAAC/0tPN7Q/LJAQdAi8AAAD8GjDA3HbqZG87qorACwAAAL8YtAYAAICQ9tln5vbwYXvbUVUEXgAAAPi1bJm5PXHC3nZUFYEXAAAAft1wg7lt1MjedlQVgRcAAAB+paaa2wUL7G1HVRF4AQAA4Je1pHBZmb3tqCoCLwAAAPyyAq/DYW87qirMMAzD7kYEmsLCQsXExKigoEDR0dF2NwcAAMBWYWGu94GSHK8mr1HhBQAAQEgj8AIAAMCvyZPN7dSp9rajqgi8AAAA8MvqMdC0qb3tqCoCLwAAAPwK9kFrBF4AAAD49fe/m9s337S3HVVF4AUAAIBfhYXmNj/f3nZUFYEXAAAAfm3YII0aJWVl2d2SqomwuwEAAAAIbF27Sm+8YXcrqo4KLwAAAEIagRcAAAAhjcALAACAkEbgBQAAQEgj8AIAACCkEXgBAAAQ0gi8AAAACGkEXgAAAIQ0Ai8AAABCGoEXAAAAIY3ACwAAgJBG4AUAAEBII/ACAAAgpBF4AQAAENIIvAAAAAhpBF4AAACENAIvAAAAQhqBFwAAACEtwu4GBCLDMCRJhYWFNrcEAAAA3lg5zcpt/hB4vSgqKpIktW7d2uaWAAAAwJ+ioiLFxMT4vSbMqEwsrmPKysr0zTff6LrrrlNYWFiN/7zCwkK1bt1ax48fV3R0dI3/PFwdnk9g4/kENp5PYOP5BDaej3+GYaioqEiJiYkKD/ffS5cKrxfh4eG64YYbav3nRkdH8x/oAMbzCWw8n8DG8wlsPJ/AxvPx7UqVXQuD1gAAABDSCLwAAAAIaQTeABAVFaVFixYpKirK7qbAC55PYOP5BDaeT2Dj+QQ2ns+1w6A1AAAAhDQqvAAAAAhpBF4AAACENAIvAAAAQhqBFwAAACGNwBsAVqxYoXbt2qlBgwZKTk5Wdna23U2qk37xi18oLCzM49WtWzfn+YsXL2r69Olq3ry5mjRpovvuu0+nTp2yscWh7eOPP9aIESOUmJiosLAwrVu3zuO8YRhauHChWrZsqYYNGyo1NVWHDh3yuObMmTMaO3asoqOjFRsbq8mTJ+vcuXO1+C1C15Wez0MPPVTh92nYsGEe1/B8akZmZqb69++v6667Ti1atNDIkSOVk5PjcU1l/p7l5uZq+PDhatSokVq0aKGMjAxdvny5Nr9KSKrM8xk6dGiF359p06Z5XMPzuToEXpu9/vrrSk9P16JFi7Rr1y717t1baWlpys/Pt7tpddJNN92kkydPOl+ffPKJ89ysWbP03nvvac2aNfroo4/0zTff6N5777WxtaHt/Pnz6t27t1asWOH1/K9//Wv9z//8j1auXKlt27apcePGSktL08WLF53XjB07VgcOHNDGjRu1fv16ffzxx5o6dWptfYWQdqXnI0nDhg3z+H167bXXPM7zfGrGRx99pOnTp2vr1q3auHGjSktLdccdd+j8+fPOa67098zhcGj48OG6dOmSPvvsM7388statWqVFi5caMdXCimVeT6SNGXKFI/fn1//+tfOczyfKjBgq6SkJGP69OnOfYfDYSQmJhqZmZk2tqpuWrRokdG7d2+v586ePWvUr1/fWLNmjfPYF198YUgysrKyaqmFdZck4+2333bul5WVGQkJCcZ///d/O4+dPXvWiIqKMl577TXDMAzj4MGDhiRj+/btzmv+93//1wgLCzNOnDhRa22vC8o/H8MwjAkTJhj33HOPz8/wfGpPfn6+Icn46KOPDMOo3N+z999/3wgPDzfy8vKc1zz//PNGdHS0UVJSUrtfIMSVfz6GYRhDhgwxZs6c6fMzPJ+rR4XXRpcuXdLOnTuVmprqPBYeHq7U1FRlZWXZ2LK669ChQ0pMTFSHDh00duxY5ebmSpJ27typ0tJSj2fVrVs3tWnThmdlg6NHjyovL8/jecTExCg5Odn5PLKyshQbG6t+/fo5r0lNTVV4eLi2bdtW622ui7Zs2aIWLVqoa9eueuSRR/Tdd985z/F8ak9BQYEkqVmzZpIq9/csKytLPXv2VHx8vPOatLQ0FRYW6sCBA7XY+tBX/vlY/vrXvyouLk49evTQvHnzVFxc7DzH87l6EXY3oC779ttv5XA4PP4DK0nx8fH68ssvbWpV3ZWcnKxVq1apa9euOnnypJ555hn96Ec/0v79+5WXl6fIyEjFxsZ6fCY+Pl55eXn2NLgOs/7Nvf3uWOfy8vLUokULj/MRERFq1qwZz6wWDBs2TPfee6/at2+vI0eOaP78+brzzjuVlZWlevXq8XxqSVlZmZ544gkNGjRIPXr0kKRK/T3Ly8vz+vtlncO14e35SNIDDzygtm3bKjExUXv37tWcOXOUk5OjtWvXSuL5VAWBF/jBnXfe6Xzfq1cvJScnq23btnrjjTfUsGFDG1sGBJ+f/exnzvc9e/ZUr1691LFjR23ZskW33367jS2rW6ZPn679+/d7jEdA4PD1fNz7svfs2VMtW7bU7bffriNHjqhjx4613cyQQJcGG8XFxalevXoVRsaeOnVKCQkJNrUKltjYWHXp0kWHDx9WQkKCLl26pLNnz3pcw7Oyh/Vv7u93JyEhocLgz8uXL+vMmTM8Mxt06NBBcXFxOnz4sCSeT22YMWOG1q9frw8//FA33HCD83hl/p4lJCR4/f2yzqH6fD0fb5KTkyXJ4/eH53N1CLw2ioyMVN++fbVp0ybnsbKyMm3atEkpKSk2tgySdO7cOR05ckQtW7ZU3759Vb9+fY9nlZOTo9zcXJ6VDdq3b6+EhASP51FYWKht27Y5n0dKSorOnj2rnTt3Oq/ZvHmzysrKnP/lgdrz9ddf67vvvlPLli0l8XxqkmEYmjFjht5++21t3rxZ7du39zhfmb9nKSkp2rdvn8f/KNm4caOio6PVvXv32vkiIepKz8ebPXv2SJLH7w/P5yrZPWqurlu9erURFRVlrFq1yjh48KAxdepUIzY21mPkJWrH7NmzjS1bthhHjx41Pv30UyM1NdWIi4sz8vPzDcMwjGnTphlt2rQxNm/ebOzYscNISUkxUlJSbG516CoqKjJ2795t7N6925BkLFmyxNi9e7dx7NgxwzAM49lnnzViY2ONd955x9i7d69xzz33GO3btzcuXLjgvMewYcOMm2++2di2bZvxySefGJ07dzbGjBlj11cKKf6eT1FRkfHkk08aWVlZxtGjR41//OMfxi233GJ07tzZuHjxovMePJ+a8cgjjxgxMTHGli1bjJMnTzpfxcXFzmuu9Pfs8uXLRo8ePYw77rjD2LNnj7Fhwwbj+uuvN+bNm2fHVwopV3o+hw8fNn75y18aO3bsMI4ePWq88847RocOHYzBgwc778HzuXoE3gCwfPlyo02bNkZkZKSRlJRkbN261e4m1UmjR482WrZsaURGRhqtWrUyRo8ebRw+fNh5/sKFC8ajjz5qNG3a1GjUqJHxk5/8xDh58qSNLQ5tH374oSGpwmvChAmGYZhTky1YsMCIj483oqKijNtvv93IycnxuMd3331njBkzxmjSpIkRHR1tTJw40SgqKrLh24Qef8+nuLjYuOOOO4zrr7/eqF+/vtG2bVtjypQpFf6HPM+nZnh7LpKMl156yXlNZf6effXVV8add95pNGzY0IiLizNmz55tlJaW1vK3CT1Xej65ubnG4MGDjWbNmhlRUVFGp06djIyMDKOgoMDjPjyfqxNmGIZRe/VkAAAAoHbRhxcAAAAhjcALAACAkEbgBQAAQEgj8AIAACCkEXgBAAAQ0gi8AAAACGkEXgAAAIQ0Ai8AAABCGoEXAOqQhx56SCNHjqzWPbZs2aKwsDCdPXv2mrQJAGpahN0NAADUnmXLlokFNgHUNQReAKgDHA6HwsLCFBMTY3dTAKDW0aUBAALQ0KFDNWPGDM2YMUMxMTGKi4vTggULnNXZkpISPfnkk2rVqpUaN26s5ORkbdmyxfn5VatWKTY2Vu+++666d++uqKgo5ebmVujSUFJSoscff1wtWrRQgwYNdOutt2r79u0ebXn//ffVpUsXNWzYULfddpu++uqrWvgXAIBrh8ALAAHq5ZdfVkREhLKzs7Vs2TItWbJEL774oiRpxowZysrK0urVq7V3716NGjVKw4YN06FDh5yfLy4u1nPPPacXX3xRBw4cUIsWLSr8jKeeekpvvfWWXn75Ze3atUudOnVSWlqazpw5I0k6fvy47r33Xo0YMUJ79uzRww8/rLlz59bOPwAAXCNhBp25ACDgDB06VPn5+Tpw4IDCwsIkSXPnztW7776rDRs2qEOHDsrNzVViYqLzM6mpqUpKStKvfvUrrVq1ShMnTtSePXvUu3dv5zUPPfSQzp49q3Xr1un8+fNq2rSpVq1apQceeECSVFpaqnbt2umJJ55QRkaG5s+fr3feeUcHDhxw3mPu3Ll67rnn9P333ys2NrZ2/kEAoBrowwsAAWrAgAHOsCtJKSkpWrx4sfbt2yeHw6EuXbp4XF9SUqLmzZs79yMjI9WrVy+f9z9y5IhKS0s1aNAg57H69esrKSlJX3zxhSTpiy++UHJyssfnUlJSqvW9AKC2EXgBIMicO3dO9erV086dO1WvXj2Pc02aNHG+b9iwoUdgBoC6ij68ABCgtm3b5rG/detWde7cWTfffLMcDofy8/PVqVMnj1dCQkKl79+xY0dFRkbq008/dR4rLS3V9u3b1b17d0nSjTfeqOzs7ArtAIBgQuAFgACVm5ur9PR05eTk6LXXXtPy5cs1c+ZMdenSRWPHjtX48eO1du1aHT16VNnZ2crMzNTf/va3St+/cePGeuSRR5SRkaENGzbo4MGDmjJlioqLizV58mRJ0rRp03To0CFlZGQoJydHr776qlatWlVD3xgAagZdGgAgQI0fP14XLlxQUlKS6tWrp5kzZ2rq1KmSpJdeekn/+Z//qdmzZ+vEiROKi4vTgAEDdNddd13Vz3j22WdVVlamcePGqaioSP369dMHH3ygpk2bSpLatGmjt956S7NmzdLy5cudg+ImTZp0zb8vANQUZmkAgAA0dOhQ9enTR0uXLrW7KQAQ9OjSAAAAgJBG4AUAAEBIo0sDAAAAQhoVXgAAAIQ0Ai8AAABCGoEXAAAAIY3ACwAAgJBG4AUAAEBII/ACAAAgpBF4AQAAENIIvAAAAAhp/w9vckQGs1de8AAAAABJRU5ErkJggg==\n",
1311
- "text/plain": [
1312
- "<Figure size 800x600 with 1 Axes>"
1313
- ]
1314
- },
1315
- "metadata": {},
1316
- "output_type": "display_data"
1317
- }
1318
- ],
1319
  "source": [
1320
  "m = X_train.shape[1]\n",
1321
  "n = X_train.shape[0]\n",
@@ -1341,7 +1304,7 @@
1341
  },
1342
  {
1343
  "cell_type": "code",
1344
- "execution_count": 11,
1345
  "metadata": {
1346
  "execution": {
1347
  "iopub.execute_input": "2023-02-18T13:58:40.224476Z",
@@ -1366,6 +1329,7 @@
1366
  }
1367
  ],
1368
  "source": [
 
1369
  "model2 = LinearRegression() # 定义模型\n",
1370
  "model2.fit(X_train, y_train) # 训练模型\n",
1371
  "yFit = model2.predict(X_test) # 用回归模型来预测输出\n",
@@ -1381,7 +1345,7 @@
1381
  },
1382
  {
1383
  "cell_type": "code",
1384
- "execution_count": 12,
1385
  "metadata": {
1386
  "execution": {
1387
  "iopub.execute_input": "2023-02-18T14:04:46.849588Z",
 
1172
  },
1173
  {
1174
  "cell_type": "code",
1175
+ "execution_count": null,
1176
  "metadata": {
1177
  "execution": {
1178
  "iopub.execute_input": "2023-02-19T06:46:16.944366Z",
 
1182
  "shell.execute_reply.started": "2023-02-19T06:46:16.944335Z"
1183
  }
1184
  },
1185
+ "outputs": [],
 
 
 
 
 
 
 
 
 
1186
  "source": [
1187
  "print(X_train.shape)\n",
1188
  "print(X_test.shape)"
 
1190
  },
1191
  {
1192
  "cell_type": "code",
1193
+ "execution_count": null,
1194
  "metadata": {
1195
  "execution": {
1196
  "iopub.execute_input": "2023-02-19T06:46:17.964019Z",
 
1200
  "shell.execute_reply.started": "2023-02-19T06:46:17.963980Z"
1201
  }
1202
  },
1203
+ "outputs": [],
 
 
 
 
 
 
 
 
1204
  "source": [
1205
  "X_train=X_train\n",
1206
  "print(y_train.shape,X_train.shape)"
 
1208
  },
1209
  {
1210
  "cell_type": "code",
1211
+ "execution_count": 6,
1212
  "metadata": {
1213
  "execution": {
1214
  "iopub.execute_input": "2023-02-19T06:46:18.564017Z",
 
1228
  },
1229
  {
1230
  "cell_type": "code",
1231
+ "execution_count": 7,
1232
  "metadata": {
1233
  "execution": {
1234
  "iopub.execute_input": "2023-02-19T06:49:05.697057Z",
 
1268
  },
1269
  {
1270
  "cell_type": "code",
1271
+ "execution_count": null,
1272
  "metadata": {
1273
  "execution": {
1274
  "iopub.execute_input": "2023-02-19T06:51:37.728006Z",
 
1278
  "shell.execute_reply.started": "2023-02-19T06:51:37.727965Z"
1279
  }
1280
  },
1281
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1282
  "source": [
1283
  "m = X_train.shape[1]\n",
1284
  "n = X_train.shape[0]\n",
 
1304
  },
1305
  {
1306
  "cell_type": "code",
1307
+ "execution_count": 8,
1308
  "metadata": {
1309
  "execution": {
1310
  "iopub.execute_input": "2023-02-18T13:58:40.224476Z",
 
1329
  }
1330
  ],
1331
  "source": [
1332
+ "# fix --- execute this cell\n",
1333
  "model2 = LinearRegression() # 定义模型\n",
1334
  "model2.fit(X_train, y_train) # 训练模型\n",
1335
  "yFit = model2.predict(X_test) # 用回归模型来预测输出\n",
 
1345
  },
1346
  {
1347
  "cell_type": "code",
1348
+ "execution_count": 9,
1349
  "metadata": {
1350
  "execution": {
1351
  "iopub.execute_input": "2023-02-18T14:04:46.849588Z",
benchmark/NBspecific_3/NBspecific_3_reproduced.ipynb CHANGED
@@ -1172,7 +1172,7 @@
1172
  },
1173
  {
1174
  "cell_type": "code",
1175
- "execution_count": 6,
1176
  "metadata": {
1177
  "execution": {
1178
  "iopub.execute_input": "2023-02-19T06:46:16.944366Z",
@@ -1182,16 +1182,7 @@
1182
  "shell.execute_reply.started": "2023-02-19T06:46:16.944335Z"
1183
  }
1184
  },
1185
- "outputs": [
1186
- {
1187
- "name": "stdout",
1188
- "output_type": "stream",
1189
- "text": [
1190
- "(272, 6)\n",
1191
- "(68, 6)\n"
1192
- ]
1193
- }
1194
- ],
1195
  "source": [
1196
  "print(X_train.shape)\n",
1197
  "print(X_test.shape)"
@@ -1199,7 +1190,7 @@
1199
  },
1200
  {
1201
  "cell_type": "code",
1202
- "execution_count": 7,
1203
  "metadata": {
1204
  "execution": {
1205
  "iopub.execute_input": "2023-02-19T06:46:17.964019Z",
@@ -1209,15 +1200,7 @@
1209
  "shell.execute_reply.started": "2023-02-19T06:46:17.963980Z"
1210
  }
1211
  },
1212
- "outputs": [
1213
- {
1214
- "name": "stdout",
1215
- "output_type": "stream",
1216
- "text": [
1217
- "(272,) (272, 6)\n"
1218
- ]
1219
- }
1220
- ],
1221
  "source": [
1222
  "X_train=X_train\n",
1223
  "print(y_train.shape,X_train.shape)"
@@ -1225,7 +1208,7 @@
1225
  },
1226
  {
1227
  "cell_type": "code",
1228
- "execution_count": 8,
1229
  "metadata": {
1230
  "execution": {
1231
  "iopub.execute_input": "2023-02-19T06:46:18.564017Z",
@@ -1245,7 +1228,7 @@
1245
  },
1246
  {
1247
  "cell_type": "code",
1248
- "execution_count": 9,
1249
  "metadata": {
1250
  "execution": {
1251
  "iopub.execute_input": "2023-02-19T06:49:05.697057Z",
@@ -1285,7 +1268,7 @@
1285
  },
1286
  {
1287
  "cell_type": "code",
1288
- "execution_count": 10,
1289
  "metadata": {
1290
  "execution": {
1291
  "iopub.execute_input": "2023-02-19T06:51:37.728006Z",
@@ -1295,27 +1278,7 @@
1295
  "shell.execute_reply.started": "2023-02-19T06:51:37.727965Z"
1296
  }
1297
  },
1298
- "outputs": [
1299
- {
1300
- "name": "stdout",
1301
- "output_type": "stream",
1302
- "text": [
1303
- "F统计量:2.2858\n",
1304
- "F检验的P值:3.6126e-02\n",
1305
- "R2:0.0492\n"
1306
- ]
1307
- },
1308
- {
1309
- "data": {
1310
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAArwAAAIjCAYAAADhisjVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAADVoElEQVR4nOydd3gUVRfG303vCSEJHULvXap0kNCk2rBQVKx0G1goAqIoTUBAkCLCB6JSREHpvUmTIr23JBBISA/Z+f44uXtnZks2yYYNyfk9zz5TdubOnf7OueeeY1AURQHDMAzDMAzD5FNcnF0BhmEYhmEYhslNWPAyDMMwDMMw+RoWvAzDMAzDMEy+hgUvwzAMwzAMk69hwcswDMMwDMPka1jwMgzDMAzDMPkaFrwMwzAMwzBMvoYFL8MwDMMwDJOvYcHLMAzDMAzD5GtY8DIMY5HLly/DYDBg0aJFzq4KkwUMBgPGjBnjlG1v2LABderUgZeXFwwGA+7fv49+/fohPDw8x2U7a7/4PmCY/AELXoYpgCxatAgGgwH//POPs6vC5BPu3r2L5557Dt7e3pg1axaWLFkCX19fs+USExMxZswYbNu2zey/P//802linWGY/I2bsyvAMEzepEyZMkhKSoK7u7uzq8JkgaSkJLi5PfpH+8GDB/HgwQOMGzcO7dq1M82fN28ejEajaToxMRFjx44FALRq1UpTxp9//olZs2ZZFL3O2i++Dxgmf8AWXoZhLGIwGODl5QVXV1dnV8UqiYmJWVo+ISEhl2ri3G2p8fLycoowjIqKAgAEBQVp5ru7u8PT0zPH5Ttrvx6H+4BhmMxhwcswjEUs+S7269cPfn5+uHHjBrp37w4/Pz+Ehobi/fffR3p6umZ9o9GIadOmoXr16vDy8kKRIkXw5ptv4t69e5rl1qxZg86dO6N48eLw9PRE+fLlMW7cOLPyWrVqhRo1auDQoUNo0aIFfHx88PHHH1utv6jrhQsX0KlTJ/j7++Oll17KUt2MRiPGjBmD4sWLw8fHB61bt8apU6cQHh6Ofv36mZYTLiLbt2/HO++8g7CwMJQsWdL0//r169G8eXP4+vrC398fnTt3xsmTJzXbun37Nvr374+SJUvC09MTxYoVQ7du3XD58mXTMv/88w8iIiIQEhICb29vlC1bFq+++qqmHEu+rkeOHEHHjh0REBAAPz8/tG3bFvv27dMsI/Zh9+7dGD58OEJDQ+Hr64sePXogOjra6nEG6Nz07dsXANCgQQMYDAbT8VH78F6+fBmhoaEAgLFjx8JgMJjq269fP8yaNcu0D+Jnbb/GjBkDg8GA8+fPo1+/fggKCkJgYCD69+9v9iGUlJSEwYMHIyQkBP7+/ujatStu3Lhhl1+wrfvg6tWr6NKlC/z8/FCiRAlT/Y8fP442bdrA19cXZcqUwbJlyzRlxsTE4P3330fNmjXh5+eHgIAAdOzYEceOHTPb/pUrV9C1a1f4+voiLCwMw4YNw19//QWDwWDmFrJ//3506NABgYGB8PHxQcuWLbF7926b+8cwBQV2aWAYJkukp6cjIiICjRo1wjfffINNmzZh8uTJKF++PN5++23Tcm+++SYWLVqE/v37Y/Dgwbh06RJmzpyJI0eOYPfu3aYm4kWLFsHPzw/Dhw+Hn58ftmzZglGjRiEuLg5ff/21Ztt3795Fx44d8cILL+Dll19GkSJFbNb14cOHiIiIQLNmzfDNN9/Ax8cnS3UbOXIkJk2ahKeffhoRERE4duwYIiIikJycbHF777zzDkJDQzFq1CiThXfJkiXo27cvIiIi8NVXXyExMRGzZ89Gs2bNcOTIEZMY7NWrF06ePIlBgwYhPDwcUVFR2LhxI65evWqabt++PUJDQzFixAgEBQXh8uXL+O2332weg5MnT6J58+YICAjAhx9+CHd3d8ydOxetWrXC9u3b0ahRI83ygwYNQqFChTB69GhcvnwZ06ZNw8CBA7FixQqr2/jkk09QuXJlfP/99/j8889RtmxZlC9f3my50NBQzJ49G2+//TZ69OiBnj17AgBq1aqFhIQE3Lx5Exs3bsSSJUts7pOa5557DmXLlsXEiRNx+PBhzJ8/H2FhYfjqq69My/Tr1w8///wzXnnlFTRu3Bjbt29H586d7d6GJdLT09GxY0e0aNECkyZNwtKlSzFw4ED4+vrik08+wUsvvYSePXtizpw56NOnD5o0aYKyZcsCAC5evIjVq1fj2WefRdmyZREZGYm5c+eiZcuWOHXqFIoXLw6AWgnatGmDW7duYciQIShatCiWLVuGrVu3mtVny5Yt6NixI+rXr4/Ro0fDxcUFCxcuRJs2bbBz5040bNgwR/vLMI89CsMwBY6FCxcqAJSDBw9aXebSpUsKAGXhwoWmeX379lUAKJ9//rlm2bp16yr169c3Te/cuVMBoCxdulSz3IYNG8zmJyYmmm37zTffVHx8fJTk5GTTvJYtWyoAlDlz5ti1j6KuI0aM0My3t263b99W3NzclO7du2uWGzNmjAJA6du3r2meOJ7NmjVTHj58aJr/4MEDJSgoSBkwYICmjNu3byuBgYGm+ffu3VMAKF9//bXV/Vm1alWm50xRFAWAMnr0aNN09+7dFQ8PD+XChQumeTdv3lT8/f2VFi1amO1Du3btFKPRaJo/bNgwxdXVVbl//77N7Vq7pvr27auUKVPGNB0dHW1WR8G7776rWHst6dcZPXq0AkB59dVXNcv16NFDKVy4sGn60KFDCgBl6NChmuX69etntR5qbN0HX3zxhWnevXv3FG9vb8VgMCjLly83zT99+rTZdpKTk5X09HSz7Xh6emrurcmTJysAlNWrV5vmJSUlKVWqVFEAKFu3blUURVGMRqNSsWJFJSIiQnPuEhMTlbJlyypPPfWUzX1kmIIAuzQwDJNl3nrrLc108+bNcfHiRdP0ypUrERgYiKeeegp37twx/erXrw8/Pz+Nhcrb29s0/uDBA9y5cwfNmzdHYmIiTp8+rdmOp6cn+vfvn6W6qq3OWanb5s2b8fDhQ7zzzjua9QcNGmR1WwMGDND4em7cuBH3799H7969NdtydXVFo0aNTNvy9vaGh4cHtm3bZuZWIRC+sevWrUNaWppd+56eno6///4b3bt3R7ly5UzzixUrhhdffBG7du1CXFycZp033nhD40rQvHlzpKen48qVK3Zt81Fj6Vq8e/euab82bNgAAFk6j/by+uuvm8aDgoJQuXJl+Pr64rnnnjPNr1y5MoKCgjT3h6enJ1xc6PWbnp6Ou3fvws/PD5UrV8bhw4dNy23YsAElSpRA165dTfO8vLwwYMAATT2OHj2Kc+fO4cUXX8Tdu3dN11lCQgLatm2LHTt2aDoOMkxBhF0aGIbJEl5eXiY/TEGhQoU0Qu3cuXOIjY1FWFiYxTJEByeAmtw//fRTbNmyxUx8xcbGaqZLlCgBDw8Pu+vq5uam8aXNSt2EwKtQoYLm/+DgYBQqVMjiuqLJWr0tAGjTpo3F5QMCAgCQAPrqq6/w3nvvoUiRImjcuDG6dOmCPn36oGjRogCAli1bolevXhg7diymTp2KVq1aoXv37njxxRetdgqLjo5GYmIiKleubPZf1apVYTQace3aNVSvXt00v3Tp0prlxL5aE+LOxlZ9AwICcOXKFbi4uJidG/15zSqW7oPAwECULFlS88Eg5quPn9FoxPTp0/Hdd9/h0qVLGn/1woULm8avXLmC8uXLm5Wnr7u4zoQftSViY2OtXrcMUxBgwcswTJawp7e60WhEWFgYli5davF/IRTu37+Pli1bIiAgAJ9//jnKly8PLy8vHD58GB999JGZVUptDbYHtSUtq3XLDvr6ifovWbLEJFzVqKMODB06FE8//TRWr16Nv/76C5999hkmTpyILVu2oG7dujAYDPjll1+wb98+/P777/jrr7/w6quvYvLkydi3bx/8/PyyXW811s6voigOKd/ROKu+1rZrT32++OILfPbZZ3j11Vcxbtw4BAcHw8XFBUOHDs2WJVas8/XXX6NOnToWl3HU9cEwjysseBmGcTjly5fHpk2b8OSTT9oUqdu2bcPdu3fx22+/oUWLFqb5ly5dcnrdypQpAwA4f/68xjp49+5du62douNWWFiYJjatreXfe+89vPfeezh37hzq1KmDyZMn46effjIt07hxYzRu3BgTJkzAsmXL8NJLL2H58uWa5nVBaGgofHx8cObMGbP/Tp8+DRcXF5QqVcqufXEUemulvf9llzJlysBoNOLSpUuoWLGiaf758+cdvi17+eWXX9C6dWv88MMPmvn3799HSEiIabpMmTI4deoUFEXRHBt93cV1FhAQYNd1xjAFEfbhZRjG4Tz33HNIT0/HuHHjzP57+PAh7t+/D0Baw9TWr9TUVHz33XdOr1vbtm3h5uaG2bNna5aZOXOm3duKiIhAQEAAvvjiC4t+tyLcV2Jiolnkh/Lly8Pf3x8pKSkAqIleb7UU1jyxjB5XV1e0b98ea9as0YQ3i4yMxLJly9CsWTOTW8WjQkTKEMdZjcjMZum/7BIREQEAZtfUjBkzHLaNrOLq6mp2LleuXIkbN25o5kVERODGjRtYu3ataV5ycjLmzZunWa5+/fooX748vvnmG8THx5ttL7OwcgxTEGALL8MUYBYsWGDq1KNmyJAhOSq3ZcuWePPNNzFx4kQcPXoU7du3h7u7O86dO4eVK1di+vTpeOaZZ9C0aVMUKlQIffv2xeDBg2EwGLBkyZJcbY62t25FihTBkCFDMHnyZHTt2hUdOnTAsWPHsH79eoSEhNhljQwICMDs2bPxyiuvoF69enjhhRcQGhqKq1ev4o8//sCTTz6JmTNn4uzZs2jbti2ee+45VKtWDW5ubli1ahUiIyPxwgsvAAAWL16M7777Dj169ED58uXx4MEDzJs3DwEBAejUqZPVOowfPx4bN25Es2bN8M4778DNzQ1z585FSkoKJk2a5LDjai/e3t6oVq0aVqxYgUqVKiE4OBg1atRAjRo1UL9+fQDA4MGDERERAVdXV9P+Z5f69eujV69emDZtGu7evWsKS3b27FkAuWNVzowuXbrg888/R//+/dG0aVMcP34cS5cu1XQsBCh83syZM9G7d28MGTIExYoVw9KlS+Hl5aWpu4uLC+bPn4+OHTuievXq6N+/P0qUKIEbN25g69atCAgIwO+///7I95Nh8hIseBmmAKO3XgrUSRWyy5w5c1C/fn3MnTsXH3/8Mdzc3BAeHo6XX34ZTz75JADqoLNu3Tq89957+PTTT1GoUCG8/PLLaNu2rckylxvYUzcA+Oqrr+Dj44N58+Zh06ZNaNKkCf7++280a9bMJDoy48UXX0Tx4sXx5Zdf4uuvv0ZKSgpKlCiB5s2bmyJOlCpVCr1798bmzZuxZMkSuLm5oUqVKvj555/Rq1cvACTUDxw4gOXLlyMyMhKBgYFo2LAhli5datYhS0316tWxc+dOjBw5EhMnToTRaESjRo3w008/mcXgfVTMnz8fgwYNwrBhw5CamorRo0ejRo0a6NmzJwYNGoTly5fjp59+gqIoORa8APDjjz+iaNGi+N///odVq1ahXbt2WLFiBSpXrmz3eXQkH3/8MRISErBs2TKsWLEC9erVwx9//IERI0ZolhNxqQcNGoTp06fDz88Pffr0QdOmTdGrVy9N3Vu1aoW9e/di3LhxmDlzJuLj41G0aFE0atQIb7755qPeRYbJcxiUvNoTgWEYJg9y//59FCpUCOPHj8cnn3zi7Oow2eTo0aOoW7cufvrpJ1MGvseFadOmYdiwYbh+/TpKlCjh7OowzGMB+/AyDMNYISkpyWzetGnTAJBFjXk8sHYeXVxcNJ0l8yL6uicnJ2Pu3LmoWLEii12GyQLs0sAwDGOFFStWYNGiRejUqRP8/Pywa9cu/O9//0P79u01rg9M3mbSpEk4dOgQWrduDTc3N6xfvx7r16/HG2+88cijVGSVnj17onTp0qhTpw5iY2Px008/4fTp01bD6jEMYxkWvAzDMFaoVasW3NzcMGnSJMTFxZk6so0fP97ZVWOyQNOmTbFx40aMGzcO8fHxKF26NMaMGfNYuKRERERg/vz5WLp0KdLT01GtWjUsX74czz//vLOrxjCPFezDyzAMwzAMw+Rr2IeXYRiGYRiGydew4GUYhmEYhmHyNezDawGj0YibN2/C39/fKUHJGYZhGIZhGNsoioIHDx6gePHicHGxbcNlwWuBmzdv5vmeuwzDMAzDMAxw7do1lCxZ0uYyLHgt4O/vD4AO4KPOM88wDMMwDMNkTlxcHEqVKmXSbbZgwWsB4cYQEBDAgpdhGIZhGCYPY4/7KXdaYxiGYRiGYfI1LHgZhmEYhmGYfA0LXoZhGIZhGCZfwz68DMMwDMMwGSiKgocPHyI9Pd3ZVSnwuLq6ws3NzSEhYlnwMgzDMAzDAEhNTcWtW7eQmJjo7KowGfj4+KBYsWLw8PDIUTkseBmGYRiGKfAYjUZcunQJrq6uKF68ODw8PDj5lBNRFAWpqamIjo7GpUuXULFixUyTS9iCBS/DMAzDMAWe1NRUGI1GlCpVCj4+Ps6uDgPA29sb7u7uuHLlClJTU+Hl5ZXtsrjTGsMwDMMwTAY5sSIyjsdR54PPKsMwDMMwDJOvYcHLMAzDMAzD5GtY8DIMwzAMwzC5gsFgwOrVq51dDRa8DMMwDMMwjzPR0dF4++23Ubp0aXh6eqJo0aKIiIjA7t27nV21PANHaWAYhmEYhnmM6dWrF1JTU7F48WKUK1cOkZGR2Lx5M+7evevsquUZ2MLLMAzDMAxjg4SErP8ePpTrP3xI85KSMi83q9y/fx87d+7EV199hdatW6NMmTJo2LAhRo4cia5duwIApkyZgpo1a8LX1xelSpXCO++8g/j4eFMZixYtQlBQENatW4fKlSvDx8cHzzzzDBITE7F48WKEh4ejUKFCGDx4sCYDXXh4OMaNG4fevXvD19cXJUqUwKxZs2zW99q1a3juuecQFBSE4OBgdOvWDZcvX876jmcRFrwMwzAMwzA28PPL+m/VKrn+qlU0r2NHbbnh4ebrZb1ufvDz88Pq1auRkpJicRkXFxd8++23OHnyJBYvXowtW7bgww8/1CyTmJiIb7/9FsuXL8eGDRuwbds29OjRA3/++Sf+/PNPLFmyBHPnzsUvv/yiWe/rr79G7dq1ceTIEYwYMQJDhgzBxo0bLdYjLS0NERER8Pf3x86dO7F79274+fmhQ4cOSE1NzfrOZwF2aWAYhmEYhnlMcXNzw6JFizBgwADMmTMH9erVQ8uWLfHCCy+gVq1aAIChQ4ealg8PD8f48ePx1ltv4bvvvjPNT0tLw+zZs1G+fHkAwDPPPIMlS5YgMjISfn5+qFatGlq3bo2tW7fi+eefN6335JNPYsSIEQCASpUqYffu3Zg6dSqeeuops7quWLECRqMR8+fPN2WxW7hwIYKCgrBt2za0b9/e4cdHwIKXYRiGYRjGBqrWf7vx9JTjPXpQGfocCo5qye/Vqxc6d+6MnTt3Yt++fVi/fj0mTZqE+fPno1+/fti0aRMmTpyI06dPIy4uDg8fPkRycjISExNNWeV8fHxMYhcAihQpgvDwcPipzM5FihRBVFSUZttNmjQxm542bZrFeh47dgznz5+Hv7+/Zn5ycjIuXLiQk0OQKSx4GYZhGIZhbODrm7P13dzo5+hy1Xh5eeGpp57CU089hc8++wyvv/46Ro8ejVatWqFLly54++23MWHCBAQHB2PXrl147bXXkJqaahK87u7umvIMBoPFeUajMdt1jI+PR/369bF06VKz/0JDQ7Ndrj2wDy+Tr5k6FShdGvj0U2fXhGEYhmEeHdWqVUNCQgIOHToEo9GIyZMno3HjxqhUqRJu3rzpsO3s27fPbLpq1aoWl61Xrx7OnTuHsLAwVKhQQfMLDAx0WJ0swYKXydfExADXrgGxsc6uCcMwDMM4nrt376JNmzb46aef8O+//+LSpUtYuXIlJk2ahG7duqFChQpIS0vDjBkzcPHiRSxZsgRz5sxx2PZ3796NSZMm4ezZs5g1axZWrlyJIUOGWFz2pZdeQkhICLp164adO3fi0qVL2LZtGwYPHozr1687rE6WYJcGJl9z+jQN9+93bj0YhmEYJjfw8/NDo0aNMHXqVFy4cAFpaWkoVaoUBgwYgI8//hje3t6YMmUKvvrqK4wcORItWrTAxIkT0adPH4ds/7333sM///yDsWPHIiAgAFOmTEFERITFZX18fLBjxw589NFH6NmzJx48eIASJUqgbdu2CAgIcEh9rGFQFEXJ1S08hsTFxSEwMBCxsbG5fgKY3MXPT8Y15CudYRiGsUZycjIuXbqEsmXLwsvLy9nVeSwIDw/H0KFDNVEgHI2t85IVvcYuDUy+pmhRZ9eAYRiGYRhnw4KXydeIVpVRo5xbD4ZhGIZhnAf78DL5GpHa0VI4GIZhGIZhss+jSAnsKNjCy+RrhODVhRJkGIZhGKYAwYKXydesWUPDkSOdWw+GYRiGYZwHC14mX5OS4uwaMAzDMAzjbFjwMgzDMAzDMPkaFrwMwzAMwzBMvoYFL5OvMRicXQOGYRiGYZwNC14mX/PWW86uAcMwDMM4h1atWmU7C1p4eDimTZvm0Po4Exa8TL7m2WdpWKqUc+vBMAzDMLlFv379YDAYzH6TJk3CuHHjTMtZErGLFi1CUFCQWZkHDx7EG2+8kcs1f3RwOH4mXyPi76alObceDMMwDJObdOjQAQsXLtTMCw0Nhaura7bKCw0NdUS18gxs4WXyNf/9R8PoaOfWg2EYhnkMURQgIeHR/xQly1X19PRE0aJFNb+2bduaXBpatWqFK1euYNiwYSYL8LZt29C/f3/Exsaa5o0ZMwaAuTXYYDBg/vz56NGjB3x8fFCxYkWsXbtWU4e1a9eiYsWK8PLyQuvWrbF48WIYDAbcv38/myfAcbCFl8nXCB/e9HTn1oNhGIZ5DElMBPz8Hv124+MBX1+HFvnbb7+hdu3aeOONNzBgwAAAQHBwMKZNm4ZRo0bhzJkzAAA/G/s7duxYTJo0CV9//TVmzJiBl156CVeuXEFwcDAuXbqEZ555BkOGDMHrr7+OI0eO4P3333foPuQEtvAy+ZrwcGfXgGEYhmFyn3Xr1sHPz8/0e1Z0YskgODgYrq6u8Pf3N1mAPTw8EBgYCIPBYJpnS/D269cPvXv3RoUKFfDFF18gPj4eBw4cAADMnTsXlStXxtdff43KlSvjhRdeQL9+/XJzl7MEW3iZfM26dUDp0tKXl2EYhmHsxseHrK3O2G4Wad26NWbPnm2a9vX1Re/evR1ZK9SqVUtTfkBAAKKiogAAZ86cQYMGDTTLN2zY0KHbzwkseJl8jbrTmqJwXF6GYRgmCxgMDnctyC18fX1RoUKFXN2Gu856ZDAYYDQac3WbjoIFL5OvCQwEZs1iCy/DMAzDeHh4IF3XqcXSvOxQuXJl/Pnnn5p5Bw8ezHG5joJ9eJl8Tc+ewA8/AE2bsnWXYRiGKdiEh4djx44duHHjBu7cuWOaFx8fj82bN+POnTtITEzMVtlvvvkmTp8+jY8++ghnz57Fzz//jEWLFgEgS7CzYcHL5GuOHwcOHwZSUpxdE4ZhGIZxLp9//jkuX76M8uXLm+LsNm3aFG+99Raef/55hIaGYtKkSdkqu2zZsvjll1/w22+/oVatWpg9ezY++eQTABQyzdkYFCUbwd7yOXFxcQgMDERsbCwCAgKcXR0mB4SFUQzeb74BBg0CPDycXSOGYRgmL5KcnIxLly6hbNmy8PLycnZ18gUTJkzAnDlzcO3atWyXYeu8ZEWvsYWXydc8fEjD998H7t1zbl0YhmEYJj/z3Xff4eDBg7h48SKWLFmCr7/+Gn379nV2tQBwpzUmnyP88H192YeXYRiGYXKTc+fOYfz48YiJiUHp0qXx3nvvYeTIkc6uFgAWvEw+Jy2NhidOkHsDwzAMwzC5w9SpUzF16lRnV8Mi7NLA5GuES4Mbf9oxDMMwTIGFBS+Tb1EUaeHlOLwMwzCMPXBf/ryFo84HC14m36JO/lKlCvDff86rC8MwDJO3EVnEshuHlskdxPnQZ3nLKtzQy+RbhDsDANy/D/AzjGEYhrGGq6srgoKCEBUVBQDw8fHJEwkTCiqKoiAxMRFRUVEICgqCq6trjspjwcvkW4Q7g7VphmEYhlFTtGhRADCJXsb5BAUFmc5LTmDBy+Rb1BZegAUvwzAMYxuDwYBixYohLCwMafzScDru7u45tuwKWPAy+Ra94NVPMwzDMIwlXF1dHSa0mLwBd1pj8i1eXsDHH8tp/lhnGIZhmIIJC14m3+LnB0yYANSvT9MseBmGYRimYMKCl8n3iEgmLHgZhmEYpmDCPrxMviUlBbhyBbh1i6bZh5dhGIZhCiYseJl8y4ULQPXqcpotvAzDMAxTMGGXBibfoihAQICcZsHLMAzDMAUTFrxMvqV6dSA2FujcmaZZ8DIMwzBMwcTpgnfWrFkIDw+Hl5cXGjVqhAMHDlhd9uTJk+jVqxfCw8NhMBgwbdo0s2UmTpyIBg0awN/fH2FhYejevTvOnDmTi3vA5HVEpzX24WUYhmGYgolTBe+KFSswfPhwjB49GocPH0bt2rURERFhNaVfYmIiypUrhy+//NJqmrnt27fj3Xffxb59+7Bx40akpaWhffv2SEhIyM1dYfIwL74IjB8PNGjg7JowDMMwDOMMDIqiKM7aeKNGjdCgQQPMnDkTAGA0GlGqVCkMGjQII0aMsLlueHg4hg4diqFDh9pcLjo6GmFhYdi+fTtatGhhV73i4uIQGBiI2NhYBKidQJnHiqNHgQ8/BMqXB2bPdnZtGIZhGIZxJFnRa06L0pCamopDhw5h5MiRpnkuLi5o164d9u7d67DtxMbGAgCCg4OtLpOSkoKUlBTTdFxcnMO2zziP6Ghg40bASoMBwzAMwzAFBKe5NNy5cwfp6ekoUqSIZn6RIkVw+/Zth2zDaDRi6NChePLJJ1GjRg2ry02cOBGBgYGmX6lSpRyyfca5iE5qUVFk7RXxeBmGYRiGKVg4vdNabvLuu+/ixIkTWL58uc3lRo4cidjYWNPv2rVrj6iGTG4iOqndugXUrQt8/71z68MwDMMwjHNwmktDSEgIXF1dERkZqZkfGRlptUNaVhg4cCDWrVuHHTt2oGTJkjaX9fT0hKenZ463yeQt1FEZihUDfHycVxeGYRiGYZyH0yy8Hh4eqF+/PjZv3myaZzQasXnzZjRp0iTb5SqKgoEDB2LVqlXYsmULypYt64jqMo8hwqWhVSvg5k3ggw+cWh2GYRiGYZyEU1MLDx8+HH379sUTTzyBhg0bYtq0aUhISED//v0BAH369EGJEiUwceJEANTR7dSpU6bxGzdu4OjRo/Dz80OFChUAkBvDsmXLsGbNGvj7+5v8gQMDA+Ht7e2EvWSchbDwunECbYZhGIYp0DhVCjz//POIjo7GqFGjcPv2bdSpUwcbNmwwdWS7evUqXFykEfrmzZuoW7euafqbb77BN998g5YtW2Lbtm0AgNkZ8adatWql2dbChQvRr1+/XN0fJm8hLLwi8QTDMAzDMAUTp8bhzatwHN78wfz5wIABNN60KdC1K/DRR86tE8MwDMMwjiErei1fR2lgCjbCwgsAe/YA5845ry4MwzAMwzgPFrxMvkUdpQHQCmCGYRiGYQoOLHiZfAsLXoZhGIZhABa8TD5GL3D1AphhGIZhmIIBC14m31KzJvDaa0DDhjTNFl6GYRiGKZiw4GXyLR07UqSGN9+kaRa8DMMwDFMwYcHL5HtEHF4WvAzDMAxTMOEcVEy+JTGRRK7RSNMseBmGYRimYMIWXibfMmoUEBQEjB1L09xpjWEYhmEKJix4mXyLELje3jRkCy/DMAzDFExY8DL5lilTgJQU4IsvaJoFL8MwDMMUTFjwMvkWFxfAwwPw8aFpFrwMwzAMUzDhTmtMvqdMGWDwYKBECWfXhGEYhmEYZ8CCl8m3fPcdsHs38PLLwPTpzq4NwzAMwzDOgl0amHzLrl3AsmXAmTPOrgnDMAzDMM6EBS+TbxFRGgwG4NYt4MYN59aHYRiGYRjnwC4NTL5FdFI7fx4oXhwICwMiI51bJ4ZhGIZhHj1s4WXyLeo4vC4u9GMYhmEYpuDBFl4m3yIsvDVqAOnpzq0LwzAMwzDOg21eTL5FWHjd+LOOYRiGYQo0LHiZfIsQvO7uzq0HwzAMwzDOhQUvk28RLg1JSUCPHsDTTwNGo3PrxDAMwzDMo4cbe5l8i7DwurgAq1fLeR4eTqsSwzAMwzBOgC28TL5FWHi9veU8IYIZ5xMX5+waMAzDMAUFFrxMvkUdlkwgRDDjXL77DggMBBYvdnZNGIZhmIIAC14m32LJwsuCN2/w7rs07NfPqdVgGIZhCgjsw8vkW9q2BSpWBIoUIT9eo5EFL8MwDMMURFjwMvmWmTPluLs7kJLCgpdhGIZhCiLs0sAUCEQsXu60xjAMwzAFDxa8TIFAZFtjCy/DMAzDFDxY8DL5ltBQirl7+rS08LLgzRuMGEHDwEDn1oNhGIYpGLDgZfItqakkcF1dWfDmNTp3pmFoqHPrwTAMwxQMuNMak285c4YEbtGiLHjzGqGhQKNGQJkyzq4JwzAMUxBgwcvkW4oWlePcaS1vcf48uTW0aOHsmjAMwzAFARa8TIHg6aeBqCigcGFn14QBgHfeAa5eBfbvBxo2dHZtGIZhmPwOC14mX5KeDgwbRtEZxo0Dpkxxdo0YNU88AZQoAQQFObsmDMMwTEHAoCiK4uxK5DXi4uIQGBiI2NhYBAQEOLs6TDZISQG8vGj8/n2OBpAXqVgRuHMHOHGCxC/DMAzDZIWs6DWO0sDkS9Sd09zcyOKbnMw+vHmJmBj6GImLc3ZNGIZhmPwOC14mX6IWtu7uQKtWgLc3sGaN06rE6NiyBfjvP6BcOWfXhGEYhsnvsA8vky9RC143N5lpjS28zicpCShVilxOzpwBPD2dXSOGYRgmv8OCl8mXCJcGFxf6Ccuuj4/z6sQQycnA3bs0zmKXYRiGeRSwSwOTLxGWXGHZDQignxt/4jmd5GQ5PnYscPCg8+rCMAzDFAxY8DL5Er3gZfIOasE7fjxw4IDz6sIwDMMUDFjwMvkS4dIgMqx9/z3w6qvApk3OqxNDJCVppx88cE49GIZhmIIDC14mX6K38G7dCixcCJw86bw6MYTawguw4GUYhmFyHxa8TL5Eb+EVQ3V8XsY5sOBlGIZhHjUseJl8id7Cy4I378CCl2EYhnnUsOBl8iVC8LKFN+/BgpdhGIZ51HAfdiZf4uMDPPkkUKwYTbPgzTuw4GUYhmEeNSx4mXxJzZrArl1ymjOt5R1Y8DIMwzCPGnZpYAoEbOHNOwjB6+1NQxa8DMMwTG7DgpcpEDhS8A4fDnzwAXDlSs7LyimpqZS84dAhZ9fEfoTgDQ2lIQtehmEYJrdhwcvkS/76i/x3u3alaUcJXkUB5s0DvvkGSEjIWVmOYOpU4LPPgCeecHZN7Kd5c2DmTGDwYJpmwcswDMPkNix4mXxJQgJw+zYQE0PTjhK8Dx8C774L+PkBhw/nrCxHoPZTzi5RUcDKlY/O3aNmTTqGzz9P0yx4GYZhmNyGBS+TL2nbFjh2DFiwgKYd1WnN3R1o1AiIjycrpbNJTMx5GW3bAs89R1brR0lAAFC5MlC7NvtWMwzDMLkLC14mXxIYCNSqBVSqRNOO9OEtXpyGN2/mvKyc0qdPzss4cYKGS5bkvCx7OHMG2L4duHcPOH0aOHhQnh+GYRiGyQ1Y8DIFgrJlgfbtgRo1clbOgQPAtWs0fusWYDTmvG45oW1bGrq5kX9xTnhUPskzZwKtWgHz5z+a7TEMwzAMC14mX3LoEDBuHPDLLzTdowd1ZBsxImfljhoFPPssjT98CNy5k7Py7GXNGqBECWDTJu38gABZl5SUnG3DEe4R9hAaClSpAhQt+mi2xzAMwzBOF7yzZs1CeHg4vLy80KhRIxw4cMDqsidPnkSvXr0QHh4Og8GAadOm5bhMJn9y8CCJ0//9z7HlnjmjnX5Ubg3du9O2Bg3Szt++XY7HxWWv7LffpmHhwtlbP6uMGgX89x91XHv6abK+79//aLbNMAzDFEycKnhXrFiB4cOHY/To0Th8+DBq166NiIgIREVFWVw+MTER5cqVw5dffomiVsxDWS2TyRvk1DqpR/jquulyCeak01pSkoy9W7IkDW/cyH559qL2O/bwkOPp6WS5FmRX8PbuLctTExVFocOOH89eufZw8yZw+bKMpsEwDMMwuYFTBe+UKVMwYMAA9O/fH9WqVcOcOXPg4+ODBaJrvY4GDRrg66+/xgsvvABPT0+HlMk4n6NHqWn+008dV6YQtkLwnj9PFswiRbJf5rlz5CdbqBBFFgC0Ft7jx8k3tXPn7G/DEgcPyvFixeR4QgLQsKGczq7gFd+Ot29r57/9NjBjBlCvXvbKtYe5c4G9e4GmTXNvGwzDMAzjNMGbmpqKQ4cOoV27drIyLi5o164d9u7d+0jLTElJQVxcnObHPDoGDKCMYRMmOK5MIXhF7/9ChciKGBND28oOwp2hcmXypwW0gjciglwM/vwze+VbY+tWOa62hAYEAHv2kD8skD3Bm5ICbNhA4/Hx2o5r4pbJaSg3PX37UufBDRsoYUbjxhRVg2EYhmFyC6cJ3jt37iA9PR1FdCa3IkWK4Lbe1JTLZU6cOBGBgYGmX6lSpbK1fSZ7XL3q+DL1Lg3BwRR+Kzo6+yGwTp+mYeXKlkOTiQQKM2bkPGKCmi1baNirF/Djj+b/P/EE0KIF4O2d9bLv3pUZzwAgMlKOO3If1Jw/D5w8+eg6yTEMwzCM0zut5QVGjhyJ2NhY0++aiDvFZIstW4DPP7c/ZFduxH/VuzQYDED16kBICI1nB2HhrVLFXPA+eEAWUgB45ZXsb0NPcjJZcQGKOiGsuWqWLCHLcqNGWS/fYAA6dJDT6u/C1q1pOHly1su1RXIyDb28gJ07qXx15zuGYRiGcTROE7whISFwdXVFpNqkBCAyMtJqh7TcKtPT0xMBAQGaH0MWvux0JmvbFhg92v4ICSI2rouL4+LaCguvoxIaJCYCGzfSeI0a5oL30iUaBgc7tnl+3z4SiEWLmovdqVOB8HBg7Njsl1+sGLB+PaVJPnMGqF9f/idcJIKCsl++JdSCd80a4P33gXXrHLsNhmEYhlHjNMHr4eGB+vXrY/PmzaZ5RqMRmzdvRpMmTfJMmQWZpUspW9kvv5A/Z1azlB07Zt9yIhyW0QjExmZtG9bQW3gBYPlyYOBArU+svcybR1ELwsPJV1f48IooDRcv0jAmBvjuO22YLUUBFi/OXugtUdfWrYEffgC++AK4f5/mXb1KUSMc4RpQty5lpVP3BRXbyS3B6+1NvtUA8O+/jt0GwzAMw6hxqkvD8OHDMW/ePCxevBj//fcf3n77bSQkJKB///4AgD59+mDkyJGm5VNTU3H06FEcPXoUqampuHHjBo4ePYrz58/bXSZjH4pCTc1nz1KihaZNyfcyM0SzPiCFjS02biQRJ7h7N+t1tYS+0xpAnaRmzcq68ExOBr76isZHjqQyixcn94hixUioC8ELUHzZ33+X07t3A/36UcxZSyiK9f2+dw/w8QGaNaOkGZ98Aly/Tv8J94N588gCnBNLryWEZ0+vXuYhy3KC2sL77LP0UfL33/RjGIZhmNzALfNFco/nn38e0dHRGDVqFG7fvo06depgw4YNpk5nV69ehYuL1OQ3b95E3bp1TdPffPMNvvnmG7Rs2RLbtm2zq8yCzvHjJPhefZVcCKxhMADbtgHffgv8+itZa//7D6ha1Xb5ah9Qe7KQrVlDIlRw9y5QoULm62VGUhIN1XFrxSWg83jJlAULKI1wqVIUYQAAwsKoA5xALXgBbUc8sT/R0RQhQl0no5GSSWzYQH6sIr6v4NtvgWnTSHAeP04uJj4+9J841oUK0fazk/Vt6VLgzTfp2Lz8Mll5X3qJ/lNbjh88cJylVy14K1Wi/Z86FRg2jK4zfexkhmEYhskxCmNGbGysAkCJjY11dlUczpNPKgqgKEuW2L9Onz60zoQJmS+7YwctCyhK48aZL//LL4rSv79c548/7K+XLbp1o/K++07OmzyZ5vXunbWyatSg9WbOtL5Mx460TKtWcigwGhXFy4vmX7igXW/QIJpvMCjK8uVZq1eVKrTujz8qyrFjihIZaXm5GzcU5eBBRYmPN/9v1ix57AE6bgJfX5o3bpyiJCZmrW628PGhci9epOl79xSlcGGaN2uW47bDMAzD5G+yotc4SkMB49w5Gi5caH0ZfTgq0Vnqv/8yL19t4RUduWzRqxdZUEXoZEe5NFy+TMMyZeS87Fp4334beO014JlnrC8jLLwtW9Lw6lXal61byVpeujTNF5naAHIRmTGD/l+0CHj++azVSxzrJ54gX+uwMMvLNW0KNGhgOWOaCKVWpQrw1lvS7eLhQxmT9+23sxfyzBKKorXwAmQ5Hj2axufNc8x2GIZhGEYNC94CRGoqdbwCKHSYWnypWbAAaNIEWLaMpoXgFXFobdGihQwzFhlpf4cq0XFNL3gVJXuJD0qXpl/ZsnJedgXvO+8A8+ebZ2kbOxaoVg2YM0eK+1ataHjtGnWSa9MGeO89KbyFEAeoTIA6wZUqRaL/nXfk/+vWkZD95BOaVhQSoQ8ekGgUncqsBSBRFEobLM6zpVDUQvC2awfMnk3CHtB2HnRk1ImHD2UkDiF4Aaqniwtl3VMfI4ZhGIZxBCx48wB//EGWzrVrqZPSsGGUrcvRGa5u3dJOW0piAJDP7r59UngIv93TpzNPRlCkCPmA1q0LtG9vO/vXtWvks5maSp2/ihUDXF3l/0lJJLa9vIDy5em42JsMYe1aEnpqn+PsCl5rGI1k9f7f/2gfXF0pa5iLC0W0OHqU/HWLFpWCV4jP1FRpZX/zTdrXzZupg5vg+HH6CX/gTz4B/PzIGir2wcODhO/48eTvq+boURLdAv35B+T50UfiCw6mcn/9lTrgOSo5iPCtBrRW45AQoHlzGl+71jHbYug6ER81DMMwBRkWvHmA7duB334jcbJlC3VS6tyZmqizmwbXEiKElmDRInMBGRdHwgsAevSgYfny1JEoPl5GCLCFwUBxXf/6y7r1ESBLcJ06lFp46lSKaTtokPz/4EGKEpGeTi4D06YB//yT+fatIQTv3bv0MbF8ueVwWIcPy2QPBw8CR45Yjkc8ZAjw/ffAmDE0XaYMiXMRo3fAAOqo9sYb5oJ39WqythcvDnTpQm4JCxdSeYJ+/ehjaOBAmhYhvO7ckdbaokVJjH72GYVDU1OyJB1XgS0Lr78/CdzTp0msGwxk2Z09G+jZ03GJIdSRO9Qh0ACge3carl7tmG0VdGJi6PoQ7jQMwzAFGRa8eYCePWm4bp02nNW9eyS+HEWRImQl/PhjshRevEhiSi2E168nkV2pknRlcHeXkQYyc2tYuZKErDrlrjWEG0C5cpb/F/vevj3QrRuN2/I9zozChcn6qijkTtC7N1C7tnaZ1FRyQ2jViizQH34I1KtnOYlGcDCJWiFixX6IzNRXr5LlNDDQXPAKYfvaa/QxERZGAledLa1YMaBTJzkvJISGd+9qBa+wzuqt6aGhwNChUpDbErwBAVTHqlW1vtciMoOj4iMLwevpaZ6NTpzjHTsc58tdkBFW+fv3Hd9axDAM87jBgjcP0LAhJTJ48AD46SeaN3gwZb7KTrrYhATLFsny5anpe8IEEkIAWQUrV5ad2bZsoWGXLlpBYm/HtfHjgT59pOX04UMSmJbiuAphFR5uuSwheJs1o9i2AAnPzOL7zpxJovOzz7TzXV1JBALaEF4xMXL8zBkSd2lpZGksVIhEn14Yq2ndmkT+kCE0LSxq6gzVasEbHS2t6K+/bntf1Ag/5zt3pKXdluAVCCt7ZhZeYQG/fZtcWgYMoKQjgOMEr78/XSOffmr+X9my5LOcnk6WbTWKQhZ+a244jDm1a9OzQFE41BvDMAwL3jyAi4t0H0hPJ4vqhAlkZdVbwdRER1OT+ODB2vlffUUW2ZUrra/7+efkcvDZZySeKlak+Xv30vDJJ7XL6zuuxcaS0HvmGa1bRIsWlFp4/34Sly+8AIwbR039wk1AIARv2bIkbps310ZCcHMjgVSvHlldS5Yka9WaNdb3CyDL9fXrWn9RgRB1DRrQBwAAHDok/z9xQo7/9hv9YmLI9cIaZcpQDNsuXWhaCMzhw6XfrBD1165JP91q1bTNzUePAnPn0rGLiaFOcepzKCy8d+7QsgClORaCNyGBrh9FoYQOixbRB0exYvS/LR9ef3+tMD55UnaqA2QHuZxSqBC1MlgSvIC08maE1Tbxxx/kw923r30JTRh6doiYzQzDMAUdFrx5BOHWAJDY9PPLfJ2kJMDXl0SSSPsbG0udl65fN08sceYMcOECWX8NBnIV+Pxz2WwdFycFnz4Ts+j8deAANfunppIo+fVXrdV3xgxg0yYSqXfukJD96isSXmp3hPR02eRatiz9v2sX+cwKFiwgoRURQdZZkfQhM7eGTz8l0fjWW+b/qTuuNWhA4+ptqkN37dhBHxUGg+0PDz0iCoF6e8WL0z6kpdExA8w/KhYsoDr/9hudhzFjgI8+kv+rI1kIkV6/vrbDWXw8WaZ/+YXcVe7ds8/CGxCgXa5ePbo2KlemeY6y8GbGhx/SdbhggXa+WuTaE+4uK9y4ATz1lAwpl18QrSsMwzAMC948Q/PmUtC0b0/DBQuA557TWh3VCItnhQrSZ3bGDClOrl0jn1zBm2/SsqtWWS7vwAF6QYaHS6ugoEkTEmyHDlEzfGgoheNatEhah9W0aEFWyN69ZWiy9evlC/jGDXohizS9lSoBP/8sQ5oJXFxkc2y/fjT8+2/L1kpBcDC5iVjK2CYE6IED1FEM0HaEU4fEMhqzFzFg+HCyHk+fLj863NxkFjUR7q1pU+164jiePy8t6cKyDkgLb2ws8PXXwDffUBmenjKF8v370pVj6FA6T2ohqxdAapcG0dnuxg2KsvHZZzJMmqMEb1wcReawJlr9/Kguep55Rh4Le1JcZwV3d/pI27kzf/m6Tp1K15/BQK05DMMwBRkWvHkENzdqwq5fn3xgAWrOXrlS+nvqcXEh4XDyJDWrJyTIXvm1a1MT8NKlcnl3d3ItKFFCW86cOeQn+/77NK237gIkxn79ldYVVsc33ySrqxBbaWkyqkRgIDXZq30ub9yQ4l0InjJlSEgHBVEzfIsWNF9tJRVUqEBC1mAgH9PsUK8eDWfNki4WasG7bBlZf997j6Zff11aZO0lPJxEmd7VRPjxin3TC14h0M+dI2s8IC2sAB0jIaCrV6c6CjErrLw7d9L14Ocnz6cQ+WlpZPFVo3ZpsBQrWMTgdZTg3beP3EPULRr2UqMGDS9c0M6fPp0SZmQ3/JbYX0UxPz6PM2rfdHtiaDMMw+RnWPDmId59l8SXEKRt2tDQmnXm1VfJmijE48qV9JIrV46sfz16aEXVxo1kbdU3pZ85Q36lx47RtCXBC5B/5cWLJLYs8ddfZG1s25amf/uNXCvCwsjfFwA2bKCh2n/XEgMGkNVX74c8bx5ZKoXPs574eDom06dbFs3DhlHIN1dXsl4aDGQJV8fmDQuTCRgAx3X4WbKEjsd331GoMr1lXEyfOyet8GoLr6urDE2mj2IgBK8Q8fXrS1cVT0+yegNay7iiaF0ahJ/xlSt0TRw/Ll05HCV4DQZqPRCdBy0xZgy1chw8SC4l27fTdS0+CPQW3pMnqfVA3zpgL9Ony3F1Z8bHHbV4FwlnGIZhCiosePMwHTvScOtW8w5YRiNFLJg3j8ZTUmRa1tdeo8xZv/2mzdwFkODQ+/a+/LK2g5Le8qjGw0M7vX07xc7dulWKKZFQ4MgRGr70koyxKlwsLEVoWLeO/JEjI0n4nztnvr1atWyLpcuXycr9+efm+6nezp07FHpMCEp9fN+qVUm4Fy3qON/O0qXpY+btt2k/9X7BwtqdnEzHp3RpSkiiRrg1fPut1idXCF5h+dZ/lFjy41UUssDPmUOCWG3h/eADOtbiA8VRgvepp8j95u+/rS+zZw99nJ08Sa0brVpRh0AhePUW3tKlySdcRBrJKupY0fkpHBoLXoZhGAkHq8nDVK9O4bWuXSMBUKMGWbcOHiTf2ORkEoTvvy+D9bu4SF9Xe6lfX/bm9vYmoWMvK1ZQcgKjUTadC//fiAgS6mPHktAaMoQ6pj14YNnC+/77ZFmsXJmEzuHD0s/WEkajuagVzdNCvFlDWD8bNKBOdwcPUl0XLaLm9ldfJbFnMGizv+Um7u50PM6fp/pv2yYFriAkhI7R99/TR82zz9J8IXjFR0a1atr1ihYFTp3SCl4XF+DFF+W0OGaRkebRJbIapcFopG25u8v4x/by7rt0fbdoQS0P4eF0TYqoGnoL7xtv0DUvfKSzyuTJJLL37ctfFl61SwMLXoZhCjps4c3DGAzSyvvRR/TCj4igKAQiNFeFCtoYt506yc5HikLWtJgYssQ+8YSMv6tHhCNr0ED65NqDqN/69VIkCcHbujU1F/v7U3N9+fLkR7p5s2XBq45CEBJCzdqiKV7Nrl1k9RO+zmpEYgdrsX31qDuu7d5N4a+En7Gbm2PF7tWr5FvbvLlldwuAzm3XrnS+LO2DOEYAfagI9KmB9YL3hx/oWnj+eev1Cw6W0UFEHGUhgrNq4X3jDbJmh4VphZc9dOsG9O9PrjmvvELXynffSQvv5cuyc9l//9FH18WLWduGHnXIt/yC2sIbHe28ejAMw+QFWPDmcTp1oqG608lLL1HKXYD8XNUuCGrf0969SXQsXUpWsUOHZGcoPS++SEJy3Lis1a91a+oId+mS7CBnLZ3w88+Tb27VqtISa03w2sLNjQTh77+TlXv1auqEBthv4RWI0GSbN5M1/bvvtLGAHUlKCnUs3LXLcmIQgDoBrlljvf5CmE2YoM1Qp49soHdpEJE31P7Id+/SsRNxgQ0GuV3R+VBMJybK0Hf2MG+ejBahTiG8fDl1kJwwwf6yALIQFy9OZT18KEPabdtGnQMnT9bWO6uok3o4m1u3LCdqySrs0sAwDCNhwZvHadNGa3Hdv5+ysQnLY+XK1AkLIDEjxgEpJs+ckemD9REaBF5e1JlNREmwFz8/YNIkGhcdoPQhzQQTJlBTfNmy0hpsSfC++SaJJWs95hs2JIF77Bgdjx49yAJ+44bs5Kbu7GWLhg2BDh1IOMfHk3+tLR/mnFCxIgnB1auln3NWGTKEsuGJmMQCtfgtXNi2n7PgxAk6duqPJL1VWSTGcHUlMfjOO9r019YwGMiPOj1dG1P6yhUS2LZCi6Wk0AfI4sXaMGouLtKtQfjxig8cHx86j6VLZ02Y79tHx2rxYprOTPBu20YuOtkV1pnx8CF9eHl6Wo6bnBXYpYFhGEbCgjeP4+8vRWiFCtIiKSy8lSsDNWtSp7FTp7TiWIS0On1axum1JnhzwsCB5PMqsCZ4BR4eZOk8c0YrzNTN9ZMnay2DalxcSHiFh9OxqVWLymvZkgRV6dLUEc8eXFxIgC5YYJ6KODd4/XWZTSw71KpFVnX9eZwwQaalrl7dvEPcqVMUvUJtWfXyAho31maR01uWQ0LoQyAtjeIkz55NLhdCiO7apU3WkZamTRIh4sDevEnnSHS+tCX4k5LIP7lfPxKyajcMvR+vcI154glqwYiMlOmQ7eHqVa3Izax14Z13KIrEDz/Yv42sIBKdANbdXuwhPV3rhvLgAWeoYximYMOC9zFAiMmhQ+llaDRSJzaAXBoA8mnVh7lSpwPOzMKbEwwGcgXo1Im2WbOm9WUVhZI+jBlD9VULM7Xg7djRvrSoBoP0SxZWv+nTKQOdvXh6ks9oVrKp5UVOnqSh3n8XIIv61Kky6QUANGpEvtvLl8t5H31E50cQGEjH0mDQZtRLTKTj3aoVlSM+wH77ja4xtbAWrjVr10rR5eVlfT+CgqTvdnKy1tJfoQJZm4X1Ulh4y5eXmfXeftt2Nrbz5+ljacYM6hCqxpaFNzlZugR9+23uZDErVow6UKan03HNLrGx5vVjP16GYQoyLHgfA158kV7wIsSYurlenZhAj/jvxg0ZBio3BC9AonHdOrIk2hKbiYkU7uvLLyl1rxq14M1KYoIXX5QRIjp3zpkF9XHm1CkaWhK8lSpRqLFBg8iqqQ/DJihdWvoJe3trreyiM9+PP9I5XrWKhFlSEnUuu3+fRGRMjNZHWbhF/PGHfYIX0LpoqD+gxo6l7X3yCU0LwRseDowaRRbr2FjghRek28GNGxT5QXRoXLCAxiMjpS+w+HC0JXhPn5ZW19OnKTtbblChAn1gXL+efbcG8ZHg6yvveXZrYBimIMOC9zGhUCFpgVS7LejDVunXEVai1FTy8bVlfc0pBkPmVlJfX+oUVq6cefOxuglX7YucGZ6eZGHu2pWa3B93S212WLtWRu5o1878/1KlyNfa3Z0s6w0bWs9WJ0KQidBtX3xBHxGic5twqxGh8ACyCpcsScu4u5PFXCDO5YYN5NYAZF/w+vvL6z8+Xlotw8Np/vLlVO8DByjEHECRLw4ckB8Evr7kSuPvLwVv3bo0tCV4hQVdoE5Y4Uj8/KhjJ0BuGtlBCN5ChShSBsCCl2GYgg0L3seQZs3sX3bnTrLM7dpFTdLC2uZMvv2WetbrO8h17Upi5a23pNiyl549SfCVKuWoWj5eiI5azZpJsWSJqlXp40dRSBiXLEmdywSpqdJFRLiU7NhBghqg8GcVK5LPuBDAX31Fw4QEEp7r1mk7IzZtSufz7l2ZDS0rglekFNYjLLZBQfJ6KVMGGDGCxlesoE5ga9aQRVu0PHzyiUwfLVwaWraka1K4RVhCCF6RAfGPP2x3vssOU6aQdVoI+ewKXuHyERzMgpdhGAbgxBOPJd98Q8LEno5Z7u7WUwE7C39/ijagp3hxelHnhm9kfqdFCwrVJsSNNZo2JXeSESNIoCYkkJuJwN1dupqIqBtvvUWWz0OHgHr1yGVC+Ow+8QS5Svj6UlkDB5r7Xru5USi9WbOkq4Pe31yP2i1G7aKhKBTj98QJikkNmKenfvZZ2r9t28jSuXMniXB1Su07d8j9QgjKJk3I99cWQvB270779PffZOV+/33b62WFbdsoCkbVqiR6rbmeZEadOuRy4uFBorxsWRnHmGEYpiDCgvcxxN8fWLjQ2bXIHexxi2DMCQ21LxQZQAJt+nQZGk4dw9dgIKvv9esyc1n37pRY5NAhcoU4eZIEb6dOsrPfu+/a3uaMGWRBjYkhFxR1ZAhLqLP9qQW0wUB+wPv2SZcMfSi1cuVImB8+TKLvjTdo/oIFsnOnq6s25rQ9LR9C8FavTr7C48fTdhyJsDj37Ekd/7IreMPCZDrvR8GdO8DRo2RRrlVLG++ZYRgmL8AuDQxTwHB1pWZzgT5L23vv0VB05AIocgBAgnfuXOo49scf9ifpMBiovMaNyV82s4+ap58GZs6kOMt63nuPfHUHDqRpSxnpRMplEZd5xAgSvs89R+J26lRtB85ChajJ/+RJ6WesZ+5cWq9OHfJjbtDA8WmnhU9x164U0u3WLRlSMC+zdy/w1FOU/U8dpo5hGCavwIKXYQogL74ox/VZ2t54g6IffP01TV+6BBw5QuMNGpBQzMwHN6cIq3HDhub/1alDsXmFENS7NABS8G7aRJZdkUL66FGyoiYkUKIK9faaNSN/YWt+s23bkn+zpXTXjiA+XvreVqkiXZFEfOWssGcPhaA7fZrcQO7dk6EJcwO18I+MzL3tMAzDZBcWvAxTAKlfX4atEyHdBD4+1PlLuDSMGiX/y0udAtUhyfSIBBUAdaoTkSUEtWpR1IoOHYD582leWBiFxhPJMTLj4EFKJPLFF1mtuWWEO0NAAP0GDaLpzz4joS64dYuE9/Xr1sv64Qfym/7tN7LEBwfnrotDp05A+/Y0zoKXYZi8CAtehimAGAwUxWDSJClUrNG1Kw0tZXBzJiI8mbXOWL/9RsJ3yRJzwVu7NonA9etlauWdO8kXVXSGU7NhA7B0qXQ5AChKxA8/ZM8Cq+bmTRK7omzhTyyy8qWmUvIO0bmwc2fywe7d23qZVapQRr6KFWVHRnXnRDVJSeTvnFPEhxMLXoZh8iLctYBhCii1a9MvM3r1ItcAEas2rzBqFFk5rYVh69GDfoIyZUikurlZTs5hS8zPnEmW0u++k9Ec2raldM3t25PbQHY+BtLSSIxXr07HGZCC12Ag6/OBA+SasHAhuXkI95Jdu6yX+8EH9AMoNFtSkmU3lLQ0cg/ZtImEe4kSFEmjefOs7w8LXoZh8jJs4WUYxiYuLiTucst3Nbt06iQjMNiD8OOtUkWbQc4e6tcnEagW/YUKAZMnk0VYLw5v3SIhuX277XJPnSIL75Ej0kVBHTEiJAQYNozG166VsYcF6mQt1nBzs+5z/fChzJbXqxd1KmzZMutW62eeoXCJAAtehmHyJix4GYYpEDRvTkORfVDP2rWUjGP0aPP/xo6l+MSNG9u3rUmTgJ9/1ib1sERAAEWQ6N9f+vDqQ6R1704h3UaMoIQfavQCWGBPLGujkYT6qlXk1uHpKTswqrPo2cPp03KcE1wwDJMXYZcGhmEKBO+8Q2l7n37a8v/R0cDmzdIaGhtLP1sxeqOiKCSXuztZnAGymC5fTuOHD9t2dyhbFpg4kcaF9VjfMbBiRZnGWGTBE/z7r+UoFYUKUZ0OHaL6/+9/5B7RpYu0GF+5QjGLixQBbt8G5s2jMHBNmgBbttB+2Bt2TS1y2cLLMExehC28eZmNG6ktNbv5RRlGTd++FJ7AWqDZfI67O1kyrWWjCwmh4Z07NPzpJ/L7tZWBbc8essCOGSPnbd1KAhIA7t8HLl7MvG4HD8pIDLYiYUydCly4INMb//uv+TKpqSTU79whgQ+Qi8WWLTKLHiCFqRD4BgO5fQQGUr3tfeykp8tjpi6XYRgmL8GCNy+zbBmZiPJrWrVHyeXLZLr67besrzt3LvV+sjde1aPk4UMyEYpu9ikpVFdL7fK//kpZAWz1dsoPrFlDKdWstfdbwZLgBbQJOPTUvrQa+9EQnudOmOYtWwaUwWXsRDN0w2qrwvHhQ0pPfOcOdR4sVYoEao0a5sump5OQ/vhjEuHCmmxJ8N67R0ODgcQrQN/NgErERkWhkf8p3Lun9TN2c5NieuNG6/ut5s4drQtFdDTVt8Bw4wZdLA8fPrptnj5NH7C2YtM5ih07KKXg7t25v63HnbQ04MwZ+3yKmEePwpgRGxurAFBiY2OdW5GuXRUFUJSmTZ1bj/zAxx/TsWzbNuvrlihB6/7+u+PrlVN++onqVrcuTa9fT9MeHory8KFcLi2N5gOKMnasc+r6qOjUifZzzJgsrXbmDK3m6akoGzfSuIuLoty8aX2dtEZNFQVQVqOrEhenKElJihIQoCif41NFAZR9aKh8+KFc3mhUlAULFGXrVkX591/aRkCAoqSnK8rdu4py/brl7aSmKkpgIC2/Z4+i/P03jVeqJJe5elVRwsMVpWhR+i8oSP53/748/VFRiqLUrEk7d+2a2bZmzaLlWrWy77iJ/QgKktuIjLRv3XzBCy/QTv/446Pf5uDBub+t5557dNt63Bk+nI7VunXOrkmBISt6jS28eRmRduno0QJmMskFdu6kYVYtIgkJMkXVuXOOrZMj2LOHhkePkmlP7GdqquwFBQAPHsjxAwceWfWcwv37NFS339tBhQqU2S0lBejYkea1bQsUK2ZlhaQkuB2mnMtP43fc2HoWf/4JxMUBLTzpGDdwPYyPB8ebVlm4EHj1VbLQrl1L8+rWpUgYwcHadMdq3N3JaF2mDMXTrVWL1nvySWlMWr6cGjKEO4U6IUdgIPkCA8Dp9ZfI0m80Wrymn3qKhrt32+f9IlwYSpSgxB1AAeu4JgIob9v26La5bx8NLeXediSKIu8j0XTAWEc0uXB+7TwJC968jBC8iYnA2bPOrcvjTHKyfDFcu5a15qbz5+V4XhS84sWnKCR21SJPXd/YWDl+4ED+bnIT+7p3Lwl/O3FxIY+XYsVk6/RLL9lYYf9+asIE4AIFnnOmY+NGwAAjGoAEr0v6QwT+R+foxg2K2wuQd4zw+61Xz776zZ8PfPQRidwiRciLZcEC2SFOuCAMGgR8/z11VFMj3Bri1mwxzZs3IQqbN2uXq1CBhHVamvZyun/fchg0IW7DwgpoLF7xnBYfn7lNZKRMM3jkCH2h5Rbnz8svKLGfjHXu3tUOmTwFC968wIMHFMNIj/qLWkSbf5wxGp1j+jl4UAqfxMSsWSrUovFRCN64OPs/bpKStE6cGzZorbfq+sbFyfHo6Cz7t1rl5s1H/3CPipIvYUsIwatOIWYtzZiOEiXIBdjbmyyupsQVMTHmvc8yrOm3fcsBAEpuWojzB2JQEefgk3LfbLmBA6lqIjOcENVCiGZGSAh1oLMUUzc5WRr333oLGDCA4g2rEcI64KAUvP9ujsLJk9rlDAYKzwZIo+XmzXQ81GmmBWrB++23lMTCXhGfp4iLsy+wsR4hBE+fdrwoTEw0v+7UVt3UVG3eaTXnz2tbdrKDuKiAx1/wpqWR5TU3P/bFMXoUx8popGsjPxsvHAwLXmeTlERxhZ5/XpvfU1G0N40jcn9aYtEioGhRoE+f7HdKSEy078E6cyaZgJYsyd52sov6oQ1om/oz41EKXkWhPL5Vq8LM7GaJw4e1HWUWLdJaNK0JXsByU+ixY9Tebq8YjomhlGVNmjy6DjsJCdSWX726NjSAGrU1e+dOMo36+tIwM2Jj0aBGEk6dosMbEAB6UT75JJ2X//6Ty2aYP/c1HY4jqAP3tCSs7/E9/hytdRk5t3Antm2jDmf161OM2xdekP/bK3gtER9Plt1du0j0Fi9uPfMcbUdB5ZtS8IYhymSVVTNsGF0iX3xB04sX0+U5a5a5QVFYc4sUIReQtm0pLJpd5BURdeUK7YCtfM2WUBQo6n1wtIvBs8+SL4r6uhOtOtamAeDkSfriiYjImSBSm/gfd5eGsWPJF2jFitzbxqO08H7+OeVOz05H7KySmEg+WI+yY2YuwILX2Xh7U25SAJg9W85PStK+WXLDwpuaSm/hyEgSoc2a0RstK9y9S+KjfPnMhZIQ1F9++Wi/SvWCNyt+vGrRePUqqQpHMngw0LMnne99+6jLvNFIWQYyO0biRdewIQ1FFAk3N/O6q0UgYO7HqyiUtmzhQuD11+07P/v3U7nnztnfpT+nrFhBVuWYGFJheoxG7cfXunV0LAFg/HjbvvD379PHZ7NmCA+nZn0A9CFx+jTdL999R/PS0shlAkBa4xaYjiEAALcf5qJ8FM1Hhw4AgBLX9mHjH6lo0IAaG6pXJyHp70/bEL61WeX6dbIWP/008MMPNO+pp6zH/K1bF6iC0whLl9Zxa4K3enW6rFxd6ZBu2CAP0R9/aJdVW3izxOTJ5PS7alUWV8wFjh6le/v3301uKnYRHw+DWgRkXBMO4/BhOgHqjCNCVAsnbQsiO2V9RiDlvXuls3h2UAvevPJxkl1y2782NZW+QIFHI3iPHaPhP/84tlz9M1JRyCDXrRswcqRjt/WIYcGbFxCBPpctk8JE/3AREewdyW+/UYDOokWlyWnUKHNxZA1FIXF0+TI1k7/yim1BER1Nw1OnHl1orPR0KbRFBoHsWngVxb6gqvaybRswYwa98CdMoCCrgn/+yfxFJV503btrY2d16UJDWxZeveDds0fO27TJXNVYQv0R9uOPmS/vCL7/Xo7PnWt+T+hbGnbskC+fK1ds79fu3WTFUlvOU1KAcePkMj/+SFbmI0doWKgQAptWxwo8j1iXILoXhBDv2xcpASHwQRK6lqB4YEKMli1LRruDB+1P7qCnRAky4pUsKRNdiA5nlihUCHg2eItmnjXBq+bIEXnrAuYNNELwFilCl9y8eaQbM0Xcl7/8YsfCuYywXiYlZU0Q6Z/TjvTjffhQms9FC196urxPBw6koQXBe2OdqkVwzJjsvTuuXwcuXZLTMTGPd/O5uIhzy61OLXIfheAV1+zNm44r8/XX6UYWHTEBuuHXraPxb7/VXhOPGSx48wLNmpFJJTFRCgfxIA0Koi7a9+/LjgqO4ttvafj22xRHskoV2u60adrlzp+XX65qvv+e2mfd3SmA6M6dZL21hvqtOWdOTmtvmaQkekOLB/OxYySCAgJk13u94L182XpznRCNwnHSXreGyEjLlqJLl+RLTJ2tYNIk2TTVvTsNP/vMtk+heNE1bgy0bCnnv/qq3JYQbuIjRjh2HjqkbZ6aMoWGInDre+9RPMl//rHeKUbtZrN6tbmozg6KQpYYS2UdO0b77OZG19u5c+a5dsV+imtSINKY2WrBUH8ECHeJ+fPpeilenNKSxcWRuhStBs2aoVwFFyTDGwuM/Wie8Bdu3BiebZoBABrdWk0fS6pjXqIEEBpqoR5padr7LSWFsk3oMBjoG/nkSerMVqcO0L7KVZv+yh09yFXmdknyo7AoeDPunWPH6P33xBM0u1o1Gv7xh/Z9rly7Dj88QFgYfV+88Yadt7e4D3bscL6Qyq5bQsZ6RhjkuvZE1FEUOk+3blm3KN++LY+L+Lg8dYquDV9foF8/mnfxovbZCsD/vOpj9OhROiG7dmVNiIlrXPjIPHwor8vLl7XPhXPnHHP/5yZ5RfCmpNh+rt+/b9950gteRaGWqJxEdPr7b9r2r7/KsodQ6xWCgmSr8OPKIwiT9tjhlDi8M2dS/L6qVSlY57ZtNF25sqLUq0fjv/5qf3kxMYoyY4aiNGxIcXzv3NH+/88/VKa7u6LcukXzVqyQgUHF8t98Q/MKF1aUSZMUJTGR5j94oCi+vvTf5MmKsngxjbu6Ksq+fZbrVKSIDNTp4aEo0dHyv/h4CkaqKDScNElR/vjDvIyEBNpW69a0X6KM1FRFmTNHUYoXp/I7dVKUkycVJSKCpjt2VJSJE2m8Tx9a59QpRXnmGZpXu7bcRno6BVSNjZX17dCBhl9/Tf/rj6eagwdp2bfflvOuXVOUvn0VxWBQFH9/RfnoI3kcWrSQ22nbls6dCLr655/m5d+8qSjHjtH/BoOixMUpytKlMhhqaioFkwUU5cIFWuerr2j65Zfp/AKK0rOnouzdqygHDlA5IshrWJisD6AopUtT8Nhr1+i8C8qVk/sA0DKClBQ6hgKjkc6xnnXrFKVBA0V5911FWbOG9h9QlOBgRZkyhYLjnjqlKOfOKcqrr9J/zz5Lx1ac1+XLFWXDBipPBIUNDVWU9u1p/Ikn6DiIfTxzxvJ5E9cKQOUoiqKUKUPTs2bRNSmOR0iI6XpISaGiK+G0XD80lPZ5yhTzYzl9uvZYJCYqyunTtJ+TJtHxDwhQlEuX6H+xr3PnWq634NAhRXFzU5QXX5TzYmMVJTnZdA4SvIMVBVDmVaZ9OYsKpttOURS6hwoVUpR9+0yxiMVvzhxFqVNHUbyRoAxof5munWefVRRAuVGyoXLpkqLs3KkoXbooyrhxCl2HcXHW61u+vKnwy9sy9vXWLUW5fNn2/WWBBw/kY0zsqxITY77gP/8oSv36irJpk3b+J5/IHRXPhwzSE5KUtIQUbdni2t60SVEA5SSqKgmufrT+sWNyWUvvkHv35L0jrpUJE2i+mv37tc/L1FRFmTdPGyS5ShXzGOHJycpDFzdFAZTFeEV7EsuXp/qrMRrpuapn4EBaZ+hQ+Ty5fNm0z0rJknR9d+kig0Lr9yEpSb4zFIXigef0vXrvHh0LPYmJ2v1IT6cA1ALx3Gvc2L7tGI30rE1JyXxZRZHvbIDuQ/1xVhS6/jw8FGXYMDkvLk7GTE9Lo2DaxYtbvnfUN2upUlIzKIqMya6Osx4ZqSj//acoFy9q17WGeKdHRNB0377yGfrPP/IZun9/5mU9IrKi11jwWsApgjc2Vl5su3crym+/0XiTJory2ms0/skn9pWVmkovVvWDrmNHuqnmz1eUJ59UFB8fmv/SS3K99HQSfkIAigee+terFy27YwdNlyhB6xmNivL88zSvXDlFuX1bUQYMUJSKFRXlyhVaxtWV/hc36uTJVNbhw/TfwIE0Lfbd19f8pq9fX1uf116jskWSDks/Dw9KyCAeCK1bk5gQx1sIdbEf9erRPmzdSv+FhckX4htv0MPKYJAiS8/06bSsnx89LG/cIAFnqW5vv03HR9RFBCzPEBLKtGnasn/9Vbt+zZo0PyGBxPt339F0tWr0v6ijSLwxaJAU/vpfhw607P/+Rw9sPz/5klD/Bg3SZjIQwdZbt6b1jUYa9/BQlPHjSVDXq0cvzZ075TJTpsgHaFZ+mzYpytGj5vNPnKDyAUWpUIH2vUED+gBRFPlithRA32gkoafeRny8nL53jzI2CHEP0MdoVJSiKPTuBxTln8DWNNKlC5V78ya9LMLCpGgAFKV5c9pmSopG+Gl+kyfTPVu4ME37+CjK2bOWrzlFkddo2bI0HRtL190TT8jpjLKfcDmkKIASawjQltGxIy3z0UdKYiJd6m5utNuXLyvKwveOKwnwNq+ru7v5C7VJE9p+xj08bRrd+r6+9F320MfPtH5fw2LlyMgV2jI//9z6vqpITKTL3dubHiVKQoKitGtHiTWOHNEu/OGHVHa/ftr54qNCnNcM0pNSlAteVZUr7uWl6H3mGfogvX1bSV36s6IAyja0UI6GZnysiQ+TP/6g61s85wR//WX5fFeooD2Gq1Zp/z96lOoNKMqIEbSMmP70U7neITq3d1FIKYS7SnrdetqPWP177Zln6DyJDyxBt260/OzZMpvJkSPyw8/Sr3t3rdCrXZtO+Kef0rundGlF8fIy39aVK3T93r2r2CQqip5Lbdpo56elUfKdsDApcvv2pevyzBn66BN1LFfO9jYSE+ljWTyTn3iC9slopGdHv36Wxax4b4mfWmwL3n2X/vPyov8vXKBj37Ej/X/zplx/0SLtuu+9R8+CK1doWtQvMJCmxfu6e3eaPn5cvnMBeqfYQn2MvLzoWHtn3Ou7d8tjCihK7940HRlJ18kzz9A7xpoxIRdhwZtDnJZpTbyQ586lhwOgKJ07K8q332ovZEvcuCFvsMOH5Qvy88/p4gVIfKpvyMKFpSVLsGOHVgiKh+mcOfLFlpREby+AhKbg3j0ptIWgBhRl4UJ6kInpCRNo2LMnrTduHE27uZEVUVhTAbJoCOLi5PzBg+W4yDrk5UVi8+BB+uoFFKV6dXpRKIqibN8uXyxqi7ooJzqa9kFMN2pEwyefpIcPQAJTiJ527SyfCyEuAUqJJQRmpUr04BDCxNub0mMpCs1ftEg+SMX+ffSRtuxhw7TnZsIEy3UQL6sZM2haPAzFR9O//1IGpcBAEgY+PmTdFYgXb2IiWflLl6bzI64BIbzLlCElJOpz7JhiZhpU/556ispVWz5ffpkeoMWKUZ3OnaPzXqEC1S84mIS3qyutL+rWrx+9iMW1tmYNiQyAPoz0iPRkfn7mliiRZk38/vc/ehmJ8yTOy8SJVPa8eRorU+vWdIj2T9tDVjdLrRNJSXQfifvx4EFFWb2axl1dSXDXqkX3hThWBw5o69WoEb3cLdGkCS3j6Un1VVsIk5LI0gMoSV6ByqhBMdr/BHXq0Dzx8aOquqIoSurndC2nu7gqxuBg5XqTXko6Mj5aVOnVNqxNMc1PPfSv8ssv2t3wRoJmxjy8phxHdXksAG2GyYQEqxYqtXH26/HJ0rIPKMr332sX7t+f5nfqpJ0vPtbFL8M6HD1vlWnejQ3/0geIOH9//qnETKTn4m/orqwPf4vmjx5NZY4aZf6MVBT5LGnXjj54liyR21ULPvGMEr/Zs2U6O2GhFi1wQoAoiundsQltTLpYURT58Xr6tLY+olVs1Cjt/CefpPm//CI/oDdvls+gBg3oHn32WWodFM/Fr7+m9R88sP4cWL1au623Mo7dW2/pT68WYV3Wf2D9/LMse/NmmidE/pIllMJQ/O/nZ3sblp5fe/aYPiQUQFHOnzdfT1jfxe/iRe3/RqM09oh3mxDAok6i5Q4wzwoq3t8rVtCzR72t+HjSCuIZoShSQ7i40DAkhOanp9OzpVcvrXBXi23xXAZou2I58Uzx9aV7csQI7TotWtg+trkAC94c4jTBK276zz6TX9GvvCJvcnUeUTU3b9JLX7wghDgVgmzhQnlBenrSS/u//6w3cURH08OvbFkSo+LrVjxA9uyhZj/APH3rjh3yBhO/8ePpIQtQc77YnwoVaB1hzQRIvKqtfuLmVRSyLqhvXPHyEj91k3pCAj241C9zIWC8vGS6zM8/l5a9kydNokDz69eP9tnSg9vSg09Y5AGyhtaoIR9wguPHqQnbGnr3C4F4MX/zje3m4vffp+WENVOcr0mTzJc1GrVpiK1hNJIVBZBNqeIjTBzPbt3kB0uLFtKy3aWLvC42bJAfVRMmWLaWZAWRSviHHxRl2TIa11uARP3FudAfB7XoAOgjc9cuGs/MIqTY11poQnygDRokxe1778n/xTXo4SFfKE8+Kd1cFi40LzMuTmvNuXNH2xpw4YK876pWVRb8YFRSkfEBIz66FEXe48WLW667cAH68ktFUehU30bGOipr6vgBl03bfqncHsXPT+7y0aOKUjvgouZ4pxjI+p3i6SfTY5cuTYXdukXPjR49ZD3u3FGUmBjl+HH5HTZwoCKfoeKn/yB8+mmar/8geuop7XoZLSNRzXua5l2cuJzud5VguTHwC0UBlPl4VdneNMNNaehQKnPIEJquV0+7LXFv9+2rKApp6/sgMfrwpEqMqj+cAXoeA9SqJu7X5ctpXvPmcr0MEfU13lMmTlRtt1IlWnbrVm19hBAuV057L4rlt21TlGbNaHzlSnn9TpmiLWf2bJofHEzT4lh5etJ9FxIiBd/8+dp1W7eW69pyIfjxR3k81GmxxcceQEaPqCg5/eWX8t0hfpZcOATCPa9VK3IPAqgFQIhTcUz0fPmldhuiZUmgr0OdOlrDkHhniWmDQbuP4pk5cyZ9XKrLOntWfpSI++bzz2m6Rw+5XFKSfA8CWrefEycsv+PULS1GI7lcAGQUEJZ/YayrWNH6cc0lOLXw40rJkjS8fl12oggOlr1Fzp+33IHo6FHqALFnD3WwEZ1vRLiqfv0oCkDXrtRZacQI6rzkYuX0h4RQzMKLF4FPP6XeMQYD0KgR/b9vn+ywpI8w37w5hXF69VWgf3+ad/Om7DAQFkaxEAHqiBMfr+0VvXw53Wb161PnpP37gRMn5PIAhUADgK++Ikd6gCLti+0BgI8PRc9XR+kXeVuTk2WcpebNtemhLKWIqljRPHaUyKE6b5758uoyFi+m+nt4AM88I+fXqGE9YCog89neuqWdLzoolCpFca2sIeorOtmJzlwBAebLGgz2hQowGIC+fWn89Gkais5gY8fS9bRmDR1bg4HSgJ07R9fK778DvXrRst26UYSDJk0ozI21OFr2Inp+3bmT+X6KVGfffqvtLKTvqKROblG0aKZVsHYrWUQcw6VLZTiDPn3k/5UrU7yy1FTZsbRPH7mMOiarYOdObWeVmze14feuX5fXTvHiiIwyIAoZccTEvZmWJsdv3rQc5/gQRZsQwYPnzQPueGTcVyIFN4AW5eS2Iy/GIz6eUiNPmQLUrg2MepPukRhDMBSDAR4KPdd2VHyd7g1RB6ORQlk8eCBjU6ekANWqQalVC28PeIiHD6mf54wZAP76i5YRz0zVPqSlAVcP0f4lXNZ1XBIdgIKDabh/P3DvHoL3rjMtkn78FHUaE9y8iZRb9Jx2DQlGiy6BNF9cg2KoD4MozkPGPX7uHHAHIVTOvTvmy4l9Eb3jX3pJ3q/inaE69qKD2xHU1d4Glp4piiLzR1+8qI0yIa6F0FB5XGJi5Pr6nNsiLWFMDD3Xxf1TsiR1RI2MpCDN6rIFIvpNTIx8NltCHZFAdOLeu1cbDu7kSWiyqajfP/p9s4Q4luHhsmPg8uV0vwoshbbUdzTTT69ZQ8PGjemBId7bgqgobb0UhXqlAnT9i/N05455J+sbN+TxEJ0dxX7UqEHhT8Vy6k7b6o7w1jrKvfyyHDcYgOeeo/Hhw2lbYWEyI01OE53kMix48xKWBG+hQvTCDQykh7+lLFzqC3jzZnPBC1DPyjVrKBpEdmncmIZbtsgHv6WUSq+8QoFBGzSg6Rs3tA/P0FDaJ0WhKABin9TCYsQIEuiADDIqHopC8IaGUuiu8eOlMLCFp6cUt3Fx1JO/YUOt4LWUwatiRRK4QlyXLCljJi9caJ6+Vi14Rc/lLl3k+vZgTfCKh1jx4rbXF+m8RGpkUQ8RhSG7vPiijPMLSMFbpQqdd0GPHnSegoPlMu+9R0Px0TZ9es7FLkAfaABdY0JkWNvPF1+k8339OrBypZwvBK+IYhEdnSXBmyXataMyY2JIhdWpIz8CATomGTF8TS/EiAhZD0sv6y3acGO2BG9CoRKYPh1S8Ipe65GRdE8K1Fn8AHrJCtGVcd+XLAlUe6q43GYGzcvKbfd8Kh7t25NmEJdOtyZ0j3jXqABDzZoAgIdwxeSHQ2g/XVyAhw+hREZh7YyM+N5xcfS7fBmIioLh+nXc3ncJfn4ZYheAknHvJTVsoTlWUVEUyCT1Jk173NPta8bzVsmIiR792w5gxQq4PpT3tts5neC9cQOl/Wm9Tq8Ey2tOL3ijorSGCnFPZ9zDZ88C0QjV1FeUD0CGGRSo7zPxEX/9Ou1Perop89oR1MW776oiQFp6pqSkaD+URMy5hw+lqAoJsU/w+vtT9AixDXH/FClC17SLi7xX1R9Tqanad9hPP8EqasErrkURzlE8x0+ckEYSsY4+MoOtSA2qD0O0aUPDe/coeoIgO4JXhJl84w3L8QOjomS9PD1p+OOPdF7V+x0dbS541eI5NZXOk1inRAmttlCHHFPHzheao0IF+Vxu1oxiKKp5/nkaiuugXz95fViK5pSHYMGbl1B/rastDgaD/MpXP3AF6ofFmjXy61YteB2BELzr15P4DguzLbzEw1j9hS2sceIFv3w5lRUSIsOdhIWR2H39dZr+6Se66YWFt1w5uY3mzYFPPrGcb9US4hgDZKXy8ZER89WCt2VLssoCZIk1GKRFduBAMikVLUoPKH3QUSF41ZH4hfXDXqxZY9QPY1sIC++lS/RCs2X5zAqhoUDnznJaiFkAGD2aPiIAKW7VNGpEGcsAekiKD6Kcon6JZiZ4PT2Bd9+lcZF5LTlZpmcV4iIqyvqLPae4uWmvB7V1VyAEL0AivEwZee9YelkLwSssfzdvaq1+N26Yrp3/7hfH7dsWBK/+40oEtheIVp2yZeULDoBBfZ+rt5fB2y8/wF9/QRP+zDU6Q/CGFwFatwYA/IJn8PfZcMQnu5nE/dYl13Fmo3wpn996DemX5Au7Ck5j9OiM2zo+HoaMl/6OuxlW4gxhNWECGQFDQc8hd2OqNoxWxsv+3zL0kR16bDOUQYMAAJtAVkm/q6fMLIeu92m9sMo2BK/+2OiuqzNnpIVXIwTFOq1by+dbnTrSAg7I50BqKq177hyQmIhkF2+cQWUAKt1l6ZkirIaCn38mESxWMhjoY1+kzrt3z8xCrUG9DfEcVH8whloQ9lev0jtAiKy1a63Hgldf05cvk8AS4RxFaMUTJ7SthmqDi0B8hKxapRWygPYZ6+pKH8kCIeizKnivX6f7x2Cg56ewHJcoId+FkZGyns8+S8/SkydpP9XXz5075vGf9VlSb93S7oe4R21ZeEWZlSrJZ7NojVJTt640OgHAa6/JEJDx8dlLz/2IYMGbl7Dm0gBIwfvff3RBLV0qv870gldRqCxHv6gbNKAbVlgE6tWzbaETD2O9hReQN/nPP8vpN9+k2LP/+x+JzXbtSKDcuUPWXb1LQ3YoVUqON29OQ/EmVjdj165NsQhnzpQvmKlTSdQNGUIPox49aL46042iyAe9eFgEBgKdOmWtnuLc3b0rLcj378tMb5kJ3mLF6Nw8fEjH3lEWXkDuV5Ei8kEKkBD6/Xdqhmva1PK6ixdTSkx9rOeckBXBC8j0sbt2URPcgQNkaQ0JkR+JuWnhBeQxdHPTvlAFbdpIc2hEBA3FB5T+5R0TIwW7WPbGDXMLb4ZYCK5B146Z4NUHsNcLXp07gwn1fa7ensCS1Uedj/izz4CJEzGh2CwYjRm3U8azsGah63iyhBS8g7pfw6ppcrp56GkMHpwxkXG+4uGL627hNC/jWB08CHggBYFQiVxRh/R0k+jZ4d4WwzEZD+BHGdQMBuzrPB4AUCj6rPaYiIx/AAZ8FIxnXrMheNXHQycYz5yRFt7/dkSbL1e6tPywVFt3AXpOiufX9eum+p3xqAUj6OPH1MpsSfCKc+PhIS2ZO3ZI4R0cTKJPvIeuXpXrZCZ41RZegSULr2i5q1qV3nMpKZRUxhJ6C+/Jk3T+ihYllzE3N3rWCdcWsY4lwTtvHmW5VMdDB8xb0dQfpCJJlCXBK97Zwt1NLXiFm0aTJnQfP/ccxUZet06+99UW3ooV5Xvu4kXtObNk4bUleO218Ir6BgfTc3r2bK2boMBgkImqWrQggax2r7MRB9zZsODNSwjxIJrtAHPBe+oU+ci+/DKQYYHQCF7RTOdo6y5AF7XaumDJnUGN2J/bt+XDTwje2rVpKG7cWrXoofv55/SyB0hUCmF86JC5S0N2sCV41T68RYqQtU9YAwGyUI4ZI60tInOb+iEcFyebL997j77Up0+33wItKFxYWkvFsRPbCQ7OvDw3NymQbt1ynIUXIB/cSZPooaj/4ImIkILSEuXLk8BxhPAWqF+i9gj7ChXol5ZGllERZL1TJ3nMsujDm2Vq1qQPg1WrYDHVWUAA1cdgkL7flqxjgEzcULWqvCdtuDSUa14CigK8MtyK4BXXlt6lITPBq74PsiJ4CxcGRoxA5aYkFPbvh+kFHZpyHU1VgrckruG/v+T0i/VOmxpiRJm+5YrgtY+0wmrDBmDXaq0FTrmdUQeVha/X64UwFcNRHhfwb88xwJIlcG3aCA/gB1fjQ+0xuXED9y6QyLkYG4zIFBuCV4goRbFp4U24kiEEk5Lks7F4cXLZGjUKeOcd/ZHUipkM/+7/XKTrmk3BKyy8/v7y2rl0SV5j4t4S7yFh4fb1tdyHQFwLWbHwqp/rAwbQ+EcfkY+oOjkOYO7DKyy54v0hMk6qhZw1lwZxPYuhfhvi/VWzJiVZ+vFHEniA5WydQjCK1jW1FVb43YtWUhcXMvDUqaN9/6gNQ8KV4NIlcwuvXvDqW2euXZPHv3hx64LXkoW3cGFqVXrrLet9Oz76iPr3CHdDb2/ZkSEP+/Gy4M1L+PnJF7V4CFgSvMLHSWTfERew+gEkOpg5GnHDApkL3rAwumGMRulTpbfwCvTT+m3s3y8fYjkRvGqXBmGFtOTSYI/IUT/cBeIh4+dHD7Kff7bcLJQZBoOsgyjfXv9dgfoF50gLr4sL8MEH0probLJq4QWky8Cff8rUts8+q30hi2vB0S0lgt69zf0z1SxZQvdNM8rWphHjasS91bChtulSb3HVu8PoyxPXWatWNDx5Utuxz5rgteTSkBXBm4HYzRkzgKQQyy/oTjWu4YlQlQCOU3XgyyjTUKSImbAKCAAahGs/FBJFxzXxovf3R/Ey7hg8GIhGGBaWHg289BLCihhwCtXM9yEqCoYM14yIF4Lx8wY7LLyxsbKVplgxGI3khSAsvJWCMwSvOJY+PnQtP/EEdQy19KGrFjNnzgAATqRXMf1tJnjV/RTEufH11ZYjLLDiOIr3UEb5Vu8Jey28lgRvuXJkxBGubVOn0j4L9L6sly7JD5AMP3CNQUaItbQ02clWuCRERcl9EUOA3lU6H2sAJMRfeUV7jPQIwStEt9rCK/pSWHp3qe9DcS+GhWkFrzULr7V+IUeP0r64utI5VNc7s05rKnclq/j7U8p10VfEYNC6NeRRWPDmNcSFKSy1wndKCN7Tp4Ft22j8+nW6uMTNJ5oZgNyx8AJaIZ2Z4HV1laJNNAWKB2iVKtrOT9YEr3i5rlpFTVdeXjmzuImHSPXqsunJkktDVgSv+iFs4UWebfQWGb3lwd711WlAHWHhzWtYEryZ7acQvD/+SMfV3586koiXz7178sWQGxZeewgIkPc9IO+dhARts6F4mVepIq/J48e1HaWuXctc8Ir/mzSh45GaKjuU3r8vXYr0931mLg2WLD4W7pPXXyfj2I0bwJc/0jWecPyCRqD1qH8VHaupLFSnT8tnpdqiKK6JxER5rHSW8bhzGcsL8ZDxrBWplGfPpmzkJ08CVXqqzkO1atT6oigISqUyO74UjGJV7BC84hgHBQHe3rh2LcOY60r1DUiJ1i5XvHjmHTvVfT8yroV/Uyqb/rbLwuvnpxVF1iy8wr0qM8F786ZtC6/apUF0PitXjt4ZEybIjmhq14S7d7UfYNeuSaOPJcFbqZK8xsX7R9xPkZHyvomOlmIvOpqsygaD5We4aCGMjNR2VlYUcwuvWvCKe0cIRDXWLLzh4TRuy8Kr74QuyhIfp8WK0THNSqc18V7MKkLwsoWXsRu1BRKQD5pSpeiCSk/X9i7es0daDISvkcFgboVxFC1akIWveHF5Q9pCiDNxg4oHnoeH7ATm4qJ9sasR+6F+KGYpBpSObt2oqey77+Q8S1Ea7BE56oe7IDcEr96lIasWXrUFw1Yos8cV8VK+f1++SDOz8LZqRf7h4t7p2pWmg4Pl9SWEoLMEr56AANmRUi3exPmtXFleG+J+EW4xt25JsSCuC2sWXnVHGiEURIe1MmXMX4him1FRtI30dMt+omos3Cd+fuTl4eYGnEum56Drgb3a9a5d076k792TxyKjzB1niuDJDv4wutOx+mXOHQwZApzeadvCm+AVjK++kv+npJArxKlTQGBj1fOpRg0zwVezparTWkoKiV21IBKC14I7AwB4FNP5tmalNUe8M65eNRX45aoqpgYsU988Ued79+R1LwSv2sJ744a5hVcYXgQ5tfDGx8s6CAuvOhqA6Bh7/Lh0axDHpHBhug/S02U4MiF41QKwRg15/IQIE/+fOqV1CxAnQjxjw8LkvaOmcGEZQUH93H/wQNZTb+E1Gm33P8nMwnv5svZ+SkuTllm94G3ShIbCp1/sv3gPnz6t7ax57578MNP3G8oq4t3CFl7GbvTWO9FkoY4SoGbTJhoWKUI94EeMoA5BuSVsKlYENm6UsVYzQ//AFg9QQL5UK1aUcQL1VK+uffDkxJ0BoAfl5MnSFwvQujSIB449glXsm/oFkpsW3uy6NIiHuZ+fffF2HzcKFZLXohB6mQleX1/tNfDsszR0cdEKOoNBG23DmRgM5j6QiqIVvPrnR/Xq2pYU9YvcmoW3eHHpYy8saNbcGQASMWp/86gore+lnYIXIOvqF18A10Hiy+vODe16ly9L8Siap4V/ZIbAOnW3CPbsNSDVn8TV3t+j8e23wO0T2rjCaTcy6pDxor+VEowRI6gBTRirhg7N6KdUTWfhVd+Dbm5YuNIPH45TPXP1Pp5WBK8woCshdF4TrugsvPa05gihuncvmYvd3VGtc1mTt4zJ4BYUJMWaEKPi3Pj5aUOcWbPwCqwJXrWblyXjQWCgvB6FqFa7NAjKl6fzm5wsD5I4JiVL0ocXQKJXbTBRW3jVglcgBKIQhAJh7c3suBsM8nirz7EQt15e8n8x79Yt2g83N1lvNeIeuHZNik9bPryAPCZ6wSu+ckSrhth/USdxMQQHy+ec+IDMikuDJdjCy2QZtYVX/XAA5E3t4iK/gIXgLVWKbsaJEyG7LecSbdrIL+rM0D841IJXtB2KoSU8PbXbUj8UHYV44CQnywgU9oicoCDpUydeZI/CpSGrglc8zB3ZUSwv4eoqH95JSTS0Z1+FW4OfH5ARfxWA9tyrxVxewJJV9sEDOgbly9P/6haQ0qW114t6XF2WvjOVuCcPHqShpdjeAhcXea3po0MA5oI3OVm+2C3cJ++/D3z7q66lS1jNLl4kMe3mJp1+xfWdce+5FKMyH3jRs6ZXizsYPhyoXJhE3EMDPVMN0VoLr2exYDzzDF0WwmujTh161E7ZYF3wpgcFY+kyA76e4oo0rwzRq242BswFb8b64lvlgScJSyVa58Nrz70unrFqP1F3d5NXj0l/WOoXYMnCa8uHV5CZhVedJEl9jg0GrR+vOr6t2sLr4iI/ukQrg/qYqFsXK1WSz+Hy5aWor1HD8gcgoG0lBeSJsMeoYMmPV+0OoI/SIM5LmTLa97lA3IfCCuzqSh/xYh9v35biWtzbosyiReX23NzM36Vi/8PCtNsuXVqKbyF4c+rSIIxsLHgZu1ELXn0zkrCItmpFcWIBaYFRRx/IS9iy8L79NsVO/PJL22WofQZzauG1hK+vtBYB9oscg8HcrSEv+vCKB1p+9N8ViJeowB7B+/LLJOBGjdK2MKiv0bziziDQW3jFi7psWXrRq/3mAXqeqK8X9bgoKyWFhIcQ0cWLS2H7zz/0ESiEr7W+AWp/9swEr9iOh4fFTjcGA1Cnk+65oQ9zV6qUFC86wetVhu69GBe6JppWjMbkyUAx14xjVpn8WysHai28pWoFY+VKMvYL3fDPP3RIP51XBnHIeKHXqqU5jufuBpse1cleGdedELzCBeX2bRLqFkKSAUC1lnQu/JR4KEnJWRO8Oje4xNJV8OWXMs+BRn/onymWLLxxcdLqKu6rwEBti15mgle4cwQEmLfeqf14xXaKFqUOemqE4BXWWPXzTy2O1QYRV1fqy1KyJL0j1cfPUiupsErqLby2jrt416qvcyFuCxeWHwdxceR+YMt/F5CCV8SvDQkhYRscLEWkaEEUH37iYyI4WNa1dGlzl0jxn4uL9t4vXVoKauEekVMLL7s0MFlGfcHqL7w33qAerHPnmh7aJvKq4FXfZD4+2oeapycwbJj5TapH3YyaG4IX0Fr1siJy9JEa8qKFV5BfLbxA9gRvWBhF//jgA+18teDNrQgN2UUfi1ftziBQ33MlS2rvL/W14+MjX/jHj5PVy82NjmWVKvRfQgKwfTt9NNnqG6CO1CCEgLjX9RYfdWIWa25RXl7ac1qpkvaeKl1aZsXTCd6ASnT/3k7XdZDKOGZutapr66FPKwwpeGfOJL0/dLgL1vVehriJs7S+0gDiPYJNl1uSh07wlitHxzQ9nbZnxYe3QbtApIEscA8u3ZGWRns+bnXL3A6qgpEjgb//pmm1y6bZM0Vt4fX3l/eNiH4g7gUXF+3HibX7Qu02AVh+DqotvJbcGQR16tBQL3j1Fl59a+OiRWQRLVxYe70HB5s/2zt2pGFWBK8lC69a8KoNVffu2Y7QANDxUN8H4h43GLTC3t/fvN9MoUKyrmXLmp8X9X6onwOlSsmyrlyhljHROsad1phHhi3B6+dHPVgrVHh8BK+lJtSs8igEr/rBnB3Bm9sWXnVHoOwK3oJi4XV1NbcWZYXsfvw8CvTZ1iwJXvX1oQ46r/8PkPsqfHRFWl9XV6n6Zs2iYZUq1q8hdaQGIQREnfQWH3vvEXW9y5TRPuPKlJGCV+fDG1qDyr2WRNfElUPR1GouPhKEn6c4hhkW3jvphUwt3UJrAWR4++IL4MVlXRAw4h3t/gJI8go2acFEtwzBKJqg1Ra469c1gldRgA8/pMSN9eobcNdA9b137k7WPm59fDTvCrfqldG/v+y/ZJeFV7RwiWMuxI/6vlK/j6wJXnWrF2D5/rFk4bVH8KrdDdRC0FqEH8C8RcPLS3sNd+tGwwsXyCptz4dGZoLXzU1+HNy9m7mF181NKzLVH9xqgVusmPY/gASvqGvZsqQRhPDU74f6flK7NFy+LD/6XF2z/55gC2/mzJo1C+Hh4fDy8kKjRo1wQPiKWWHlypWoUqUKvLy8ULNmTfz555+a/+Pj4zFw4ECULFkS3t7eqFatGubMmZObu+BY1BeoraYFYTkQ5FXBa6kJNavUrEkP3pAQ+yJDZAf1yzcrYvVRuDSI6BGig4a9ZetfNgVF8AYE2Neh0hp52aVBb+FVhyQT6K066hed/kUurGOzZ9NQLVaE+8Lq1dppS6gtvEI0iDpZE7yZfQBnJnhF8/SVKyReMzrqlKhH98eFB3QeN/x0h6IvZFh675XIELxxcdRUnCF4R3wdbEq6VbUqsGABZa01JbawtL8AUv2k4H3gqhO8gYHazmAqIWswUF6bGTPoUR/rnpF84vQ12flSLexsoTpWpdtXwYIFMpmhTcGrDkumKweA9l6wR/AC2usvJxbeGjXoeSfCRdpr4bVWF7Ev6n1q00ZGP7p4MWsWXkud1oRwVfvxZmbhBbTHSX1fqM9/8eKWBW9EBLmNCGu1+tzoP34Fagvv5cuy/uoOwFmFLby2WbFiBYYPH47Ro0fj8OHDqF27NiIiIhBlKVc8gD179qB379547bXXcOTIEXTv3h3du3fHCRF4HcDw4cOxYcMG/PTTT/jvv/8wdOhQDBw4EGuFQ1Nep1Ah6fNkS/C6u2tvoLwqeC09cLKKlxd95R85om0ucyR50aVBNPmmp8smxiJFLHd8sISXl7Z5raC4NOR0P9XXQl5zabDHwmuvSwMgM3eJl7L6/wYNaCh8C20JXksW3swEb04svKVL0zkX96owfPj4oGQVP7i5AZHpdE2EIhpPPw3TR0J6eHmkgFTsw5tRJsEbg2BTBl+AsqqK7OFxcfRtYdI4quP0MFAK3jjoXBoCA7UWQZ1Lg5r4jE527ru20j0fEmK/v776WGVcC2XKUIPgp5+qltOHOrRm4RVYsvB6eNh+N2XFwiuea/oWS4As12L+0aNaH97Klen5VqyYbSOIpfePuL8DA6l+atcYR7g0qIdqwWvNwquuk7qegFbwFiumPR8GA+3Dc8+RyOzZUy4nsObSoPbhvXIl5x3WALbwZsaUKVMwYMAA9O/f32SJ9fHxwYIFCywuP336dHTo0AEffPABqlatinHjxqFevXqYOXOmaZk9e/agb9++aNWqFcLDw/HGG2+gdu3amVqO8wzqsCf6Tmt61A+JvCp4AwNl83J2BS9g3jTraBzh0hAfL8PBOELwurnJYyaanO11ZxCoH34FxcKbU8H7uFh4k5Nlh5PsujQ89ZTWOmzJwisQAtgSasErVKEo98EDba94ewWvEHtublQvvYUXkJEaRHrookXh5kbvcpG9rEmFO2ja2GgSJYUqhSI5gI6j8VYk0u9IwWstQeX48WT1FfkQ1ELUECwF7z2jBQtvxvFP/fe0tKgWK4aNG6kvoOjflexH13Dw4Y00o25d+61t4hyHhSHevRASEuhS+fhjSuhhIisWXm9vbWdeIXKLFrVdL/U1ZMvCe/Om7HRt7WNKdFz75x9tqtxChejg7dljOy57aKg0EOgFb5UqtB/i3jl+XNtx0xriOrx9W8a21sewVWemE07Utqz12bHwBgbKfVeHmxTH39tb63dtzaXhzh35HMluhzWALby2SE1NxaFDh9CuXTtZGRcXtGvXDntFMGkde/fu1SwPABEREZrlmzZtirVr1+LGjRtQFAVbt27F2bNn0V4ddkhHSkoK4uLiND+nIi7MzC4+8UJRhwXKaxgM8uGRE8Gb22RX8FrKLKTuDJRTRPmOELxs4bWPvCx41Rbe8+dJSAYFaV+S4hoJCtKGmwLMLYYGA6Vz1a8L0Itd3BceHvb5Sp4+LZupxfPJaCRxfvUqxQkXqZzttfCWKkUv9NKl5X/iZf3kkzQUPbQyymzcGLgDuiaKuUWTIMmwVLsWCUFgRVrO434U0qMywpIVDbb6GNUHx4C/P5LdSAy6hqoEb3rGR6WIQxwYiBsutB8xP/5uWhd+fnj3XdJ5W7bQ7LQg2kjhmxktlmpzc2aIY1WlCkaNosfPiBEWlsvMh1d9feg7ggoDTGbvGnstvNu3U7SB4GDrzf3Cj3fhQm2qXIBcHjJzcVO/G/WCVwhdcZ0uX05Dd3fzfVcTEkL3g6JI9x3RMVJv4RUtyyVLWo81r66Tup6Adv+KF7fuU61G7K8+S5+4RsQxCQyU4v2PP7T1zg4clsw6d+7cQXp6OoroHnpFihTBbXWubxW3b9/OdPkZM2agWrVqKFmyJDw8PNChQwfMmjULLdRB5nVMnDgRgYGBpl8pZ1tL27enG0ofikePuGGLF7e/mdsZiIdoXha86gdOVqyzapcGteUqJz6kasTDa906GtrbxKlfH2ALr73kZZcGtYVX+O9Wrqy93p54gpYTsbpLlCBL2RNPWH6R9+kjj5l6fw0GaXmrU8e2O1G5clpLcc2a2hBQ8fFkavzqK/o4tOf51rgxiY9WrWha/VwW48LCK8ykGffunDnA97+pVKpQqkFBVKYq2YzrA+qwU7a+dQODPvwxDAbc8aB736OojNIQnaa79gIDEdCpOVLhjqIPM8RRsWJIS6MW7sKF5SFWCuvOjQXBm5xMqY7NaNuWPrR79DAZFAMCyBNgxw4Z1cp0fqOiyG3CloVX/7wWAisrgteWhVfEYm7Y0Przsnt3EoriI0qkys0KeoPLU09RmaLDWpcuVOapU3IbtqzGLi7y2t61iz5uRNg+4bbQujUNd+/WzreGPRZefac1ay3AasGrRmQIbNdO6oU2bWgoBK8jLLzs0vDomDFjBvbt24e1a9fi0KFDmDx5Mt59911sEgkaLDBy5EjExsaaftf0WXIeNSNGUDNIZi+EFi3oxWFDzOcJhBXGVpOos8mpS8O9ezLerSPcGQSNG9NQWIzEtL0UFAuv+kWQU2H/OERpSEwEtm6lcX1a7sKFyfK0ZAlNu7pSauD9+y2/yP38qK2+cWNKsaxGtKjpWtbM8PAATpwgS2pMDDVVu7tLy2F8vBQtX3xBTf7W/AcEVaqQUJ0/X+5nUBBFbRHWsjp1tM3uGfeery9QsUmGsIqJkR+jGccv3o+Wu3PgAlzTqVm62pPWXcj0rtMAsMetBVLhDveGdU0W3qgU7T2mBATCr3UD9Kr6H5biRSgGA9CkCdzdye04OlpqDJcwneBVh4rI4NNP6btF6CgTTZuSgBw61CR4AwPpe6BlS2mIRGgoiUujkayStnx49R9H4nw1b25WLw1qoWXLwqsv1xKVK9N1JTIhqmOy20uLFnTdiy+LZ5/V+rzWqUOuERUr0rQ9yY1EGru1a2ndmBg6keL5/Oqr1BtRCMvMBK81C6+/v7S66n14rQnepk1pf/W6wN+fXBfWr5fzxH0tXPHyuYXXaWbBkJAQuLq6IlI8iDKIjIxEUSsvmaJFi9pcPikpCR9//DFWrVqFzhnWjVq1auHo0aP45ptvzNwhBJ6envDMrc5Q2cWe+lSoQE/g3Eoj7CjGj6d4u7aaiZxNdgVvYCB1nkhOltmoHCl4R42iTgnJyXSeM3tw6mELb9YpXJjiRbm55b2PBD8/eb39+CPNEy9fNfoWH1sWK4B6aPXvbz7/3XfJmpWZyAFkhih9fRMSSFiJZ/czz9gfolB9/AMDKXqByKoF0H42aiT9AtT3nnh5K4pMxZohJvZeKIKnANzedhohAFLggfrNrYey0wfHiI8HXoibhwB8g3Odg2Rm8STt9XItLhBPFAGio8tjHZbi+KvT8eVceYzUhk2PEiqh4+MjBZiKJUvo1JtcK9RknHO1hbdiRdIyIoEkXF1JmN29S4I3KxbeLl3ow95CshAN9lp4BbY6QwIkQH/+mcRadj5Av/qKnJnV9dZbiRs2pI+0RYukddYWXbtSj8ANG2SdOneW953BQPHm6talsH5qtyFLWLPwAmQA27qV4syJ8wVYF7zNmpEAt/S814ccERZeQU4svPm101q5cuVwV/RKVHH//n2UszP1q4eHB+rXr4/Nmzeb5hmNRmzevBlNRABBHU2aNNEsDwAbN240LZ+Wloa0tDS46B7urq6uMIqexvkNteN6XkWdTjKvUrIkWTlCQ7P2lav2UZ47l4aOtGSL7EB162Zd7AIFx8LrSMEL0EtywoScl+NoDAYpROLj6ZoV4YhyA1dXagJWi8ysIIRUVJR8Eebkg1Cdzlsg3BoArSByd5ciRzRXZxw7QzFarsRZspLHIBj16lt3Q9JnYT55ElBggHfRIISGqsKupmuvvV3HAzXidP3BEMDV1dSar8antOoarl3bYtP9Z5/Rd4kF468JteA9coT6TYkEXQC0YcH0Ft6gINnJ2NIzOygIKSlkdBcNWmaULEnvJHd3xwheQXh49q5DgyFzkQ7QMXj3XfMWE0s88QRdaw8ekP8MYN46AlDr5rJltv3fAesWXoBybf/xBxnBgoLkdWGrU7s+M541ihfX7i93WjPn8uXLSDd9MkpSUlJww9R2kjnDhw/HvHnzsHjxYvz33394++23kZCQgP4ZloY+ffpg5MiRpuWHDBmCDRs2YPLkyTh9+jTGjBmDf/75BwMHDgQABAQEoGXLlvjggw+wbds2XLp0CYsWLcKPP/6IHiK+DMNYws+Pmnwz6/VrCSF4k5LoYZ7Z1/yjpKBYeP39ZTro/CzsAe3LsWtX251hnI2w+ojg+56ejm+RUgtevcAS4kEkp8gQWyWGPosoQxEUUsh/N9Er2OZhFMWkpZHngIimJXSMnx+J0GQP7bXnGhyIPXuAVato+vhxMr6VLUv97oSXBwD4lZVC55hLXQwfLvM/CAYOpPjAZcrAomgG5Hyrt7s6LJjewquOEmSlz0XPnsCAAcBHH1kpPziYKrlkieWWSg8PWbny5fO+McQSLi6gWHegi8LDg+LhZhdxzH18bItzFxdpkMksipO9tG0rx/N5WLIsuTSoY9n+9ddfCFS9WNLT07F582aEZyExwPPPP4/o6GiMGjUKt2/fRp06dbBhwwZTx7SrV69qrLVNmzbFsmXL8Omnn+Ljjz9GxYoVsXr1atQQmXMALF++HCNHjsRLL72EmJgYlClTBhMmTMBbb72VlV1lCiLVq2dvPbWoHDUqbwnLgmLhFa0It27l7/0EtELkueecVw97EEJKKDtb6YSzS+PGJASMRnPBGxICnDsn/Z0zPhaqtiuB1GPbkdSqDbxjbiKksu0Xvbc3XVaxsbQror+gELwGA1lTfxweCEyV6206GIh5qkR1p0+Twe7ePXI1UHsQlG0ghd/VkLqYOhW4f5+0o5qDB4F+/egxYymgkdrCaxG1hVedWlhQqhS5gFhwO9myRYY8XrFCBjYwo29fK39kEBpKFc3Mjzsv07UrMG8ejbdunbMPuRIlyFJsz/0RGkpNDTmxxqpp1478jQHHWXgVxfH3uSNQsoDBYFAMBoPi4uJiGhc/Dw8PpVKlSsrvv/+elSLzJLGxsQoAJTY21tlVYR4HhgxRFEBRypZVlJQUZ9dGS1wc1Q1QlBs3nF2b3KVmTdrPZcucXZPcpU8f2k8/P0VJSnJ2bWzToQPV9dlnafjEE7mznX79FKVSJUV58EA7v2tXef2XLq0o//6r/f/cOUXp2VNR1qzJdBOdO1MxEycqitGoKNeuKcr169plXm97UW4PUMq5XFKio+m/N97Q/KX07avbQHKy6c+j8w8qrq6Kcvq0/PvMGUU5cUJRLl9WFBcXWvTiRfN6BgTQf2fOKMpHHylKrVqKsny5upKv0wKjRsnK3L1r+nvrR+uVe216KMZbt83K/vdfuUqVKpkeMus0bkyFTJuWg0KcTGKionh7037MmvXottuyJW3z++8dU979+/KCOnQoZ+WIiyM52TF1s4Os6LUstd0ajUYYjUaULl0aUVFRpmmj0YiUlBScOXMGXSx1oGCY/Mwrr5CVacECK3lInYi/P4WD6tUr74XYcjQtW1ITanZ6cj9OCLNgt27Z9619VAirj3BpsLezWlZZuJDMp/r41/36kf/79OlktdSnoa1QgZJWWPK/1CFcpdevly3/+iiBQ0ZpWxdijIEYMIDGW7aU8z/4QAafMOHpSREEmjVD7T61kZyszSfy1VcUWWrhQhmpTYQ0FhiN0oUyIICSgf37rypKAyBbCNROuBkW3sREoNO3HVBoy284EW3uf1uzpgwJLrrxXL5MBkJh+bWLAQPIupvXWyhs4e1NTtUtWgC9ez+67Q4YQH7POXGhUBMYSP4pHTrYTtOcGepWgrzqx/sIBPhjB1t4GeYxxGhUlPh4Z9ci97l5U1FGjFCUW7ecXZPM6dePLD6BgTTs18/ZNco2Fy7QLri6kjFLT58+ilI8LE1jxnXBQ+WFF+j/lBRFGTlSUdaty/q209OlUXTFCkX59lsab9tWu5y6QSchQVHeeovGx4xRLTR5Ms0UlkI3N7p3FLJad+umKNWqmWaZcf26PA5Go6L88gtNN22a9f1i8hnC4m2p6SGXyIpey3ZYss2bN2Pz5s0mS68aa6mBGYZhcg2DQWtlyK8UKwZMnOjsWtiH8GsUPakcGbLvEVOuHEU7OHuW+hV99x3w9tvy/7g44GaUG9I8feGekgDFzw/L5rtCJPn08KAQxFnh2jXqA3v+PFlrAepUL3yHd+2ijm2iw53w33V1pXni8GuShwoLr0gn6+tr8rcsWRJYvZr6YYm+WIING6hPk4iWlp5O5YokYyEhVOTnn5P1Oq8HD2JyAT8/uiDzaMe1bF2SY8eORfv27bF582bcuXMH9+7d0/wYhmEYxszFILdcGh4R6ghwO3dq//vyS8ps5hpMbg2GwEA8/3zOOtMHB5PQPHmSvhlcXEhwVq5M4jQlRdbjwAGZR0BEpbKYC0B0WhMJlnTn6JNPSOiqAiQBAF5+mVrSL1+WAjsmRptVt00bcrn4/ffs7zPzGJPHk09ky8I7Z84cLFq0CK+88oqj68MwDMPkF/KZ4B01ilz2d+0yzwth8rcNCgRu3XRItBBfX4oaJfxjK1SQkb6eeorE5d9/k9Ds3VsGwxARGsTQouAVLbMZrSLXrpGAFuWrjXRJSeTeeeYM7XdwMPkFx8TIJBhhYcALL5DPcOnSOd515nEkj4cmy5bgTU1NRdPM0t4yDMMwBRu94H2MXRoAEnrBwZTd2CpC6DooPN7TT0vBW7WqnC8E7/ffU46Ub76h5HvPPCP7pwr9IaywAMzi61656wdcobTFP/0ko0mpNYu3t4zsBsjs1SJhmyh22DB2ZSjQ5PHkE9m6NF9//XUsW7bM0XVhGIZh8hP5zMJrFw4WvOrAR+qkWCJfwIMHFKwjOJgSXLz0kswYKwTvpk1SON930yZ6uHLXF+HhJHYBua46i60eEa5VbeENCcl9sasolNDy5Zcp38jYsbm7PSaL5EcLb3JyMr7//nts2rQJtWrVgrvIcJTBlClTHFI5hmEY5jFGH4yfBW+WKVmSLMqHDlHGYYH+UFrKm6M+/OvW0e+vDb5o5+EJl9QUAMBDLz8gmcp+4QVKHLl5s1azpKdrMx0Lwau28KoTph05Qtlw+/RxrHvD6dOAOofUnj0U4k1kQ2acTH608P7777+oU6cOXFxccOLECRw5csT0O3r0qIOryDAMwzyW6C28VtLV5iscLHgBYPFicll45hnt/GHDaNi2reUMvfqgJeXLA2kPDUgJkOehdWdfREdTh7sRI2S11YK3Vy8SrmvW0PRHH1Fnuu7dtS4NgqFDKUStozuv3b5Nw2LFyD9ZUSiCBZNHyI+d1raqnXkYhmEYxhJqwVu4MOCW7UiYjw8iMYg+K0UOqF7dsgV33DjqyPbii5bXq1iROqF5e1M2WtEYe8c7BN6gOGcGfz+NWBanTO3S8N9/1KlN/NewofxP7dIg6NQJ2LGDXCjefdf6fl27RiL6zTdl3dQcP04W3NdfJ7F//z7NDw+nPnf791NHOhGmjXEy4gLJTy4NgvPnz+PChQto0aIFvL29oSgKDHkxfzLDMAzz6FEL3oLgzgBQ4Nzixcksmsv4+gLvvGP9/6JFSawGBmoF5T23UJj0qc4MrNcsaWky+oM68xtAmdmSkmhcLXg7dyZr8ZYt2jjBenr0IFeNixcBvSfknj1Uzv37VIZa8AYG0uW0fz/FRWbyCHncwpstl4a7d++ibdu2qFSpEjp16oRbt24BAF577TW89957Dq0gwzAM85iiFryPeYQGuylUiEySOQnA60DKlpU+t4JoxYJJNwOhf4XgvXABePiQ5guj9ZUrlEl97lya9vDQ+gtXrw6UKgUkJ2ujO+gRaYqnT9fOP3iQYgoLgRsTQ0ORvyQoSIrvM2esl59XOXGCzovaJztfkMctvNkSvMOGDYO7uzuuXr0KH5W3+PPPP48NGzY4rHIMwzDMY4xaBRUUC28e5fhxckVo1QrwD1cJ3kwsvEJQVq4sQ5YdPgy89hpZcQGy7qobdw0GcmsAZEg1PUK8AuSeIIyCRiNlsEtKkqJW5LNq3BgYMwbo2ZOy3gGZW3hTU6WFOi/www8k8C9fpg+HfEUet/Bmy6Xh77//xl9//YWSwlcpg4oVK+JKvjuDDMMwTLYoiC4NeRRPT7Kc+vkBNT4IBbZl/KGz8IrJ5GSKziAEb5UqcpnwcBK0Dx6QH27x4ubb69yZLMB//AHMmKEVxAAJcMGHH1LSC39/6qB36BB1Slu4EGjaVCt4Gzem8evXSTjWrGl7v19/HViyhNwrWre2vWxuk5RE8Y5F57u4OOp4l288QfNjWLKEhASNZVcQExMDT5GmhWEYhinYqN8TBcWlIY8i7FPx8UCSbwhMZ8aKhRegjmsiA3F4uJxfty4JWVu0aUPxgS9fpmXV8YQB4NgxGnbuDHz1lZzfvj1ls6tTR1p4ExPJUuvhod2fwYNt1+HGDRK7gFawOws3N2DiREoWsncvid34ePPofQBlrIuJIYv8Y0N+DEvWvHlz/Pjjj6Zpg8EAo9GISZMmobWzP6EYhmGYvIGLixRUbOF1Kj4+FCgDAM7eU8UQ01l4PT1lAon4eGld1fsBZ4avrxSk779Pnd/UCMGr92MtUYIyxg0bpo3sdv8+WZtPnbLfgFiiBLBvH/DFFzL7nDNxdwf69QN275ZxjePiLC9buzZZpC9fflS1cwB53MKbLcE7adIkfP/99+jYsSNSU1Px4YcfokaNGtixYwe+Un+qMQzDMAUbIajYwut0hJV36ATrPrwGA/Dzz5SkolAhKXgt9cFLTSWfW2t88gl955w5A8yerf1PLXhjYykT3NWr2nq4ukrRe+8eRaSoXl3G9z1zBli2jHyKrdGoETByJI2np1tf7lFiMJDLBqD1ZX7syY8W3ho1auDs2bNo1qwZunXrhoSEBPTs2RNHjhxB+fLlHV1HhmEY5nFFdO0vW9a59WBQqhQN78B6lAaAIqp17kzhxKwJ3mLFyBocFkai0xIBARQrGKDOZkLcpadLH97atSnk2Lp15Mqgp1Ah0uTx8TQMDpbW5pkzKZXyihXm66mFeHw8ieVy5cg9wlmcO0dZ6GJipJC3ZuG9epWW13WVytvkx05rABAYGIhPPvnEkXVhGIZh8htLllA7NGcHcDpC8PYeFArMyJipT8emw5rgFXF9796V4cMs8dprFGP3zBng11+BV1+l7GgiPm+FCsDHH1Mnuc8+M1//3DmZr2TtWu1/9esDLVoAZcqYr9e2Lfntjh1LUST++otE5K+/WhbWj4IvvgAWLSI/3swsvOJcPVZUrUpq3sJHVF4gWxbehQsXYuXKlWbzV65cicWLF+e4UgzDMEw+oVo185y4jFMQIurCPZVDrgVxsnkzRUu4csW64BX+wG+/DXToYH2brq5Anz40fvQoDYU7Q40a9H/r1sDOnRR7V4+t5Hz9+gHbt5sn33j4kHx358whQeniAnTrRv8dOWK9vNxGfSwzs/D++CNFdFBHs8jzuLnRzllKm5cHyJbgnThxIkIsJO4OCwvDF198keNKMQzDMAzjWITgvXzDnUIgeHpaTIE8diyJyQMHZNIHveAVbgXNmpGrgC0GDCCr7rff0vQTT1BIMVtph3PC+fNkMfbxAYSXZcWKNDx3Lne2aQ/iWAYH27bwxsYCffsCEyY8ZoI3j5Mtl4arV6+irAV/rDJlyuCq2uucYRiGYZg8gRC8W7cC53dtR4XQWIu90Ro1Ik+HwoWB5cvJMqkPsiEsvELE2SI0lH6CcuUyDykmmD8f+O03Cmu2YAFlWfvjD9LqgvR06ggmoksIC3LNmnJehQo0PH/evu1a4rXXgKgocq3ITuxcey28YjmAQsMxjiFbgjcsLAz//vsvwtWB+QAcO3YMhcVdwDAMwzBMnkHtF5ocWASoZDlyxtdfZ15WUBANZ84E3nhDGyPXGikpwJ49WUsAcfYssH49WUQPHSIXCPW2Klcmq+3x4xTBAaAYtoDWbVxYeC9eJIEswoLZy927JLgBik1cujT5IUdGamMU20IteG1ZeFNS5HgejfD1WJItl4bevXtj8ODB2Lp1K9LT05Geno4tW7ZgyJAheOGFFxxdR4ZhGIZhcojae6F06ZyVJSycZ87YZ+1MT6eEFW3aAD/9ZP92evWidLydO9N0UJD59hQFuHNHTlsSvKVKkVBOTdWGP7OXwoWBVavIFUNYq1u0oOAjwqKcGWqXBlsWXha8uUO2LLzjxo3D5cuX0bZtW7hleJQbjUb06dOHfXgZhmEYJg/i6Qn88w8lgRAWRlvcvAns2EFi8ckntf+pw37Z00fJ1ZVCkF27lrWQzI0a0W/PHppWJ6MApGvF3btynhC86qQWrq7kSnH6NLk1ZCdKXvfu2ul//qHh4sUUicIWyclkEQbIwvv005SSuX59y8sK2KXBcWRZ8CqKgtu3b2PRokUYP348jh49Cm9vb9SsWRNlLMUGYRiGYRgmT2BJYOkZP57S/RYtSuKwUSOKeqDGVsIJayxbRtZLL6+srytCnwlXCoFe8N6/Ly24NWtql61YkQTvuXPAU0/Zv21FoaE1S7Y9ySOEO4OLC31sPPmk+UeEgC28uUO2BG+FChVw8uRJVKxYERWFYwzDMAzDMPmC+HgSei1bSt9YNS1aSJ9WezEYsi52798nsb18OU1nJnhFVIPSpc2XFXIlqx3Xzp6lkGkGAzBqFIlltX0vK4I3KEh2pLOGWvCyhddxZFnwuri4oGLFirh79y6LXYZhGIbJZ4hcFA0bWs+i9sorFO+2WbPcrcvZs0DHjnI6M5cG4U9rKc+JiNSQ1dBkW7cC16/T+IABFDVC7QOdFcErgmLExpI4NxjMLb1qlwa28DqObHVa+/LLL/HBBx/gxIkTjq4PwzAMwzBOROSisCW2XFwoTFflyrlbF33UNL3VVqQEEILXkv+uILuxeLds0U4nJmpFqT2CV91hDaAkHM2bA6+/br4sW3hzh2x1WuvTpw8SExNRu3ZteHh4wNvbW/N/jD2B+RiGYRiGyXMIwZsXxJZe8Fqz8IooDZYiNAiyE5rMaCQLr9jW3bt0XNSiVB031xp6C2/hwmRxthTSjC28uUO2BO+0adMcXA2GYRiGYfICQvBu2UIJJ778Enj1VefURW/RzcyHV1hvq1QxL6tkScpeVr48RUywkFXZjBs3SEy7uVH84F9+IQtvUBDw339A1ar2deDTC94aNaxbmtnCmztkS/D27dvX0fVgGIZhGCYPIHx4ASA6OntZxRyFmxvg7w88eEDTtgSvogBffEGhzyyFHXN1BT7+mFIcN2sG/O9/JFhtceUKDUuVktsWIrRSJbLGqrO+WePNNymmcGYd1gCO0pBbZMuHFwAuXLiATz/9FL1790ZUVBQAYP369Th58qTDKscwDMMwzKNFb/m0kH34kaLevq1OawYDCcvx40kkWyI5mTLJHTsGDB9OotcWIsRZmTKAjw+NJybS0MXFPrELUHSKkiUp9m5mqF0aODaA48iW4N2+fTtq1qyJ/fv347fffkN8xifIsWPHMHr0aIdWkGEYhmGYR0deFrzWLLwxMfa5Fnh5AQcOAC++CGzYQALZFsLCW7q0tHwnJFDSicaNc+bq0bQpJcMQ2xCEhVGEjM8+A9ats76+SGTB2Ee2BO+IESMwfvx4bNy4ER6qpNZt2rTBPn10aoZhGIZhHhvULg1A3hG8YWHmUSGE4DUagSNHgO3bKUOcLYoVA+bOpfEHDyyn9xWoLbxqwRsZCezfDyxcSHF5//zT9janTSOL8tGjct7Fi8ClSzKphuCll6jszz+3Xt6335LFef1629tlJNkSvMePH0ePHj3M5oeFheGOOqE1wzAMwzCPFXnVwjt6tLnPracn8OOPwNq1wOrVQKtWwKefZl6mn5+0Ft+4YX05tYVX7dLwxBO0vbAwYNMm4NQp29v7+Wdg6lQSuAKR3tmesGZ6Vq2i4enT9q8jMsYVVLLVaS0oKAi3bt1CWZ1X+JEjR1CiRAmHVIxhGIZhmEdPXhW81sJ/vfIKDc+fJ5/X8uXtK7dkSbKuXr9uvfOa2sIrxGpCAlCkCNCtG4nW69fJBcEWr75KcXerVZPzhD+yJQuz0UiRHBISyHIt4vcKxDHRRYW1SnIyifS6dYElS+xbJ7+RLcH7wgsv4KOPPsLKlSthMBhgNBqxe/duvP/+++jTp4+j68gwDMMwzCNC5akIwNzF4VEjLKEnT5KV0lrUiGHD6GcvJUoAJ07ILGp6FEVr4c3on2/qtAZQqDJ7sJRgwpqFd+RIynAnxHZ8vLngFZEc7O00t3MnHb+TJ4HFi+2LFpHfyNYuf/HFF6hSpQpKlSqF+Ph4VKtWDc2bN0fTpk3xqT1tCQzDMAzD5EkMBmDoUBr38XFuWDJANsX/73+WO6YdPAj89BPFxc0KJUvS0JrgvXdPhgVTuzQkJJAv7k8/AYcOZW2baqxZeKOjSex26EAd7IoUMV9XJLq15eerpk4dbfkFkWwJXg8PD8ybNw8XL17EunXrsHTpUpw9exZLliyBqz2pSxiGYRiGybN0705DIQqdidribEliTJ1Kbg1Z7cCVmeD18gJWrKAOYt7e5Orh7U31+e032uaMGbTdFSuonBkztHF0ASAtDTh8GLh8WetHa83CO3o0ifj584EGDSxbcUXHvMuX7dvX0FDqrGdrfzPjcfcBzrZR+4cffkDHjh3Ro0cPvPzyy+jevTvmz5/vyLoxDMMwDOMEhL+svindGYwbRyLSWtixOnWAJk2A994jgWhvuK7MBK+PD/Dcc8CgQTT91FPkzrB1q0w+ER8PdOoE9OsHdOkCDB5MLgNqbt8G6tenRBVqrFl4S5Uif1tbXaJE3Tt2tLmLFtex1UnPEoMGkZV/zJisrZfXyJbgHTVqFIYMGYKnn34aK1euxMqVK/H0009j2LBhGDVqlKPryDAMwzDMI+Svv2iYF2K9enqSVdWaa8WHHwKLFtH46dNkmbUHISiF4D1/3v5UvmI5kRgiOZmSWQBkzVUTE0PD4GDtPmQWpeHXX4FJk4AzZ6izWdOmsq5iXeF6khkXLpDVGMjcwvv338Brr0l3DpGcQ79fjxvZ6rQ2e/ZszJs3D7179zbN69q1K2rVqoVBgwbhc3udShiGYRiGyXPMmUPDzMJt5RWuXaNhqVL2+xyrLZ579lAUhZ49gZUraf6uXcCdO2SdLVVKu64QvIULU8QEdQQJfcJZ8Z8+2oU1C+/SpVSnqVPJOhwWJuP3Hj5M9c5qpzXxAQNkLngjImgYGgp8+SVlsQOkYH5cyZaFNy0tDU888YTZ/Pr16+Phw4c5rhTDMAzDMM6jVSsaDhni1GrYjRBxWfE5FsvevQuMGEEuE7/8IqMwfPst0KMHWVoBstR27gy0bSsFr6+vTBcsBKyIJiGw5h5izcI7bx7w0UckdgGyHot1RaSI1FQaHjlCojwzQkLkuL0uDRcv0lCIar1LxuNGtgTvK6+8gtmzZ5vN//777/HSSy/luFIMwzAMwziPrVtJtH39tbNrkjm7dpEPLWBuibVFUJCMvKCOPbxrFw0rVCCf4CpVaNpgoIxqW7bI7Gi+vpRi2MUF+OEHGqakSDcGQI7ba+FNTqahiLGbkgK0aSPH1cNhw+hcZcZzz8n4u/Z2WktPp+HgwTTMLNZwXidbLg0AdVr7+++/0bhxYwDA/v37cfXqVfTp0wfDhw83LTdlypSc15JhGIZhGMYC6uQLWbHwGgwUbiwujjrGBQeTO8HGjUD79sAXX9BP4O8PLFhAInnqVJrn6wt89x1FVihViqImlCihjXMrokeUKaPdvrDw6gWvELOFC5M4jY+XVla94AWkJTgzstppTXQSFJExhAAWfPYZMH48jT8OERyyJXhPnDiBevXqAQAuXLgAAAgJCUFISAhOiOBwAAzODt7HMAzDMEy+Rt1cn9UwaidPSnHauTMJ3k2bLC/r5gb070/jX35JQ19f6lAnLMt6C/OJE9Il4p13tP9VrUpxdEuX1s7XC94tW+gHSOuvWvBGRma+n4C2k56tBB716pGvcOXKNC0s1MKNQnDggH3bzStkS/Butcd+zjAMwzAMk8sULizHsxpGzcWFsqmVKUO+uQB1EFu5EqhZU7oz6BF+vplloZswgYbPPANUr679LzycrKR6hKgV+yXELpB9C+/rr0vhnZBAVmXhUqGncWMSvMKq/P33NNy3T7tcz54U0eFxoQAml2MYhmEYJr+gFp1hYVlb99YtEp5VqpDLQu3aNP/55yk6w5492uW3biXhKKJC6AXvyZO0bp8+FE5sxQqan5UktGoLrx4hhm/fllnW1BbemzfJUr1hg3a9yEjpdxwcbDvbmgjrJrYl0Kec7tVLjj8O8Qqy7cPLMAzDMAzjbAwG6lx34QLQrFnW1hXW0zNnyBe4XTuKp6soFGO3fn3t8q+/LqMXALLTm8BoBH7+mayn9+9TOV27SiGt5+FDYPt2cg8YOZLm2RK84r/gYJkuWG3h3bsX2L+f/G47dJDzRUzdxYtJjNti3jzzcgHA3V07LXyQAeDBA/NOeXkNtvAyDMMwDPNY8/77wOzZ9sfgFXTvTqHXDh2iaRGD1tubEi7o49zqLbr66UqVSHy/8ALw++8kEidOtL796GjK4Pbxx8DVqzRP79KgRm11LVKEhmoLr9FIYdb0oc6E4LVUpp4HD2h465Z2vl7wqoW/teQZeQm28DIMwzAMUyDx9QWmTZPT7doBM2cCtWpRpzI9aouui4u54PX0lCmOAeCDD4Bq1axvv1gx8oUNDpZRETKz8MbGUrkiJm9kpOyE9uSTwNq1VK4aIXjV4des4e1NGfYaN9ZGX9AL3mefleP6SBN5ERa8DMMwDMMwINH47rvW/xcCd+lSQJVs1qyMv/+mtMCffJL5Nn/5RY6np0t/WGsW3rg46XYAUPSE+/fJpWDlShKsTZpo1xOCd8sWsjg/+aTlDnOA7JAnyhboBa9a5LKFl2EYhmEYJp8gBG9iom33ieBgGbosK6ijL1iz8Pr7U9xgo5HiAd+/T/62QUEkYh88oDTJ6nBtQvAmJlKaYTc71Z/aheL997X/qUUuW3gZhmEYhmHyCcKlQaQWdgSKQm4JsbFakSt8dNUkJ5OwFVEfli0jwRsZScsL/9u//pIuGYoi53fpQuHRrIVbUxTahqcnuWyoBW+LFnLcaHz8LLzcaY1hGIZhGMYOhIV36FDgjTccV27JkiRCb96kjm9lylCECJGlDQA6dZK+wYKiRWl4+zZw6ZKcP2yYzIyWkiLH69ShNMwZSXLNiIoiUe/qCrRqJQWvl5fWoh0fr/XvfRwEL1t4GYZhGIZh7EDdac1RObgMBrLa3r1LrgZnzsj/RGiwiAjgjz9oPD6eQrD5+0sr8O3b5j628fEUHk24MwCZJ8pQu1TExUnBm5wM7N5Nvr+AucB9HFwa2MLLMAzDMAxjB0IwFi4ss6g5ApH1TC8kRWgwddSFf/4hS23nzsD06WSVHTwYuHxZu65wYxCC19ub3BRWrSJXCH2qYEA7788/KVqD4Ouv5bi+no+DhdfpgnfWrFkIDw+Hl5cXGjVqhAOZJGdeuXIlqlSpAi8vL9SsWRN//vmn2TL//fcfunbtisDAQPj6+qJBgwa4KgLcMQzDMAzDZAMheHv1Ap57znHlCsErsqEB5Ibw8cc07u0t5wsrrKcnuTSEhpKQVbs0AOaCV4Qk69kTeOkl7bb0ZYeEUNlqH151eDW1wP3hBwpRtncvZa1z5HFxJE4VvCtWrMDw4cMxevRoHD58GLVr10ZERASiRHA5HXv27EHv3r3x2muv4ciRI+jevTu6d++OEydOmJa5cOECmjVrhipVqmDbtm34999/8dlnn8FL5MpjGIZhGIbJBrnRaQ2QgnfXLsrK1q0b+dEKzp4lsV25slbwqsnMwuvnR8JYyCG19VYgLLwijbAQvFWqAF98IZcTgrdePeDVV4G6dYHr14ErV8wTVuQVnOrDO2XKFAwYMAD9+/cHAMyZMwd//PEHFixYgBEjRpgtP336dHTo0AEffPABAGDcuHHYuHEjZs6ciTlz5gAAPvnkE3Tq1AmTJk0yrVe+fPlHsDcMwzAMw+RnhIX355+Bjz4CatZ0TLlC8F69Cvz7rxSja9eSQPXyoigJiYnmgnfuXHJR2LFDW6YQvGXKUBY6IXS9vUnIWhK8ouybN8m6/OGHlPpYH8ZM+Oyq0wsLf2PRkS6v4TQLb2pqKg4dOoR27drJyri4oF27dti7d6/Fdfbu3atZHgAiIiJMyxuNRvzxxx+oVKkSIiIiEBYWhkaNGmH16tU265KSkoK4uDjNj2EYhmEYRo2w8KalAV995bhyheAtVYqSVnz/PU0//TSlHm7YkFwW/vnHXPAeO6YVu8HBNBSCt1gx4K23KDoDIN0j1AkmBGof3ilTqDNdixZA06ba5YSF9+FDYMMG6sAnLLsseHXcuXMH6enpKKILNFekSBHcFp8JOm7fvm1z+aioKMTHx+PLL79Ehw4d8Pfff6NHjx7o2bMntm/fbrUuEydORGBgoOlXqlSpHO4dwzAMwzD5jd69ZQzczCIeZAUheA0GEritWmn/9/Qk/9giRcwFb58+wPjxctnq1Wmojs6gRgheWxZeMW40AmvW0Ha7d5f/CcF77hzQsSMwfLi08OrTGucVnN5pzZEYMxJRd+vWDcOGDUOdOnUwYsQIdOnSxeTyYImRI0ciNjbW9Lt27dqjqjLDMAzDMI8J7u7SCpobgteeaAd6wdu4MdC+PY0XLy4zrAkL7+XLlFL43DmaFlbqzAQvABw6RJbeqCggJkbOF/WsWJF8jqtUyfsuDU7z4Q0JCYGrqysiIyM18yMjI1HUytEqWrSozeVDQkLg5uaGauquhACqVq2KXbt2Wa2Lp6cnPPXe3wzDMAzDMDpEh7XcELwHD5I7Q9myZOlVb3PsWPK9DQ+neWrZIiI0lC1L8XkBKXh/+QX44AOyBC9ebNvCqw9VtnGjdJcQySsAKu+VV6gjXMmSNK9uXRqyhVeHh4cH6tevj82bN5vmGY1GbN78//buPDyq+t7j+CchJGwmASIJQfZVZFMgIWABa67BB1GqUooICAgXBUWCkaUCtffeRnsfKFxKpdZWbK2iKKJSL5aC6FUDYZVNU6BIEAlBkSQQCGFy7h/HM0syM4SE5MxM3q/nmefMWebkN5wm/fTb37JJKSkpXj+TkpLicb0kbdy40Xl9ZGSk+vfvrxz3WZsl/fOf/1Tbtm2v8TcAAAB1SW6utGKF+f5aBt7YWHObnS39+79LS5d6nnc4zHlwly93BdnydboWLcywWT7wxsSY3RysGOSvD2/5Cm/Llq6f88P/ie5sb7durrArUeH1Kz09XRMmTFC/fv2UlJSkpUuX6vz5885ZG8aPH69WrVopMzNTkjRz5kwNGTJEixcv1vDhw7V69Wrt2LFDL1i9uyVlZGRo9OjRGjx4sG677TZt2LBB7733nrZs2WLHVwQAACHCPSTWRIXXUn4mVfdwa3UncD82ZIg5wG3WLOmVV8xjVuCdMsV8Wa6mwjt4sFkhHjHCs8JbnsNhdnuQCLxejR49WqdPn9bChQuVl5enPn36aMOGDc6Babm5uQoPdxWhBw4cqFdffVVPP/205s+fr86dO2vdunXq0aOH85qf/OQnWrlypTIzM/X444+ra9eueuutt3TrrbfW+vcDAAChw/3/rq/JwFu+emvNiyu5pgRzvyY+XnrxRfN9bKx5v/JTiVmupg/vhQvm3L2SZ+Bdvlw6fdpcwOKee1zLIYeHm5XmQGRr4JWkGTNmaMaMGV7PeavKjho1SqNGjfJ7z0mTJmnSpEnXonkAAACSzCA5ZIg5N+21DLzJyWZ3hhdfNPvwlg+8YWHmsZIS7xVed3PmmC9f/FV409LMWRnuucfcP3fOe+D94x/N6dAGDXJ1ZZDMVd/cF8wIJCE1SwMAAEBNqqlBa/37m7MsSBW7NLgf81bh9WfKFLMPr7Ukgb/A27atdPfd5uwLkvToo+a0Y5JnH95x46Tp06WOHT2r04E6YE0KgAovAABAsNixw9zWRCXT17LB7sfmzDEHtVkLTFzJv/4lHTzoCrgNG5oV49JS35+xQvH337uOuVd4Z892vXcPvNYcwIGIwAsAAHCVKjNnbmU5HOZ8tz+M0fcbeKOjpRtv9H2vPXvMJYETEqQ//9m1AEWTJuZ2yRJp2TIz9Ja3e7e0f78ZkCXp7FnPNnpjLS/85pvSfff5bpfd6NIAAABwldzGy1dbeLg0f75r31vgtbo0XLzo/17Fxeb8uZ9+au6XD7wREd7DriStWWPO13v5srnvLfBevmwuYpGfLxmGq8JrdbUIVAReAACASjpwQPr7369t4A0Lkx5+2LXvrQ+vFYJffFFauFDatcv7vbp2lf7yF9d8weUDrz8dO5qrtoWHmwPp3GeHsALvqVNSly6u/sZXs0qcnejSAAAAUEndu5uva+35581w+sor/iu8L79sbjt0kG65peJ1zZtLDz7o2rcCr7UgxcaN0u9/L/XrJ82d6/nZyZPNlyUtzQz3kmvQmhVso6PNoG51aZg1y1xm+LbbKvd9axuBFwAAIABUZtBaaqpZxa1s6C5f4T12THrrrYpz7npjDXQbPFiyZnu1Aq9V2XUftOZr7t9AEMBNAwAAqBtKSsyliyX/Fd6JE6UHHvB9H8OQ3nvPXGnt7rtdq6dZgXfQILO7Q8eOV26T1V84I0O66y7zvdVX1wq6VoW3UyezwhuoCLwAAAA2+9nPpG3bzPfWamjuevQwK65Nm/q/T1iYNGqUGXQ//9x13Jo3+MYbfc/y8NBD0tq1ZjiOiJCOHzePu/cp9lXhvflmV/gNRAReAAAAm1nB8dlnzSV7y1u61Nzm5ZkDx5o1k+rX936v666TvvtO+uYbcz8qyve17s6dMyvDly97LkyRnW3OzTtokO/AG+iD1pilAQAAwGaVDY5Dhphz7G7d6vsaa4DayZPm1n2GhsJC6cMPzeWRy7P69T75pLR9u2txjZ//XBoxwnxvrTRn3dPq4mANbgtUBF4AAACbVTbw+hvYZvEXeHNypB//2Jxvtzyrv2/nzuYsDu6ruVnLDVtz9FoV4/vuM6coe+op/+22G4EXAADAZlbg/d3vpH37Kp5fsMAMlseOmfuVCbw7d5rbVq1c56xlg927LFjKh2lr0NqhQ67+xVbgtaq/CQnS119Lzz3nuz2BgD68AAAANnOf3svqNuDu3DlXxVaqXOC96Saz321cnOucFXiLiyt+zqrw5uSYAXbkSGn4cKllS9c11gIU7lOQ+Vq5LZBQ4QUAALCZe+Dt1Kni+VmzPFdXq0zgjY+X0tM9uy+4V3gNw/NzVoV3715zUYozZ6TRo10zPEgVK7zBgsALAABgMyvw9uzpWZG1tGljTv1lBU33ZX/Ls/rsFhVVPGdNeVZWJpWWep6zAq/VlgsXpNOnzSnRrKWUrcAbyItMeEPgBQAAsFllBq05HK4uBZWp8D7/vPSvf3mesyq8UsV+vFaXBqstmzdLb7whHThgvgzDe5eGYBBkzQUAAAg9sbHmNjfXHCzmvtiDZA5Ae/tt135lAm9urjl7wptvus5FRpp9bg3D7Mfr3pWifIVXkmbMcL03DOnRR82+vS1aVPabBQYqvAAAADazQqrkvSvCtm3Sf/2Xa78ygVcy5+11Fxbme6aG8hVeSerf3/Xe4ZBuuEFKSpLatfP98wMRgRcAAMBmVoVX8ux2YClf8fW3cpoVeO+/X3rssYrnrX685QNv+Qpvu3bSxo2u81Z3hmBElwYAAACbNWpkhkuHw3OhCIt7RTcqyv9UYFbgLT8ozVLZCu+FC56zMTgc5opqn39uTnc2cKDvNgQaAi8AAEAASE31fc69wuuvO4MkjR0rPfigFO7j/8f3NRfv88+b/YfbtjX3L170DLxlZdLatdLvfy898wyBFwAAANdQ+QqvP1eaI9dXhXfcOHN7/Li5LSjwDOEOhzRggPm53r2v3OZAQuAFAAAIcO4h9513qncvX314Le7VZPcqsMMhPfSQ+Qo2BF4AAIAAZ4XQLl2klJTq3etvfzO7O7j3FS4tlT74wJy2bMAA1/HyfXiDFYEXAAAgwFkVXmsmhepo2rTisYICacQI7z/DmrfX4TCrwmVlZnuCafEJpiUDAAAIcFaF99gxc/WzmtC/v3TLLZ7LFtev76rylpVJEyaYleGVK2umDTWFwAsAABDg3Pvw/uY31bvXK69IDz8srV/vOhYXJ2Vnmyu6SdLy5ea2TRtX4HVf2jiYqrsSXRoAAAACnvtAsjvuqN69PvlE+uMfzTB7113er7l40fVzf/5zM+hGR0uXL5vHrzQTRKAh8AIAAAQ4q8IbFib94hfVu9c995hhd/Bg39dYMzg0aCAtWOA6ToUXAAAANaJhQ6lDBzP4OhzVC5x33mm+3H3+uXT33VL79tKWLdLChebxffs8r6PCCwAAgBoREyN9+aU5cKwmwua5c1JurueANcms9B46ZC473LGjK/AGW4WXQWsAAABBYPlys4vBgw9W7z5nzki7d5tB1nLpkrm1uk706mVub71VGjRI6tFDOnzY1aUh2Cq8BF4AAIAgYM2Pe6Wlha9k9Wpz+rG5cyve26rw9utnblu1MmdwiIsz+w8Ha4U3yJoLAABQN82fb27z8qp3n4YNza370sLlK7zug9YOHnRdF6wVXgIvAABAECktrd7nGzUyt+6Bt3yFd+pUaejQissYU+EFAABAjenTR9qzR+ratXr38VbhLd9dYuhQ81VesM7SQB9eAACAIDBwoLlt1qx697ECb3Gx65jVpaH8LA2SNG6cNGSIOUUZ8/ACAACgxlyrQWv+ujR4u3d2tvTPf0pnzwZvhZfACwAAEATeeMPcnjxZvfv4G7TmrcIb/kN/AIdDWrlSKix0TVsWLAi8AAAAQaCoyNx+8UX17lOZPrzurGquw+G9X28woA8vAABAHXK1fXjdA2+wosILAAAQBBo1MkPqv/1b9e8jSRcvSoZhLihRmQpvWZm5aEVJiXTXXVLz5tVrR20i8AIAAASBgwelTZuqv7SwVeGVzNDbsKGUliZdd510880Vr3ev8M6aZS58sWcPgRcAAADXWNu20qRJ1b+Pe+AtLjb3b73VfHnjHnhTU6XvvpNiYqrfjtpE4AUAAKhDIiKk2FhzmrG8vCtXat0D71/+UtOtqxkEXgAAgDrmo4+kli2luDhz//Bh6fvvpTZtpPh4z2vdpyULVszSAAAAUMf06iVdf705YE2SnnlGSkqSXnml4rXug9aCFYEXAACgjmvWzKzuNm1a8Zx7l4bYWKlxY+nrr2u1edVGlwYAAIA65ssvpRdekJo0kX75S2nZMvPljXvgPXfO3IYHWcmUwAsAAFDHnD4t/eY3Uvv2ZuD1Z8QIqVMnqXNnVz/eiCBLkEHWXAAAAFTXjTdK6elS165Xvvaxx8yt+6A1q+obLIKsIA0AAIDqiouTFi+Wpk419ydNMgetbdni+zOXL7veU+EFAABAUDlwQNq+XSoqqniuqMhckc2a0UGiwgsAAIAgcOaM9Nln5gC2khLzWFRUxesmTpRatJD++EfXsWCr8BJ4AQAA6qBnn5UGDTK7Nhw7Zh677rqK11nV3EuXXMcIvAAAAAh4HTua25dfNpcZ7thR6t+/4nWvvWYuOjFtmutYsHVpCLJ8DgAAgGuhUydzW1pqbjMyvFduyy8tHB7u2Z83GAREhXfFihVq166dGjRooOTkZGVnZ/u9fs2aNerWrZsaNGignj176v333/d57bRp0xQWFqalS5de41YDAAAELyvwSlJ8vDRhgv/rrVkagq26KwVA4H399deVnp6uRYsWadeuXerdu7fS0tKUn5/v9frPPvtMY8aM0eTJk7V7926NHDlSI0eO1P79+ytc+/bbb2vr1q1KTEys6a8BAAAQVG64QYqMNN8/8YTUoIH361aulEaNktasMfeDrf+uFACBd8mSJZoyZYomTpyo7t27a+XKlWrUqJH+9Kc/eb1+2bJlGjZsmDIyMnTjjTfqP/7jP3TLLbfot7/9rcd1J06c0GOPPaa//vWvql+/fm18FQAAgKBRr540fbo0eLD0yCO+r9uxQ3rzTcmqLQZjhdfWjH7p0iXt3LlT8+bNcx4LDw9XamqqsrKyvH4mKytL6enpHsfS0tK0bt06535ZWZnGjRunjIwM3XTTTVdsR0lJiUqs+TgkFRYWXuU3AQAACD5Lllz5GivgNmtmDnALt71cevVsbfK3334rh8Oh+Ph4j+Px8fHKy8vz+pm8vLwrXv/cc88pIiJCjz/+eKXakZmZqZiYGOerdevWV/lNAAAAQpMVeBs1ksaPlx580N72VEUQZnT/du7cqWXLlmnVqlUKq+QQwnnz5qmgoMD5On78eA23EgAAIDhYgbeszN52VIetgTcuLk716tXTqVOnPI6fOnVKCQkJXj+TkJDg9/r/+7//U35+vtq0aaOIiAhFRETo2LFjmj17ttq1a+f1nlFRUYqOjvZ4AQAAwBV4z5yR3ntP2rzZ3vZUha2BNzIyUn379tWmTZucx8rKyrRp0yalpKR4/UxKSorH9ZK0ceNG5/Xjxo3T3r17tWfPHucrMTFRGRkZ+uCDD2ruywAAAIQgK/B+8YV0993mUsPBxvaJJdLT0zVhwgT169dPSUlJWrp0qc6fP6+JP/xrjh8/Xq1atVJmZqYkaebMmRoyZIgWL16s4cOHa/Xq1dqxY4deeOEFSVLz5s3VvHlzj59Rv359JSQkqGvXrrX75QAAAIKcNUgtKkpKTjbn7A02tgfe0aNH6/Tp01q4cKHy8vLUp08fbdiwwTkwLTc3V+FuwwEHDhyoV199VU8//bTmz5+vzp07a926derRo4ddXwEAACBkWRXebt2k3/zG3rZUVZhhGIbdjQg0hYWFiomJUUFBAf15AQBAnfbzn0u/+pX0+OPSsmV2t8blavJayM3SAAAAgGvHqvA6HPa2ozoIvAAAAPDJCrybN0utW0vDh9vbnqqwvQ8vAAAAApcVeAsLpRMnGLQGAACAENO9u3T//dL582bgjQjC9EiXBgAAAPh0773SmjXSww+b+1bFN5gQeAEAAHBF1qA1KrwAAAAIOYYhlZaa7wm8AAAACCnLl5urrY0da+7TpQEAAAAhJSzMc58KLwAAAELKpEnSqVPSkiXmfjBWeIMwowMAAKC2NGrkeklUeAEAABCignmWhiBsMgAAAGrLtm3Sn/8sbdxo7tOlAQAAACElJ0f63e9c+1R4AQAAEFKsim5srPT001K3brY2p0oIvAAAAPDJCrw33yzNnm1vW6qKQWsAAADwyQq81qC1YETgBQAAgE9W4P3qK3MA27FjtjanSgi8AAAA8Cn8h7SYmysNGCAtXmxve6qCwAsAAACf3Kcha99eiouzry1VxaA1AAAA+GQF3r59pR077G1LVVHhBQAAgE8MWgMAAEBII/ACAAAgpFmBd98+qV8/6Q9/sLc9VUHgBQAAgE/hbmlx504pL8++tlQVgRcAAAA+NW0qDR7s2neftSFYEHgBAADgU69e0kcfSRMmmPsRQTjHF4EXAAAAV2QNWqPCCwAAgJB0+bK5DcYKbxA2GQAAALVl/37pxz+WTp8296nwAgAAIKSUlbnCrhScFV4CLwAAAHzq0sWcg7dbN3OfCi8AAABCSoMGUo8eUocO5j4VXgAAAIQkBq0BAAAgJH3/vbRsmfT3v5v7dGkAAABASCkokJ55xrUfjBVeAi8AAAB8cq/oPvWUa/BaMAnCjA4AAIDaYgXeevWk556zty1VRYUXAAAAPoX/kBatpYWDEYEXAAAAPrl3aThyRLpwwb62VBWBFwAAAD65B95OnaRPP7WvLVVF4AUAAIBP7oE3IkKqX9++tlQVg9YAAADgk3vgLSiQGjWyry1VRYUXAAAAPrkH3mAduEbgBQAAgE8EXgAAAIS0cLe0mJZmztQQbAi8AAAA8Mm9wpudLZ0/b19bqorACwAAAJ/CwqTu3V377gE4WBB4AQAA4NeBA1LTpub7iCCc44vACwAAgCu6fNncUuEFAABASLJmaKDCCwAAgJAzYIBUXGy+p8ILAACAkPPll673VHgBAAAQct57z/WeCi8AAABCzsCBrvdUeAEAABByrBkaJCq8AAAACEEvveR6T4UXAAAAIWfePNd7KrxVtGLFCrVr104NGjRQcnKysrOz/V6/Zs0adevWTQ0aNFDPnj31/vvvO8+VlpZqzpw56tmzpxo3bqzExESNHz9e33zzTU1/DQAAgJAUGWluu3enwlslr7/+utLT07Vo0SLt2rVLvXv3VlpamvLz871e/9lnn2nMmDGaPHmydu/erZEjR2rkyJHav3+/JKm4uFi7du3SggULtGvXLq1du1Y5OTm6++67a/NrAQAAhIwmTcztH/4QnIE3zDAMw84GJCcnq3///vrtb38rSSorK1Pr1q312GOPae7cuRWuHz16tM6fP6/169c7jw0YMEB9+vTRypUrvf6M7du3KykpSceOHVObNm2u2KbCwkLFxMSooKBA0dHRVfxmAAAAoaFLF+nQIenjj6Uf/cju1piuJq/ZWuG9dOmSdu7cqdTUVOex8PBwpaamKisry+tnsrKyPK6XpLS0NJ/XS1JBQYHCwsIUGxvr9XxJSYkKCws9XgAAADCFhZnbYI1Itgbeb7/9Vg6HQ/Hx8R7H4+PjlZeX5/UzeXl5V3X9xYsXNWfOHI0ZM8Zn+s/MzFRMTIzz1bp16yp8GwAAgNB04oS5vesue9tRVbb34a1JpaWl+ulPfyrDMPT888/7vG7evHkqKChwvo4fP16LrQQAAEBNsrXbcVxcnOrVq6dTp055HD916pQSEhK8fiYhIaFS11th99ixY9q8ebPfvh1RUVGKioqq4rcAAAAIbZ07S3v2SGvX2t2SqrG1whsZGam+fftq06ZNzmNlZWXatGmTUlJSvH4mJSXF43pJ2rhxo8f1Vtg9dOiQ/vGPf6h58+Y18wUAAADqAGvuXWt6smBj+8QS6enpmjBhgvr166ekpCQtXbpU58+f18SJEyVJ48ePV6tWrZSZmSlJmjlzpoYMGaLFixdr+PDhWr16tXbs2KEXXnhBkhl277//fu3atUvr16+Xw+Fw9u9t1qyZIoP1SQEAANjECrxlZfa2o6psD7yjR4/W6dOntXDhQuXl5alPnz7asGGDc2Babm6uwsNdheiBAwfq1Vdf1dNPP6358+erc+fOWrdunXr06CFJOnHihN59911JUp8+fTx+1ocffqihQ4fWyvcCAAAIFbm55vbxx6URI+xtS1XYPg9vIGIeXgAAAJcGDaSSEvN9oCTHoJmHFwAAAIEv2Ot/BF4AAAD49dZb5rZLF3vbUVUEXgAAAPjlcJhba/BasCHwAgAAwK/Ll81thO3THVQNgRcAAAB+zZljbvfts7cdVUXgBQAAgF+ff253C6qHwAsAAAC/0tPN7Q/LJAQdAi8AAAD8GjDA3HbqZG87qorACwAAAL8YtAYAAICQ9tln5vbwYXvbUVUEXgAAAPi1bJm5PXHC3nZUFYEXAAAAft1wg7lt1MjedlQVgRcAAAB+paaa2wUL7G1HVRF4AQAA4Je1pHBZmb3tqCoCLwAAAPyyAq/DYW87qirMMAzD7kYEmsLCQsXExKigoEDR0dF2NwcAAMBWYWGu94GSHK8mr1HhBQAAQEgj8AIAAMCvyZPN7dSp9rajqgi8AAAA8MvqMdC0qb3tqCoCLwAAAPwK9kFrBF4AAAD49fe/m9s337S3HVVF4AUAAIBfhYXmNj/f3nZUFYEXAAAAfm3YII0aJWVl2d2SqomwuwEAAAAIbF27Sm+8YXcrqo4KLwAAAEIagRcAAAAhjcALAACAkEbgBQAAQEgj8AIAACCkEXgBAAAQ0gi8AAAACGkEXgAAAIQ0Ai8AAABCGoEXAAAAIY3ACwAAgJBG4AUAAEBII/ACAAAgpBF4AQAAENIIvAAAAAhpBF4AAACENAIvAAAAQhqBFwAAACEtwu4GBCLDMCRJhYWFNrcEAAAA3lg5zcpt/hB4vSgqKpIktW7d2uaWAAAAwJ+ioiLFxMT4vSbMqEwsrmPKysr0zTff6LrrrlNYWFiN/7zCwkK1bt1ax48fV3R0dI3/PFwdnk9g4/kENp5PYOP5BDaej3+GYaioqEiJiYkKD/ffS5cKrxfh4eG64YYbav3nRkdH8x/oAMbzCWw8n8DG8wlsPJ/AxvPx7UqVXQuD1gAAABDSCLwAAAAIaQTeABAVFaVFixYpKirK7qbAC55PYOP5BDaeT2Dj+QQ2ns+1w6A1AAAAhDQqvAAAAAhpBF4AAACENAIvAAAAQhqBFwAAACGNwBsAVqxYoXbt2qlBgwZKTk5Wdna23U2qk37xi18oLCzM49WtWzfn+YsXL2r69Olq3ry5mjRpovvuu0+nTp2yscWh7eOPP9aIESOUmJiosLAwrVu3zuO8YRhauHChWrZsqYYNGyo1NVWHDh3yuObMmTMaO3asoqOjFRsbq8mTJ+vcuXO1+C1C15Wez0MPPVTh92nYsGEe1/B8akZmZqb69++v6667Ti1atNDIkSOVk5PjcU1l/p7l5uZq+PDhatSokVq0aKGMjAxdvny5Nr9KSKrM8xk6dGiF359p06Z5XMPzuToEXpu9/vrrSk9P16JFi7Rr1y717t1baWlpys/Pt7tpddJNN92kkydPOl+ffPKJ89ysWbP03nvvac2aNfroo4/0zTff6N5777WxtaHt/Pnz6t27t1asWOH1/K9//Wv9z//8j1auXKlt27apcePGSktL08WLF53XjB07VgcOHNDGjRu1fv16ffzxx5o6dWptfYWQdqXnI0nDhg3z+H167bXXPM7zfGrGRx99pOnTp2vr1q3auHGjSktLdccdd+j8+fPOa67098zhcGj48OG6dOmSPvvsM7388statWqVFi5caMdXCimVeT6SNGXKFI/fn1//+tfOczyfKjBgq6SkJGP69OnOfYfDYSQmJhqZmZk2tqpuWrRokdG7d2+v586ePWvUr1/fWLNmjfPYF198YUgysrKyaqmFdZck4+2333bul5WVGQkJCcZ///d/O4+dPXvWiIqKMl577TXDMAzj4MGDhiRj+/btzmv+93//1wgLCzNOnDhRa22vC8o/H8MwjAkTJhj33HOPz8/wfGpPfn6+Icn46KOPDMOo3N+z999/3wgPDzfy8vKc1zz//PNGdHS0UVJSUrtfIMSVfz6GYRhDhgwxZs6c6fMzPJ+rR4XXRpcuXdLOnTuVmprqPBYeHq7U1FRlZWXZ2LK669ChQ0pMTFSHDh00duxY5ebmSpJ27typ0tJSj2fVrVs3tWnThmdlg6NHjyovL8/jecTExCg5Odn5PLKyshQbG6t+/fo5r0lNTVV4eLi2bdtW622ui7Zs2aIWLVqoa9eueuSRR/Tdd985z/F8ak9BQYEkqVmzZpIq9/csKytLPXv2VHx8vPOatLQ0FRYW6sCBA7XY+tBX/vlY/vrXvyouLk49evTQvHnzVFxc7DzH87l6EXY3oC779ttv5XA4PP4DK0nx8fH68ssvbWpV3ZWcnKxVq1apa9euOnnypJ555hn96Ec/0v79+5WXl6fIyEjFxsZ6fCY+Pl55eXn2NLgOs/7Nvf3uWOfy8vLUokULj/MRERFq1qwZz6wWDBs2TPfee6/at2+vI0eOaP78+brzzjuVlZWlevXq8XxqSVlZmZ544gkNGjRIPXr0kKRK/T3Ly8vz+vtlncO14e35SNIDDzygtm3bKjExUXv37tWcOXOUk5OjtWvXSuL5VAWBF/jBnXfe6Xzfq1cvJScnq23btnrjjTfUsGFDG1sGBJ+f/exnzvc9e/ZUr1691LFjR23ZskW33367jS2rW6ZPn679+/d7jEdA4PD1fNz7svfs2VMtW7bU7bffriNHjqhjx4613cyQQJcGG8XFxalevXoVRsaeOnVKCQkJNrUKltjYWHXp0kWHDx9WQkKCLl26pLNnz3pcw7Oyh/Vv7u93JyEhocLgz8uXL+vMmTM8Mxt06NBBcXFxOnz4sCSeT22YMWOG1q9frw8//FA33HCD83hl/p4lJCR4/f2yzqH6fD0fb5KTkyXJ4/eH53N1CLw2ioyMVN++fbVp0ybnsbKyMm3atEkpKSk2tgySdO7cOR05ckQtW7ZU3759Vb9+fY9nlZOTo9zcXJ6VDdq3b6+EhASP51FYWKht27Y5n0dKSorOnj2rnTt3Oq/ZvHmzysrKnP/lgdrz9ddf67vvvlPLli0l8XxqkmEYmjFjht5++21t3rxZ7du39zhfmb9nKSkp2rdvn8f/KNm4caOio6PVvXv32vkiIepKz8ebPXv2SJLH7w/P5yrZPWqurlu9erURFRVlrFq1yjh48KAxdepUIzY21mPkJWrH7NmzjS1bthhHjx41Pv30UyM1NdWIi4sz8vPzDcMwjGnTphlt2rQxNm/ebOzYscNISUkxUlJSbG516CoqKjJ2795t7N6925BkLFmyxNi9e7dx7NgxwzAM49lnnzViY2ONd955x9i7d69xzz33GO3btzcuXLjgvMewYcOMm2++2di2bZvxySefGJ07dzbGjBlj11cKKf6eT1FRkfHkk08aWVlZxtGjR41//OMfxi233GJ07tzZuHjxovMePJ+a8cgjjxgxMTHGli1bjJMnTzpfxcXFzmuu9Pfs8uXLRo8ePYw77rjD2LNnj7Fhwwbj+uuvN+bNm2fHVwopV3o+hw8fNn75y18aO3bsMI4ePWq88847RocOHYzBgwc778HzuXoE3gCwfPlyo02bNkZkZKSRlJRkbN261e4m1UmjR482WrZsaURGRhqtWrUyRo8ebRw+fNh5/sKFC8ajjz5qNG3a1GjUqJHxk5/8xDh58qSNLQ5tH374oSGpwmvChAmGYZhTky1YsMCIj483oqKijNtvv93IycnxuMd3331njBkzxmjSpIkRHR1tTJw40SgqKrLh24Qef8+nuLjYuOOOO4zrr7/eqF+/vtG2bVtjypQpFf6HPM+nZnh7LpKMl156yXlNZf6effXVV8add95pNGzY0IiLizNmz55tlJaW1vK3CT1Xej65ubnG4MGDjWbNmhlRUVFGp06djIyMDKOgoMDjPjyfqxNmGIZRe/VkAAAAoHbRhxcAAAAhjcALAACAkEbgBQAAQEgj8AIAACCkEXgBAAAQ0gi8AAAACGkEXgAAAIQ0Ai8AAABCGoEXAOqQhx56SCNHjqzWPbZs2aKwsDCdPXv2mrQJAGpahN0NAADUnmXLlokFNgHUNQReAKgDHA6HwsLCFBMTY3dTAKDW0aUBAALQ0KFDNWPGDM2YMUMxMTGKi4vTggULnNXZkpISPfnkk2rVqpUaN26s5ORkbdmyxfn5VatWKTY2Vu+++666d++uqKgo5ebmVujSUFJSoscff1wtWrRQgwYNdOutt2r79u0ebXn//ffVpUsXNWzYULfddpu++uqrWvgXAIBrh8ALAAHq5ZdfVkREhLKzs7Vs2TItWbJEL774oiRpxowZysrK0urVq7V3716NGjVKw4YN06FDh5yfLy4u1nPPPacXX3xRBw4cUIsWLSr8jKeeekpvvfWWXn75Ze3atUudOnVSWlqazpw5I0k6fvy47r33Xo0YMUJ79uzRww8/rLlz59bOPwAAXCNhBp25ACDgDB06VPn5+Tpw4IDCwsIkSXPnztW7776rDRs2qEOHDsrNzVViYqLzM6mpqUpKStKvfvUrrVq1ShMnTtSePXvUu3dv5zUPPfSQzp49q3Xr1un8+fNq2rSpVq1apQceeECSVFpaqnbt2umJJ55QRkaG5s+fr3feeUcHDhxw3mPu3Ll67rnn9P333ys2NrZ2/kEAoBrowwsAAWrAgAHOsCtJKSkpWrx4sfbt2yeHw6EuXbp4XF9SUqLmzZs79yMjI9WrVy+f9z9y5IhKS0s1aNAg57H69esrKSlJX3zxhSTpiy++UHJyssfnUlJSqvW9AKC2EXgBIMicO3dO9erV086dO1WvXj2Pc02aNHG+b9iwoUdgBoC6ij68ABCgtm3b5rG/detWde7cWTfffLMcDofy8/PVqVMnj1dCQkKl79+xY0dFRkbq008/dR4rLS3V9u3b1b17d0nSjTfeqOzs7ArtAIBgQuAFgACVm5ur9PR05eTk6LXXXtPy5cs1c+ZMdenSRWPHjtX48eO1du1aHT16VNnZ2crMzNTf/va3St+/cePGeuSRR5SRkaENGzbo4MGDmjJlioqLizV58mRJ0rRp03To0CFlZGQoJydHr776qlatWlVD3xgAagZdGgAgQI0fP14XLlxQUlKS6tWrp5kzZ2rq1KmSpJdeekn/+Z//qdmzZ+vEiROKi4vTgAEDdNddd13Vz3j22WdVVlamcePGqaioSP369dMHH3ygpk2bSpLatGmjt956S7NmzdLy5cudg+ImTZp0zb8vANQUZmkAgAA0dOhQ9enTR0uXLrW7KQAQ9OjSAAAAgJBG4AUAAEBIo0sDAAAAQhoVXgAAAIQ0Ai8AAABCGoEXAAAAIY3ACwAAgJBG4AUAAEBII/ACAAAgpBF4AQAAENIIvAAAAAhp/w9vckQGs1de8AAAAABJRU5ErkJggg==\n",
1311
- "text/plain": [
1312
- "<Figure size 800x600 with 1 Axes>"
1313
- ]
1314
- },
1315
- "metadata": {},
1316
- "output_type": "display_data"
1317
- }
1318
- ],
1319
  "source": [
1320
  "m = X_train.shape[1]\n",
1321
  "n = X_train.shape[0]\n",
@@ -1368,7 +1331,7 @@
1368
  },
1369
  {
1370
  "cell_type": "code",
1371
- "execution_count": 11,
1372
  "metadata": {
1373
  "execution": {
1374
  "iopub.execute_input": "2023-02-18T14:04:46.849588Z",
@@ -1386,7 +1349,7 @@
1386
  "traceback": [
1387
  "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
1388
  "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
1389
- "\u001b[0;32m<ipython-input-11-6c322959b3dd>\u001b[0m in \u001b[0;36m<cell line: 6>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mSST\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msum\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0my_test\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0myMean\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# SST: 总平方和\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mSSR\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msum\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0myFit\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0myMean\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# SSR: 回归平方和\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0mSSE\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msum\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0my_test\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0myFit\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# SSE: 残差平方和\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 7\u001b[0m \u001b[0mFstats\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mSSR\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0mm\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m/\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mSSE\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mn\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0mm\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# F 统计量\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0mprobFstats\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mstats\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msf\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mFstats\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mm\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mn\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0mm\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# F检验的 P值\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
1390
  "\u001b[0;31mValueError\u001b[0m: operands could not be broadcast together with shapes (68,) (272,) "
1391
  ]
1392
  }
 
1172
  },
1173
  {
1174
  "cell_type": "code",
1175
+ "execution_count": null,
1176
  "metadata": {
1177
  "execution": {
1178
  "iopub.execute_input": "2023-02-19T06:46:16.944366Z",
 
1182
  "shell.execute_reply.started": "2023-02-19T06:46:16.944335Z"
1183
  }
1184
  },
1185
+ "outputs": [],
 
 
 
 
 
 
 
 
 
1186
  "source": [
1187
  "print(X_train.shape)\n",
1188
  "print(X_test.shape)"
 
1190
  },
1191
  {
1192
  "cell_type": "code",
1193
+ "execution_count": null,
1194
  "metadata": {
1195
  "execution": {
1196
  "iopub.execute_input": "2023-02-19T06:46:17.964019Z",
 
1200
  "shell.execute_reply.started": "2023-02-19T06:46:17.963980Z"
1201
  }
1202
  },
1203
+ "outputs": [],
 
 
 
 
 
 
 
 
1204
  "source": [
1205
  "X_train=X_train\n",
1206
  "print(y_train.shape,X_train.shape)"
 
1208
  },
1209
  {
1210
  "cell_type": "code",
1211
+ "execution_count": 6,
1212
  "metadata": {
1213
  "execution": {
1214
  "iopub.execute_input": "2023-02-19T06:46:18.564017Z",
 
1228
  },
1229
  {
1230
  "cell_type": "code",
1231
+ "execution_count": 7,
1232
  "metadata": {
1233
  "execution": {
1234
  "iopub.execute_input": "2023-02-19T06:49:05.697057Z",
 
1268
  },
1269
  {
1270
  "cell_type": "code",
1271
+ "execution_count": null,
1272
  "metadata": {
1273
  "execution": {
1274
  "iopub.execute_input": "2023-02-19T06:51:37.728006Z",
 
1278
  "shell.execute_reply.started": "2023-02-19T06:51:37.727965Z"
1279
  }
1280
  },
1281
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1282
  "source": [
1283
  "m = X_train.shape[1]\n",
1284
  "n = X_train.shape[0]\n",
 
1331
  },
1332
  {
1333
  "cell_type": "code",
1334
+ "execution_count": 8,
1335
  "metadata": {
1336
  "execution": {
1337
  "iopub.execute_input": "2023-02-18T14:04:46.849588Z",
 
1349
  "traceback": [
1350
  "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
1351
  "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
1352
+ "\u001b[0;32m<ipython-input-8-6c322959b3dd>\u001b[0m in \u001b[0;36m<cell line: 6>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mSST\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msum\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0my_test\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0myMean\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# SST: 总平方和\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mSSR\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msum\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0myFit\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0myMean\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# SSR: 回归平方和\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0mSSE\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msum\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0my_test\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0myFit\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m**\u001b[0m\u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# SSE: 残差平方和\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 7\u001b[0m \u001b[0mFstats\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mSSR\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0mm\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m/\u001b[0m \u001b[0;34m(\u001b[0m\u001b[0mSSE\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mn\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0mm\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# F 统计量\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 8\u001b[0m \u001b[0mprobFstats\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mstats\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msf\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mFstats\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mm\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mn\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0mm\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# F检验的 P值\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
1353
  "\u001b[0;31mValueError\u001b[0m: operands could not be broadcast together with shapes (68,) (272,) "
1354
  ]
1355
  }
benchmark/NBspecific_4/NBspecific_4_fixed.ipynb CHANGED
@@ -38,7 +38,7 @@
38
  },
39
  {
40
  "cell_type": "code",
41
- "execution_count": 1,
42
  "metadata": {
43
  "execution": {
44
  "iopub.execute_input": "2023-01-19T20:23:40.477106Z",
@@ -48,15 +48,7 @@
48
  "shell.execute_reply.started": "2023-01-19T20:23:40.477010Z"
49
  }
50
  },
51
- "outputs": [
52
- {
53
- "name": "stdout",
54
- "output_type": "stream",
55
- "text": [
56
- "data/german_credit_data.csv\n"
57
- ]
58
- }
59
- ],
60
  "source": [
61
  "# Checking the files available in this notebook \n",
62
  "import os\n",
@@ -79,7 +71,7 @@
79
  },
80
  {
81
  "cell_type": "code",
82
- "execution_count": 2,
83
  "metadata": {
84
  "execution": {
85
  "iopub.execute_input": "2023-01-19T20:23:40.515413Z",
@@ -91,6 +83,7 @@
91
  },
92
  "outputs": [],
93
  "source": [
 
94
  "### Importation des bibliothèques générales que nous utiliserons dans ce notebook\n",
95
  "import numpy as np # algèbre linéaire\n",
96
  "import pandas as pd # traitement des données, I/O de fichier CSV (par ex. pd.read_csv)\n",
@@ -103,7 +96,7 @@
103
  },
104
  {
105
  "cell_type": "code",
106
- "execution_count": 3,
107
  "metadata": {
108
  "_cell_guid": "b1076dfc-b9ad-4769-8c92-a6c4dae69d19",
109
  "_uuid": "8f2839f25d086af736a60e9eeb907d3b93b6e0e5",
@@ -115,144 +108,14 @@
115
  "shell.execute_reply.started": "2023-01-19T20:23:51.792638Z"
116
  }
117
  },
118
- "outputs": [
119
- {
120
- "data": {
121
- "text/html": [
122
- "<div>\n",
123
- "<style scoped>\n",
124
- " .dataframe tbody tr th:only-of-type {\n",
125
- " vertical-align: middle;\n",
126
- " }\n",
127
- "\n",
128
- " .dataframe tbody tr th {\n",
129
- " vertical-align: top;\n",
130
- " }\n",
131
- "\n",
132
- " .dataframe thead th {\n",
133
- " text-align: right;\n",
134
- " }\n",
135
- "</style>\n",
136
- "<table border=\"1\" class=\"dataframe\">\n",
137
- " <thead>\n",
138
- " <tr style=\"text-align: right;\">\n",
139
- " <th></th>\n",
140
- " <th>Unnamed: 0</th>\n",
141
- " <th>Age</th>\n",
142
- " <th>Sex</th>\n",
143
- " <th>Job</th>\n",
144
- " <th>Housing</th>\n",
145
- " <th>Saving accounts</th>\n",
146
- " <th>Checking account</th>\n",
147
- " <th>Credit amount</th>\n",
148
- " <th>Duration</th>\n",
149
- " <th>Purpose</th>\n",
150
- " <th>Risk</th>\n",
151
- " </tr>\n",
152
- " </thead>\n",
153
- " <tbody>\n",
154
- " <tr>\n",
155
- " <th>0</th>\n",
156
- " <td>0</td>\n",
157
- " <td>67</td>\n",
158
- " <td>male</td>\n",
159
- " <td>2</td>\n",
160
- " <td>own</td>\n",
161
- " <td>NaN</td>\n",
162
- " <td>little</td>\n",
163
- " <td>1169</td>\n",
164
- " <td>6</td>\n",
165
- " <td>radio/TV</td>\n",
166
- " <td>good</td>\n",
167
- " </tr>\n",
168
- " <tr>\n",
169
- " <th>1</th>\n",
170
- " <td>1</td>\n",
171
- " <td>22</td>\n",
172
- " <td>female</td>\n",
173
- " <td>2</td>\n",
174
- " <td>own</td>\n",
175
- " <td>little</td>\n",
176
- " <td>moderate</td>\n",
177
- " <td>5951</td>\n",
178
- " <td>48</td>\n",
179
- " <td>radio/TV</td>\n",
180
- " <td>bad</td>\n",
181
- " </tr>\n",
182
- " <tr>\n",
183
- " <th>2</th>\n",
184
- " <td>2</td>\n",
185
- " <td>49</td>\n",
186
- " <td>male</td>\n",
187
- " <td>1</td>\n",
188
- " <td>own</td>\n",
189
- " <td>little</td>\n",
190
- " <td>NaN</td>\n",
191
- " <td>2096</td>\n",
192
- " <td>12</td>\n",
193
- " <td>education</td>\n",
194
- " <td>good</td>\n",
195
- " </tr>\n",
196
- " <tr>\n",
197
- " <th>3</th>\n",
198
- " <td>3</td>\n",
199
- " <td>45</td>\n",
200
- " <td>male</td>\n",
201
- " <td>2</td>\n",
202
- " <td>free</td>\n",
203
- " <td>little</td>\n",
204
- " <td>little</td>\n",
205
- " <td>7882</td>\n",
206
- " <td>42</td>\n",
207
- " <td>furniture/equipment</td>\n",
208
- " <td>good</td>\n",
209
- " </tr>\n",
210
- " <tr>\n",
211
- " <th>4</th>\n",
212
- " <td>4</td>\n",
213
- " <td>53</td>\n",
214
- " <td>male</td>\n",
215
- " <td>2</td>\n",
216
- " <td>free</td>\n",
217
- " <td>little</td>\n",
218
- " <td>little</td>\n",
219
- " <td>4870</td>\n",
220
- " <td>24</td>\n",
221
- " <td>car</td>\n",
222
- " <td>bad</td>\n",
223
- " </tr>\n",
224
- " </tbody>\n",
225
- "</table>\n",
226
- "</div>"
227
- ],
228
- "text/plain": [
229
- " Unnamed: 0 Age Sex Job Housing Saving accounts Checking account \\\n",
230
- "0 0 67 male 2 own NaN little \n",
231
- "1 1 22 female 2 own little moderate \n",
232
- "2 2 49 male 1 own little NaN \n",
233
- "3 3 45 male 2 free little little \n",
234
- "4 4 53 male 2 free little little \n",
235
- "\n",
236
- " Credit amount Duration Purpose Risk \n",
237
- "0 1169 6 radio/TV good \n",
238
- "1 5951 48 radio/TV bad \n",
239
- "2 2096 12 education good \n",
240
- "3 7882 42 furniture/equipment good \n",
241
- "4 4870 24 car bad "
242
- ]
243
- },
244
- "execution_count": 3,
245
- "metadata": {},
246
- "output_type": "execute_result"
247
- }
248
- ],
249
  "source": [
250
  "dataset.head()"
251
  ]
252
  },
253
  {
254
  "cell_type": "code",
255
- "execution_count": 4,
256
  "metadata": {
257
  "execution": {
258
  "iopub.execute_input": "2023-01-19T20:24:31.194121Z",
@@ -262,356 +125,7 @@
262
  "shell.execute_reply.started": "2023-01-19T20:24:31.194089Z"
263
  }
264
  },
265
- "outputs": [
266
- {
267
- "data": {
268
- "text/html": [
269
- "<div>\n",
270
- "<style scoped>\n",
271
- " .dataframe tbody tr th:only-of-type {\n",
272
- " vertical-align: middle;\n",
273
- " }\n",
274
- "\n",
275
- " .dataframe tbody tr th {\n",
276
- " vertical-align: top;\n",
277
- " }\n",
278
- "\n",
279
- " .dataframe thead th {\n",
280
- " text-align: right;\n",
281
- " }\n",
282
- "</style>\n",
283
- "<table border=\"1\" class=\"dataframe\">\n",
284
- " <thead>\n",
285
- " <tr style=\"text-align: right;\">\n",
286
- " <th></th>\n",
287
- " <th>Age</th>\n",
288
- " <th>Sex</th>\n",
289
- " <th>Job</th>\n",
290
- " <th>Housing</th>\n",
291
- " <th>Saving accounts</th>\n",
292
- " <th>Checking account</th>\n",
293
- " <th>Credit amount</th>\n",
294
- " <th>Duration</th>\n",
295
- " <th>Purpose</th>\n",
296
- " <th>Risk</th>\n",
297
- " </tr>\n",
298
- " </thead>\n",
299
- " <tbody>\n",
300
- " <tr>\n",
301
- " <th>0</th>\n",
302
- " <td>67</td>\n",
303
- " <td>male</td>\n",
304
- " <td>2</td>\n",
305
- " <td>own</td>\n",
306
- " <td>NaN</td>\n",
307
- " <td>little</td>\n",
308
- " <td>1169</td>\n",
309
- " <td>6</td>\n",
310
- " <td>radio/TV</td>\n",
311
- " <td>good</td>\n",
312
- " </tr>\n",
313
- " <tr>\n",
314
- " <th>1</th>\n",
315
- " <td>22</td>\n",
316
- " <td>female</td>\n",
317
- " <td>2</td>\n",
318
- " <td>own</td>\n",
319
- " <td>little</td>\n",
320
- " <td>moderate</td>\n",
321
- " <td>5951</td>\n",
322
- " <td>48</td>\n",
323
- " <td>radio/TV</td>\n",
324
- " <td>bad</td>\n",
325
- " </tr>\n",
326
- " <tr>\n",
327
- " <th>2</th>\n",
328
- " <td>49</td>\n",
329
- " <td>male</td>\n",
330
- " <td>1</td>\n",
331
- " <td>own</td>\n",
332
- " <td>little</td>\n",
333
- " <td>NaN</td>\n",
334
- " <td>2096</td>\n",
335
- " <td>12</td>\n",
336
- " <td>education</td>\n",
337
- " <td>good</td>\n",
338
- " </tr>\n",
339
- " <tr>\n",
340
- " <th>3</th>\n",
341
- " <td>45</td>\n",
342
- " <td>male</td>\n",
343
- " <td>2</td>\n",
344
- " <td>free</td>\n",
345
- " <td>little</td>\n",
346
- " <td>little</td>\n",
347
- " <td>7882</td>\n",
348
- " <td>42</td>\n",
349
- " <td>furniture/equipment</td>\n",
350
- " <td>good</td>\n",
351
- " </tr>\n",
352
- " <tr>\n",
353
- " <th>4</th>\n",
354
- " <td>53</td>\n",
355
- " <td>male</td>\n",
356
- " <td>2</td>\n",
357
- " <td>free</td>\n",
358
- " <td>little</td>\n",
359
- " <td>little</td>\n",
360
- " <td>4870</td>\n",
361
- " <td>24</td>\n",
362
- " <td>car</td>\n",
363
- " <td>bad</td>\n",
364
- " </tr>\n",
365
- " <tr>\n",
366
- " <th>5</th>\n",
367
- " <td>35</td>\n",
368
- " <td>male</td>\n",
369
- " <td>1</td>\n",
370
- " <td>free</td>\n",
371
- " <td>NaN</td>\n",
372
- " <td>NaN</td>\n",
373
- " <td>9055</td>\n",
374
- " <td>36</td>\n",
375
- " <td>education</td>\n",
376
- " <td>good</td>\n",
377
- " </tr>\n",
378
- " <tr>\n",
379
- " <th>6</th>\n",
380
- " <td>53</td>\n",
381
- " <td>male</td>\n",
382
- " <td>2</td>\n",
383
- " <td>own</td>\n",
384
- " <td>quite rich</td>\n",
385
- " <td>NaN</td>\n",
386
- " <td>2835</td>\n",
387
- " <td>24</td>\n",
388
- " <td>furniture/equipment</td>\n",
389
- " <td>good</td>\n",
390
- " </tr>\n",
391
- " <tr>\n",
392
- " <th>7</th>\n",
393
- " <td>35</td>\n",
394
- " <td>male</td>\n",
395
- " <td>3</td>\n",
396
- " <td>rent</td>\n",
397
- " <td>little</td>\n",
398
- " <td>moderate</td>\n",
399
- " <td>6948</td>\n",
400
- " <td>36</td>\n",
401
- " <td>car</td>\n",
402
- " <td>good</td>\n",
403
- " </tr>\n",
404
- " <tr>\n",
405
- " <th>8</th>\n",
406
- " <td>61</td>\n",
407
- " <td>male</td>\n",
408
- " <td>1</td>\n",
409
- " <td>own</td>\n",
410
- " <td>rich</td>\n",
411
- " <td>NaN</td>\n",
412
- " <td>3059</td>\n",
413
- " <td>12</td>\n",
414
- " <td>radio/TV</td>\n",
415
- " <td>good</td>\n",
416
- " </tr>\n",
417
- " <tr>\n",
418
- " <th>9</th>\n",
419
- " <td>28</td>\n",
420
- " <td>male</td>\n",
421
- " <td>3</td>\n",
422
- " <td>own</td>\n",
423
- " <td>little</td>\n",
424
- " <td>moderate</td>\n",
425
- " <td>5234</td>\n",
426
- " <td>30</td>\n",
427
- " <td>car</td>\n",
428
- " <td>bad</td>\n",
429
- " </tr>\n",
430
- " <tr>\n",
431
- " <th>10</th>\n",
432
- " <td>25</td>\n",
433
- " <td>female</td>\n",
434
- " <td>2</td>\n",
435
- " <td>rent</td>\n",
436
- " <td>little</td>\n",
437
- " <td>moderate</td>\n",
438
- " <td>1295</td>\n",
439
- " <td>12</td>\n",
440
- " <td>car</td>\n",
441
- " <td>bad</td>\n",
442
- " </tr>\n",
443
- " <tr>\n",
444
- " <th>11</th>\n",
445
- " <td>24</td>\n",
446
- " <td>female</td>\n",
447
- " <td>2</td>\n",
448
- " <td>rent</td>\n",
449
- " <td>little</td>\n",
450
- " <td>little</td>\n",
451
- " <td>4308</td>\n",
452
- " <td>48</td>\n",
453
- " <td>business</td>\n",
454
- " <td>bad</td>\n",
455
- " </tr>\n",
456
- " <tr>\n",
457
- " <th>12</th>\n",
458
- " <td>22</td>\n",
459
- " <td>female</td>\n",
460
- " <td>2</td>\n",
461
- " <td>own</td>\n",
462
- " <td>little</td>\n",
463
- " <td>moderate</td>\n",
464
- " <td>1567</td>\n",
465
- " <td>12</td>\n",
466
- " <td>radio/TV</td>\n",
467
- " <td>good</td>\n",
468
- " </tr>\n",
469
- " <tr>\n",
470
- " <th>13</th>\n",
471
- " <td>60</td>\n",
472
- " <td>male</td>\n",
473
- " <td>1</td>\n",
474
- " <td>own</td>\n",
475
- " <td>little</td>\n",
476
- " <td>little</td>\n",
477
- " <td>1199</td>\n",
478
- " <td>24</td>\n",
479
- " <td>car</td>\n",
480
- " <td>bad</td>\n",
481
- " </tr>\n",
482
- " <tr>\n",
483
- " <th>14</th>\n",
484
- " <td>28</td>\n",
485
- " <td>female</td>\n",
486
- " <td>2</td>\n",
487
- " <td>rent</td>\n",
488
- " <td>little</td>\n",
489
- " <td>little</td>\n",
490
- " <td>1403</td>\n",
491
- " <td>15</td>\n",
492
- " <td>car</td>\n",
493
- " <td>good</td>\n",
494
- " </tr>\n",
495
- " <tr>\n",
496
- " <th>15</th>\n",
497
- " <td>32</td>\n",
498
- " <td>female</td>\n",
499
- " <td>1</td>\n",
500
- " <td>own</td>\n",
501
- " <td>moderate</td>\n",
502
- " <td>little</td>\n",
503
- " <td>1282</td>\n",
504
- " <td>24</td>\n",
505
- " <td>radio/TV</td>\n",
506
- " <td>bad</td>\n",
507
- " </tr>\n",
508
- " <tr>\n",
509
- " <th>16</th>\n",
510
- " <td>53</td>\n",
511
- " <td>male</td>\n",
512
- " <td>2</td>\n",
513
- " <td>own</td>\n",
514
- " <td>NaN</td>\n",
515
- " <td>NaN</td>\n",
516
- " <td>2424</td>\n",
517
- " <td>24</td>\n",
518
- " <td>radio/TV</td>\n",
519
- " <td>good</td>\n",
520
- " </tr>\n",
521
- " <tr>\n",
522
- " <th>17</th>\n",
523
- " <td>25</td>\n",
524
- " <td>male</td>\n",
525
- " <td>2</td>\n",
526
- " <td>own</td>\n",
527
- " <td>NaN</td>\n",
528
- " <td>little</td>\n",
529
- " <td>8072</td>\n",
530
- " <td>30</td>\n",
531
- " <td>business</td>\n",
532
- " <td>good</td>\n",
533
- " </tr>\n",
534
- " <tr>\n",
535
- " <th>18</th>\n",
536
- " <td>44</td>\n",
537
- " <td>female</td>\n",
538
- " <td>3</td>\n",
539
- " <td>free</td>\n",
540
- " <td>little</td>\n",
541
- " <td>moderate</td>\n",
542
- " <td>12579</td>\n",
543
- " <td>24</td>\n",
544
- " <td>car</td>\n",
545
- " <td>bad</td>\n",
546
- " </tr>\n",
547
- " <tr>\n",
548
- " <th>19</th>\n",
549
- " <td>31</td>\n",
550
- " <td>male</td>\n",
551
- " <td>2</td>\n",
552
- " <td>own</td>\n",
553
- " <td>quite rich</td>\n",
554
- " <td>NaN</td>\n",
555
- " <td>3430</td>\n",
556
- " <td>24</td>\n",
557
- " <td>radio/TV</td>\n",
558
- " <td>good</td>\n",
559
- " </tr>\n",
560
- " </tbody>\n",
561
- "</table>\n",
562
- "</div>"
563
- ],
564
- "text/plain": [
565
- " Age Sex Job Housing Saving accounts Checking account Credit amount \\\n",
566
- "0 67 male 2 own NaN little 1169 \n",
567
- "1 22 female 2 own little moderate 5951 \n",
568
- "2 49 male 1 own little NaN 2096 \n",
569
- "3 45 male 2 free little little 7882 \n",
570
- "4 53 male 2 free little little 4870 \n",
571
- "5 35 male 1 free NaN NaN 9055 \n",
572
- "6 53 male 2 own quite rich NaN 2835 \n",
573
- "7 35 male 3 rent little moderate 6948 \n",
574
- "8 61 male 1 own rich NaN 3059 \n",
575
- "9 28 male 3 own little moderate 5234 \n",
576
- "10 25 female 2 rent little moderate 1295 \n",
577
- "11 24 female 2 rent little little 4308 \n",
578
- "12 22 female 2 own little moderate 1567 \n",
579
- "13 60 male 1 own little little 1199 \n",
580
- "14 28 female 2 rent little little 1403 \n",
581
- "15 32 female 1 own moderate little 1282 \n",
582
- "16 53 male 2 own NaN NaN 2424 \n",
583
- "17 25 male 2 own NaN little 8072 \n",
584
- "18 44 female 3 free little moderate 12579 \n",
585
- "19 31 male 2 own quite rich NaN 3430 \n",
586
- "\n",
587
- " Duration Purpose Risk \n",
588
- "0 6 radio/TV good \n",
589
- "1 48 radio/TV bad \n",
590
- "2 12 education good \n",
591
- "3 42 furniture/equipment good \n",
592
- "4 24 car bad \n",
593
- "5 36 education good \n",
594
- "6 24 furniture/equipment good \n",
595
- "7 36 car good \n",
596
- "8 12 radio/TV good \n",
597
- "9 30 car bad \n",
598
- "10 12 car bad \n",
599
- "11 48 business bad \n",
600
- "12 12 radio/TV good \n",
601
- "13 24 car bad \n",
602
- "14 15 car good \n",
603
- "15 24 radio/TV bad \n",
604
- "16 24 radio/TV good \n",
605
- "17 30 business good \n",
606
- "18 24 car bad \n",
607
- "19 24 radio/TV good "
608
- ]
609
- },
610
- "execution_count": 4,
611
- "metadata": {},
612
- "output_type": "execute_result"
613
- }
614
- ],
615
  "source": [
616
  "# Nettoyer le jeu de données\n",
617
  "dataset = dataset.drop('Unnamed: 0', axis='columns')\n",
@@ -681,7 +195,7 @@
681
  },
682
  {
683
  "cell_type": "code",
684
- "execution_count": 5,
685
  "metadata": {
686
  "execution": {
687
  "iopub.execute_input": "2023-01-19T22:27:27.062414Z",
@@ -777,7 +291,7 @@
777
  },
778
  {
779
  "cell_type": "code",
780
- "execution_count": 7,
781
  "metadata": {
782
  "execution": {
783
  "iopub.execute_input": "2023-01-19T20:24:53.142204Z",
@@ -787,20 +301,7 @@
787
  "shell.execute_reply.started": "2023-01-19T20:24:53.142166Z"
788
  }
789
  },
790
- "outputs": [
791
- {
792
- "data": {
793
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAEWCAYAAAC0Q+rDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAAnKklEQVR4nO3deXhUVZrH8e8bwEQQEzaVRZBNYuPS7hvSCCgKOLTggo4L2uOoo+10M6AiiwyKoDCt7dbadreKKLjBoI0g2iyOC3FvaVkUFxRFbIQEERJJ8s4f91YsipCkIDc3gd/neeqpqnPPufXeFOHNOefee8zdERERiUJG3AGIiMjuS0lGREQioyQjIiKRUZIREZHIKMmIiEhk6scdQG1hZsUESXdj3LGIiNQh+wKl7l5uPjGdwhwws1LAsrOz4w5FRKTOKCgoAHB3L3dkTD2Zn2zMzs7Ozs/PjzsOEZE6Iycnh4KCgh2OAGlORkREIqMkIyIikVGSERGRyCjJiIhIZDTxLyKxc3fWrVtHYWEhpaWlcYcjoYyMDLKysmjevDlmtlP7UJIRkVi5O1999RXff/89mZmZ1KtXL+6QJLR161Y2bdpEUVERrVu33qlEoyQjIrFat24d33//Pfvvvz9NmzaNOxxJsX79etauXcu6deto0aJF2u01JyMisSosLCQzM1MJppZq2rQpmZmZFBYW7lR79WR20tHDp8QdQtremXRJ3CGIbKe0tFRDZLVcvXr1dnqurEZ7MmY2xMy8nMe/JdXJMLPRZrbazDab2QIz61rOvg41s4VhndVmNsp2dmZKREQiEVdP5hfAj0nvP0l6PRIYAQwDPgauB14ys67uvgHAzJoBfwP+DgwADgYmA8XAxMijFxGRKokrybzp7tsN8JnZ3sBw4FZ3vz8sywNWAVfyUwK5iiD2ge6+iSAJNQNuNLM73b2oJg5CREQqVtsm/k8CGgNPJQrcfSMwBzgzqd4ZwJwwwSRMB7LDfYiIVItXX32Vfv360bp1azIzM2nVqhU9e/bk7rvvjju0OiGuJLPKzIrNbLmZXZFU3gXYyrbDZwDLgNyUestT6qwkGC7LRUSkGjz33HN0794dd+euu+7ixRdf5Pbbb6dTp07MnDkz7vDqhJoeLlsDjAbeJEhwg4E/mlmWu98DNAE2+vaL3GwItyU0AfKTK7h7qZkVpNQrY2b55ZUn0UIyIrKNyZMnc8ghh/DXv/6VjIyf/ia/+OKLdWeCKqrRnoy7v+jut7r7PHef6+5DgGnAaJ0ZJiK1zfr169lvv/22STAJyWWFhYWMHj2aTp06kZmZSZs2bRg+fDhFRcH0cGlpKb1796Z169asW7eurN2XX35Js2bNGDRoUPQHE5PaMCczA2gBHEjQY9m3nITTJNyWsIGUnoeZZRAsA5pcr4y751T0AAqq53BEZHdxwgknsGjRIm644Qbee+89SkpKtqtTUlJCv379uPvuu/n3f/93XnjhBYYNG8aDDz7I4MGDgSAhTZ06leLiYi699FLcnZKSEi688EIaN27Mn//855o+tBpTmy7GdGAF0ADowLbzMrlsOwezgu3nXjqGbVPnakREdsqECRP49NNPueOOO7jjjjto1KgRp5xyCueeey5DhgwhIyODJ598kvnz5zNnzhzOOOMMAHr16kWzZs245JJLePPNNznuuOM44IADmDJlCmeeeSa/+93v2LBhA4sXL+aVV14hJycn3gONUG1IMucA3wKrgX8C3wPnEp6ubGaNgb7A7Ult5gK/NbNG7v5DWHY+QW/k9RqKW0R2cy1atGD+/Pm89957zJ07l7y8PBYuXMjcuXN55plnmD17Ni+88AL7778/vXv3pri4uKxtnz59AFi0aBHHHXdcWdmwYcMYMWIEJSUljB8/nhNPPDGWY6spNZpkzOxZgkn/D4B6BInhfODacLK/0MwmEczRFPDTxZiFwINJu3oAuA541swmA52Bm4BxukZGRKrbkUceyZFHHgnAli1b+NWvfsW0adOYPXs2a9euZe3atTRo0KDctslzMACXXnopkyZNomHDhlx99dWRxx63mu7JrAAuJ5h/MWApcIm7P5ZUZ3y4bTTBXEwe0DtxtT+Au39nZr2Be4DnCeZhJrBtb0dEpNrtvffe3HDDDUybNo2lS5fSrFkzWrVqxaxZs8qtf8ABB5S9Lioq4qKLLqJz5858++23XH311TzxxBM1FXosajTJuPtNBD2OiuqUAuPCR0X1lgA9qi04EZEUa9asoWXLltuVL1u2DICWLVvSt29fnn76aRo0aMARRxxR4f6GDRvG8uXLycvLY9myZQwePJjevXtz+eWXRxJ/bVAb5mRERGqlPn360KpVKwYMGEBubi5bt24lLy+PyZMn06lTJwYOHEhmZiZTpkzh9NNPZ+jQoRx11FGUlpayatUq5syZw/jx4/nZz37GrFmzuPfee7nvvvs4/PDDOfzww3nppZf49a9/zUknnURu7u55Hbltf93jnsnM8rOzs7Pz8/OrVF+3+hepHqtWrQKgXbt2MUeyvaeeeooZM2bw9ttvs2bNGkpKSmjbti19+/blpptuYr/99gPgxx9/ZPLkyTz++ON88sknZGVlcdBBB3H66aczYsQIfvjhB4444gh69OjBs88+W7b/zZs3c/TRR7PXXnuRl5dHVlZWXIdaoYq+o5ycHAoKCgrCS0G2oyQTUpIRiUdtTjIS2JUkUxsuxhQRkd2UkoyIiERGSUZERCKjJCMiIpFRkhERkcgoyYiISGSUZEREJDJKMiIiEhklGRERiYySjIhILWdmPPDAA3GHsVN0g0wRqbXiun2TbsFUfdSTERGRyCjJiIhUgyFDhnDCCSfw3HPPccghh9CwYUP69+9Pfn4+K1asoEePHjRq1Ihjjz2WDz/8sKzdsGHD6Nq1Kw0bNqRdu3ZcddVVbNy4sdLPu++++8jNzSUzM5NOnTrxpz/9KcrD22lKMiIi1eSzzz5j7NixjB8/nj/+8Y+89tprXHnllVxwwQVccMEFPPPMM2zdupXBgweXtfnuu+8YM2YMc+bM4bbbbmPRokWcd955FX7OrbfeytChQxk8eDCzZ8/mggsu4Morr9zh6pxx0pyMiEg1Wb9+PYsXL6Z9+/YAfPDBB0yaNInHHnuMiy66CAB3p1+/fnz88cd07tyZhx9+uKx9SUkJBx10EN26dWP16tW0adNmu88oKCjgtttuY+zYsYwYMQKA3r17s2bNGm655RYGDBhQA0daderJiIhUk44dO5YlGIBOnToBQRJILfvqq68AmDVrFscddxyNGzemfv36dOvWDYCVK1eW+xmLFy9my5YtnHPOORQXF5c9Tj31VP7+979TUlISybHtLPVkRESqSU5Ozjbv99prr+3KE2WFhYXk5eUxcOBABg8ezJgxY2jRogVr1qzh7LPPprCwsNzPWLduHQAHH3xwudvXrFlTbg8oLkoyIiIxmTVrFq1bt2bq1KmYGQCLFi2qsE3Tpk0BmDt3Ls2aNdtue2JJ6NpCSUZEJCZbtmxhr732KkswANOnT6+wzQknnMDee+/NN998Q58+faIOcZcpyYiIxKRXr17cddddDB8+nD59+jBv3jzmzZtXYZsmTZowevRorrnmGj777DNOPvlktm7dytKlS1mxYgUPPfRQDUVfNZr4FxGJSf/+/Rk/fjyPP/44v/zlL/noo4+YOnVqpe1GjBjBPffcw8yZM+nfvz+XXHIJzz33HKecckoNRJ0ec/e4Y6gVzCw/Ozs7Oz8/v0r147rdxa7QrTKkNlq1ahUA7dq1izkS2ZGKvqOcnBwKCgoK3D2nvLbqyYiISGSUZEREJDKxJhkzO8DMNpqZm1lWUnmWmd1lZv80s01mNsvMtjvx28y6m9lbZlZoZp+Y2ZU1ewQiIlKRuHsyE4HN5ZTfB/wrMBQ4D2gDzDWzsrPhzKwLMAf4CDgTeBi438wGb787ERGJQ2ynMJvZccAA4DbgjqTytsAQ4GJ3fyIsWwasBM4BEieRDwNWAZe4ewmwwMw6AGOT6oiISIxi6clYcOXRPcB44J8pm08DSoGZiQJ3/wzII+ixJJwBzAgTTMJ0oIuZtUdERGIX13DZpUAz4O5ytnUBVrn7lpTyZUAugJk1IhhCW15OHRL1REQkXjU+XGZmjYEJwH+4+4/Jt1MINQHyy2m6IdwGkBM+p9bbkLSP1M8tb5/JsivZLiIiaYqjJzMaWOHuMyutKSIidVqNJhkzawdcB/y3meWYWQ7QMNycbWZ7E/RGyutVNOGnnkp+ok05dUiqV8bdcyp6AAU7e1wiIgDjxo2jVatWZGRk8Jvf/CbucMqWhI5TTQ+XtQcygfnlbPuG4NTl94B2Zpbl7skLKuQSzsG4+w9mtprt514S71PnakREIvX2229z8803c8cdd9CtWzdatWoVd0i1Qk0nmfeBU1PKzgBuAPoAnwGFQD3gl4SnIoc9oOMJzkhLmAsMNLOb3b00LDufYCjus4jiF5Ea9MW4w2L53LZjlqTdZvny4G/ba665hoYNG1ZSe89Ro8Nl7p7v7guTH/zU63jF3T929y+BR4C7zewiM+sLPBvWeyZpd5MJekZTzOxUM7sJuIzgOhkRkRozZMgQLr74YgAaNWqEmbFw4UI+/fRTBg0aRE5ODvvssw8DBw4sW3YZYOHChZgZCxYs4KyzzqJRo0YcfPDBvPzyyxQXFzN06FCaNWtGmzZt+P3vf7/NZz733HP07NmT5s2bk5OTwy9+8QveeuutSmN97733OP3009lnn33Iycnhsssuo6AgutmCuK/435FrgGnAXcDTwNfAGe5enKjg7isIrpvJJbjy/98IzljThZgiUqNGjx7NqFGjgGBlyzfeeIP27dvTrVs3vvzyS/7yl78wdepUVq5cyVlnnUXq3e+vuOIKunfvzsyZM2nbti3nnHMO11xzDZs3b2batGkMGjSI3/zmN7zzzjtlbT7//HMGDRrE9OnTefLJJ2nXrh3du3fns892PJCzYsUKunfvTr169Zg2bRp/+MMfmD9/PkOGDInk5wK1YNEyd3+EoOeSXFYI/Gf4qKjtIuCYqGITEamKjh070rFjRwCOO+44srKyGDlyJMXFxbz00ktkZwfnKP385z+nc+fOzJ49m/79+5e1v/TSSxk+fDgAbdq0oWvXrnzyySe8/PLLAPTu3Zsnn3ySGTNmcPTRRwNw3XXXlbUvLS2lV69evPnmmzzxxBOMHDmy3DjHjRtH27Ztef7556lfP/jv/8ADD+SUU05hyZIlHHZY9Q9P1taejIhInTZ//nz69OlDo0aNKC4upri4mDZt2tChQ4dteiQAp512WtnrTp06AUFiScjIyKBDhw7bDLWtWrWKCy+8kJYtW1K/fn0aNGjAihUr+PjjjyuM6eyzzwYoi+n4448nKyuLd999t1qOO5WSjIhIBNatW8fUqVNp0KDBNo+PPvqIL7/8cpu6OTk5Za/32muv7coS5YWFwQm3paWlnHXWWbz77rtMnDiRRYsW8dZbb3HEEUeU1dlRTOPHj98mnsR+U2OqLrEPl4mI7I6aNm3KwIEDGTFixHbbmjdvvkv7XrlyJUuWLOHll1+mV69eZeWVTeA3bdqUc889t9w5mKhOuVaSERGJQM+ePZk5cyaHH354We+kumzZEtzaMXm/eXl5fP755xx//PEVxrR06VKOOabmprI1XCYiEoGhQ4eyadOmskn7RYsWMW3aNC6//HIWLly4S/vOzc2lVatW/Nd//Rdz5szh0Ucf5fzzz6+0NzJ27FjefvttBgwYwIwZM1iwYAGPPvoo5513Hh999NEuxbQjSjIiIhFo0aIFb7zxBm3btuXaa6+lT58+jBo1ivr165dN7u+szMxMZsyYQUlJCQMHDmTSpEnce++9dO7cucJ2Xbp04Y033gDg8ssvp1+/fkycOJHWrVuz//7771JMO2Kp52vvqcwsPzs7Ozs/P79K9Y8ePiXagCLwzqRL4g5BZDurVq0CoF27djFHIjtS0XeUk5NDQUFBQXgPyO2oJyMiIpFRkhERkcgoyYiISGSUZEREJDJKMiIiEhklGRGJVUZGBiUlJXGHIRUoKSkhI2Pn0oWSjIjEKisri6KiItavXx93KFKO9evXU1RURFZW1k61121lRCRWzZs3p6ioiLVr15Kfn0+9evXiDklCJSUlFBUV0bhx452+35qSjIjEysxo3bo169ato7CwkNLS0sobSY1o0KBBWYIxs53ah5KMiMTOzGjRokXcYUgENCcjIiKRUZIREZHIKMmIiEhklGRERCQySjIiIhIZJRkREYmMkoyIiESmyknGzC4xs2Y72NbUzLTsooiIbCOdnszDQMcdbGsfbhcRESmTTpKp6J4CDYHiXYxFRER2MxXeVsbMDgd+nlTU18xyU6rtDVwAfFLZh5lZX2AEcAiwD/AFMAW4w91/DOtkACOBK4GmQB5wrbt/mLKvQ4F7geOA9cADwHh398riEBGRmlHZvcvOBm4OXzswZgf1NgK/qsLnNQVeA+4ENgDHAmOBFsB/hnVGEiSiYcDHwPXAS2bW1d03AIRzQ38D/g4MAA4GJhP0piZWIQ4REakBlSWZe4HpBENlS4HBBP+xJysCVrt7pcNl7j41pWiBmWUDVwH/aWZ7A8OBW939fgAzywNWEfRsEgnkqjD2ge6+iSAJNQNuNLM73b2oslhERCR6FSYZd/8O+A7AzNoDaxLDWtXoOyAzfH0S0Bh4KimGjWY2BziTn5LMGcCcMMEkTAf+O9zHgmqOUUREdkKVb/Xv7qsSr81sP2C7ZdLc/Yuq7MvM6gF7AUcB1wH3hZu6AFvZfn5nGdAr6X0X4MWUOisJhstyUZIREakVqpxkzGxf4PfA+fzU80hV1SXtvgOyw9ePAjeGr5sAG8uZvN8QbiOpXn5yBXcvNbOClHrJ8eeXV54ku5LtIiKSpnQWLbsHOBf4M7CEYC5mZ/UgOLvsWGA0cDfw613Yn4iI1ELpJJkzgOvd/d5d/VB3fz98+aqZ/ROYYmaTCXos+5qZpfRmmoTbEjaQ0vMIT33eN6Ve8mfmVBRT2NNRb0ZEpBqlczFmA4K5ker2PsHZa+2BFeHndEipkwssT3q/IixL1jFsuxwREakV0kky/wucFkEMJ4fPnxNcQ/M9wbAcAGbWGOgLzElqMxc408waJZWdDxQAr0cQo4iI7IR0hsv+AjxsZgB/JbjKfhvuvrSiHZjZM8CbwD8IziI7meCiy2nu/nlYZxIwOpzET1yMWQg8mLSrBwjOSns2HGbrDNwEjNM1MiIitUc6SeaV8Pl6ggsmkxnBHQEqO7vsbeBfCYbDSoFPCa7ufyCpzvhwf6MJ5mLygN6Jq/0huH7HzHoTnIzwPME8zATg9jSOR0REIpZOkrlsVz/M3SdSyW1f3L0UGBc+Kqq3hOAsNRERqaXSuRjz0SgDERGR3Y9WxhQRkcikc8X/Xyqp4u5elTsxi4jIHiKdOZmeBJP7yZoS3NAyn5TbvIiIiKQzJ3NQeeVm1gP4A8HCZSIiImV2eU7G3RcS3Djz97scjYiI7Faqa+L/I+CYatqXiIjsJqoryfwS+Kaa9iUiIruJXT27LBM4NHzcVF1BiYjI7mFXzy4rBFYBk4Gp1RWUiIjsHnb57DIREZEd0RX/IiISmbSSjJm1MbO7zewDM/sqfP69mbWOKkAREam7qpxkzOxg4D3gKoK1ZF4Jn68G3jOzzpFEKCIidVY6E/8TCFatPN7dP00UmlkHYF64/ZzqDU9EROqydIbLTgVGJycYgPD9WIKzz0RERMqkk2T2JliBsjzrgaxdD0dERHYn6SSZpex4dczLwu0iIiJl0pmTuQOYZmavAk8Aa4CWBHdfPgkYXP3hiYhIXZbOxZhPmtk+wK3AvUmbvgGucPenqzs4ERGp29LpyeDufw7vYZZLsGDZemC5u6febkZERCStG2TeAhzg7lcAy1K2PQR85e5jqzc8ERGpy9KZ+D8feH0H215FczIiIpIinSRzIPDZDratCreLiIiUSSfJbALa7mBbO4Lb/ouIiJRJJ8m8AtwYnmFWJnx/fbhdRESkTDpnl90MLAZWmtkTwFdAa4LrZPYhmLMREREpk851Mv8ws18A/wNcR9ALKiXowQxz939EE6KIiNRVaa0n4+7vuHsPoDHQBmjs7j3d/d2qtDez88zseTP72sy+N7M3zexfUupkmNloM1ttZpvNbIGZdS1nX4ea2cKwzmozG2Vmls7xiIhItHZqZUx33+LuX7v7ljSb/hbYSNATOht4G5hlZv2T6owERgC3AQOAYuAlM2uSqGBmzYC/AT+GdSaE7W7YmeMREZFopHXFfzU4y93XJb1/2cw6AkOBv5rZ3sBw4FZ3vx/AzPIITpG+EpgYtruKIPaB7r6JIAk1Izgx4U53L6qh4xERkQrsVE9mZ6UkmIT3gfbh65MIhuKeSmqzEZgDnJnU5gxgTphgEqYD2eE+RESkFqjpnkx5TgRWhq+7AFuBT1LqLAN6Jb3vAryYUmclwdBaLrAg9UPMLL+SOLKrFq6IiFRVrEnGzM4BTgHOCouaABvLueHmhnAbSfXykyu4e6mZFaTUExGRGMWWZMwsF3gIeMTd/xr157l7TiXx5KPejIhItYolyZjZAQTzLO8TTOgnbAD2NTNL6c00YdulnzeQkhDMLAPYlx0vEb3H+2LcYXGHkLa2Y5bEHYKI7IIanfgHMLPGwAvAZuBsd/8xafMKoAHQIaVZLrA8pV5uSp2OYdvliIhIrVCjScbMGgDPAgcAfd09P6XKa8D3wLlJbRoDfQl6PglzgTPNrFFS2flAATtejkBERGpYTQ+X3Q/0Bv4DaGlmLRMb3H2xuxea2SRgdDiJ/zHBzTcLgQeT9vMAwQWdz5rZZKAzcBMwTtfIiIjUHjWdZE4DDPhDOdsSt4QZH74eTTAXkwf0dveyuRZ3/87MegP3AM8TzMNMAG6PLnQREUlXjSYZdz+oCnVKgXHho6J6S4Ae1RKYiIhEosYn/kVEZM+hJCMiIpFRkhERkcgoyYiISGSUZEREJDJKMiIiEhklGRERiYySjIiIREZJRkREIqMkIyIikVGSERGRyCjJiIhIZJRkREQkMkoyIiISGSUZERGJjJKMiIhERklGREQioyQjIiKRUZIREZHIKMmIiEhklGRERCQySjIiIhIZJRkREYmMkoyIiERGSUZERCKjJCMiIpFRkhERkcjUeJIxs05m9pCZfWhmpWY2vZw6GWY22sxWm9lmM1tgZl3LqXeomS0M66w2s1FmZjVzJCIiUpk4ejJdgdOBJcAXO6gzEhgB3AYMAIqBl8ysSaKCmTUD/gb8GNaZELa7IbLIRUQkLfVj+Mzn3X0WgJktTN1oZnsDw4Fb3f3+sCwPWAVcCUwMq15FEP9Ad99EkISaATea2Z3uXhT5kYiISIVqvCfj7qWVVDkJaAw8ldRmIzAHODOp3hnAnDDBJEwHssN9iIhIzOLoyVSmC7AV+CSlfBnQK6Xeiyl1VhIMreUCC5I3mFl+JZ+bnW6gIiJSsdp4dlkTYKO7e0r5hnBbcr385AphL6kgpZ6IiMSkNvZkIuHuORVtD3s66s2IiFSj2phkNgD7mpml9GaahNuS622TFMwsA9g3pZ6ISKy+GHdY3CGkre2YJdWyn9o4XLYCaAB0SCnPBZan1MtNqdMxbLscERGJXW1MMq8B3wPnJgrMrDHQl+AMs4S5wJlm1iip7HyCOZnXayBOERGpRI0Pl5lZQ4KEAdACqG9m54TvX3D3zWY2CRhtZgXAx8D1QCHwYNKuHgCuA541s8lAZ+AmYJyukZHKHD18StwhpO2dSZfEHYJI2uKYk9kPeDql7OTwuT3wOTAeMGA0wVxMHtDb3cvmWtz9OzPrDdwDPE8wDzMBuD3K4EVEpOpqPMm4++cECaSiOqXAuPBRUb0lQI/qik1E6oa61hOd2TjuCOJTG+dkRERkN6EkIyIikVGSERGRyCjJiIhIZJRkREQkMkoyIiISGSUZERGJjJKMiIhERklGREQioyQjIiKRUZIREZHIKMmIiEhklGRERCQySjIiIhIZJRkREYmMkoyIiERGSUZERCKjJCMiIpFRkhERkcgoyYiISGSUZEREJDJKMiIiEhklGRERiYySjIiIREZJRkREIlM/7gBEpGq+GHdY3CGkpe2YJXGHILWAejIiIhKZOp1kzOxQM1toZpvNbLWZjTIzizsuEREJ1NnhMjNrBvwN+DswADgYmAwUAxNjDE1EREJ1NskAVxHEP9DdNwEvhYnnRjO7092L4g1PRETq8nDZGcCcMMEkTAeygZPiCUlERJKZu8cdw04xs2+Bu9391qSyDKAIuM7d/5BSP7+SXWYDZGdnV+nzNxVuTSfcWqGRFcYdQtoss3Ek+9X3F72ovjuoe99fXfvuoOrfX0FBAYC7e7mdlro8XNYEyE8ucPdSMysIt+0MLygo2LirgdVS2eGBFcQbRpoK61a4Eap735++u4S6991BOt/fvkDpjjbW5SSTFnfPiTuGOCV6cnv6z6Gu0vdXd+3p311dnpPZQDjElRAOl+0bbhMRkZjV5SSzAshNKesINACW13w4IiKSqi4nmbnAmWbWKKnsfIJxz9fjCUlERJLV5STzAFACPGtmvc3sauAmYKKukRERqR3q7MS/u39nZr2Be4DnCeZhJgC3xxqYiIiUqbNJBsDdlwA94o5DRETKV5eHy0REpJars1f8i4hI7aeejIiIREZJRkREIqMkIyIikVGSEYmBmY0xs6/NrNTM7oo7HomfmTU3s7FmdlDcsVQnTfyL1DAzOwZ4C7geeBX42t1XxRuVxM3McoFlwKnuvjDmcKpNnb5ORqSOStxz7z5331xeBTPLcve6twjJHsbM6gEZ7l63FripQRouq6PM7DwzW2JmRWb2RdjNrmdmWWHZeUl17zEzN7PuSWVPmdmz4eseie1mNtPMfjCzlWZ2WRzHtjszs0eAx8K3P4Q/9yHh8zFm9oqZbQGuDesfaWbzzGyTmeWb2cNmlnr38Q5m9my4fZOZzTCz1jV7ZHsGM3vEzBab2SAzW0qwSOIR4e/j+2ZWaGZfmtlIM7Ny2p1pZh+G39NCM+scbj+IoBcDsCD897BbDDMpydRBZnY68CTBkMu/ENzHbSQwLvzr9x2gW1KTU4DC8DmhG8FQTbI/hfv8JfAG8Gcz6xrBIezJbgESq7n+AjiRYHkKCJYPnwn0BeaZWRfgFYJ79F0AXA30BB5J7MzMWhB8jwcClwMXAZ2A55P/k5Nq1RG4jeB77At0BaYBCwl+H+8CRgHXpbRrH7b7b4LvqS3weLhtDTA4fH0Nwb+LEyOKv2a5ux517AEsBl5KKRsD/AA0Jbh/27theTbBf1L3AXPDso6AA8eE73uE78ck7S+LYOXRUXEf7+72AIaEP++slPfXpNR7HPgQqJ9U1i2se1j4fjzwLZCdVOcgYCvQP+5j3d0eBAm+FDg0fG/Al8CDKfVGAWuBeknttgIdkuoMDr/LNuH73PB9j7iPszof6snUMeEY8FHA0ymbngQaEvxV9SpwuJk1Bk4m+CvpUeCksP0pwCbg/ZR9zEu88KBH9CnQpvqPQnZgdsr7ngQ9G8ysvpnVB/IIeqVHJdV5kWDoLVFnNcF3d3SNRL3n+cLd/xG+Ppjgd+SZxM8//A4WAPux7e/PJ+7+adL7peHzbv07piRT9zQnWJhtbUp54n0r4DWC7/YkgoTyf8C7YdkRBH8NL3b34pR95Ke8/5GgRyM1I/U7bU4wDLo16ZH4Tg5MqnNRSp2tBP/5HYhEIfl7ah4+z2Pbn39iKDr5O8hP2c+P4fNu/Tums8vqnnUE/4j3SynfP3z+2t3Xh5OSp4SPJ9y92MzykstqKmCpstSJ3vUEPdZHyqn7dVKdGQTLXKRaV22RSbLk72l9+Hw5sKScuiuiD6d2U5KpY9y9xMzeAc4FHkradB6wGUh04/8P6A0cCVyVVDaI4K/c/6uRgGVXzAd+5u5vV1LnbOADd/+xgnoSjRUECb+tuz+8i/vaLXs2SjJ1083Ai2b2EMFfukcBo4FJ7r4hrPMqQXJZTzB5DEFiuRkoJjh5QGq3scBbZjaLYE5tA8EZSf0ITsj4CPgdcDHwspndB3xDMGR6GjDFd6OL+mojdy81s+FA4tTyeQQnBhwM9HT3gWnsbjXByTuXmlkBsLWSPzDqBCWZOsjd55nZYILEcinBGPEEYFxStURP5TUPT10hSCzFwHu+g4sApfZw9xVmdiLBaa9/AfYCVgFzCecF3P2fYZ0JwL1AY+Ar4G/Ayjji3tO4+xNm9j3B8u9XEfRIPiI4JT2d/fxoZlcQnOK8iGDutc6fhq7byoiISGR0dpmIiERGSUZERCKjJCMiIpFRkhERkcgoyYiISGSUZEREJDJKMiJVlLTuy6E72P5NuF5MLMI1hXRNgtQqSjIiu48/sbusQSK7DV3xL7KbcPfVBLcmEak11JMRiYiZdTSzp81sfbgs7/tmdlFKnXKHuMorN7PBZvaOmX0fPpaZ2chK2riZTTazK83s43Bp7TfN7ORyPvMaM/s0Kda+4RLBC3f5hyF7LPVkRNJXL1yYaofMrCXwOsF9rIYSrF55KfCYmWW7+33pfGCYFJ4guD/ZjQS3m+8MtKtC83OAL4DrCe5dNw6YbWYHuXt+uP8h4b6nhp9zAHA/wf3SPkonVpFkSjIi6Xu/CnV+S7Cg1WHunlgB8QUz2w+4xcweSvPW/CcCBe6evG78y1VsmwGcHq52ipmtAd4iWJ/+CTPLIEg8C9z94kQjM/sH8CZKMrILNFwmkr7BwLHlPL5LqtOD4G7XS1PaTgGaAIen+ZlvATlmNs3MzjKzpmm0fTmRYEKJxbXahs+tCVZw3GZJb3d/C/g8zThFtqGejEj6Pkxa472MmSUvZ90UWFZO2zXhc7N0PtDdF5nZIODXwDNAfTN7A7je3V+vpPn65DfuXmRm8NPiWK3C52/LaZu6JLRIWtSTEYnGeqBlOeWJskSvJzGElZlSb7sk5O4z3P1Ugp5QX4L5krlm1mQXY00s5Zy6pDf8tKy3yE5RkhGJxkLgSDPLTSm/iCABfRC+XxU+H5aoYGYNgD472rG7b3b3F4HJBIuUHbSLsX4FfEmwpHcZMzu2GvYtezgNl4lE406Cs8leNLMxBENRlwA9gWuTJv1fIFhW+SEzu5ngD79rCFZFLGNm4wh6QfMJksIBwCiC5JA675OWcAnhMQRLCD8GPB5+1s0Ew3ulu7J/2bOpJyMSAXdfA5xEMGF/F/C/wCHAxcmnL7t7AdAPKAKmhXVnA4+m7DKPYHL+f4CXCJLYPwjWkS+qhngfAa4FugGzCM6O+zVBcszf1f3LnkvLL4tIucysLcHpy7e4+/i445G6SUlGRBIJ5bfAIoKeS0eCizebA13d/Zv4opO6THMyIgLBWW5dgAsJTr/eCLwC3KQEI7tCPRkREYmMJv5FRCQySjIiIhIZJRkREYmMkoyIiERGSUZERCKjJCMiIpH5f9hcmbv6DCL6AAAAAElFTkSuQmCC\n",
794
- "text/plain": [
795
- "<Figure size 432x288 with 1 Axes>"
796
- ]
797
- },
798
- "metadata": {
799
- "needs_background": "light"
800
- },
801
- "output_type": "display_data"
802
- }
803
- ],
804
  "source": [
805
  "# Ecrivez votre code ici (vous pouvez réutiliser/copier la plupart du code utilisé au dessus \n",
806
  "\n",
 
38
  },
39
  {
40
  "cell_type": "code",
41
+ "execution_count": null,
42
  "metadata": {
43
  "execution": {
44
  "iopub.execute_input": "2023-01-19T20:23:40.477106Z",
 
48
  "shell.execute_reply.started": "2023-01-19T20:23:40.477010Z"
49
  }
50
  },
51
+ "outputs": [],
 
 
 
 
 
 
 
 
52
  "source": [
53
  "# Checking the files available in this notebook \n",
54
  "import os\n",
 
71
  },
72
  {
73
  "cell_type": "code",
74
+ "execution_count": 1,
75
  "metadata": {
76
  "execution": {
77
  "iopub.execute_input": "2023-01-19T20:23:40.515413Z",
 
83
  },
84
  "outputs": [],
85
  "source": [
86
+ "# fix --- execute this cell\n",
87
  "### Importation des bibliothèques générales que nous utiliserons dans ce notebook\n",
88
  "import numpy as np # algèbre linéaire\n",
89
  "import pandas as pd # traitement des données, I/O de fichier CSV (par ex. pd.read_csv)\n",
 
96
  },
97
  {
98
  "cell_type": "code",
99
+ "execution_count": null,
100
  "metadata": {
101
  "_cell_guid": "b1076dfc-b9ad-4769-8c92-a6c4dae69d19",
102
  "_uuid": "8f2839f25d086af736a60e9eeb907d3b93b6e0e5",
 
108
  "shell.execute_reply.started": "2023-01-19T20:23:51.792638Z"
109
  }
110
  },
111
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
112
  "source": [
113
  "dataset.head()"
114
  ]
115
  },
116
  {
117
  "cell_type": "code",
118
+ "execution_count": null,
119
  "metadata": {
120
  "execution": {
121
  "iopub.execute_input": "2023-01-19T20:24:31.194121Z",
 
125
  "shell.execute_reply.started": "2023-01-19T20:24:31.194089Z"
126
  }
127
  },
128
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129
  "source": [
130
  "# Nettoyer le jeu de données\n",
131
  "dataset = dataset.drop('Unnamed: 0', axis='columns')\n",
 
195
  },
196
  {
197
  "cell_type": "code",
198
+ "execution_count": 2,
199
  "metadata": {
200
  "execution": {
201
  "iopub.execute_input": "2023-01-19T22:27:27.062414Z",
 
291
  },
292
  {
293
  "cell_type": "code",
294
+ "execution_count": null,
295
  "metadata": {
296
  "execution": {
297
  "iopub.execute_input": "2023-01-19T20:24:53.142204Z",
 
301
  "shell.execute_reply.started": "2023-01-19T20:24:53.142166Z"
302
  }
303
  },
304
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
305
  "source": [
306
  "# Ecrivez votre code ici (vous pouvez réutiliser/copier la plupart du code utilisé au dessus \n",
307
  "\n",
benchmark/NBspecific_4/NBspecific_4_reproduced.ipynb CHANGED
@@ -38,7 +38,7 @@
38
  },
39
  {
40
  "cell_type": "code",
41
- "execution_count": 1,
42
  "metadata": {
43
  "execution": {
44
  "iopub.execute_input": "2023-01-19T20:23:40.477106Z",
@@ -48,15 +48,7 @@
48
  "shell.execute_reply.started": "2023-01-19T20:23:40.477010Z"
49
  }
50
  },
51
- "outputs": [
52
- {
53
- "name": "stdout",
54
- "output_type": "stream",
55
- "text": [
56
- "data/german_credit_data.csv\n"
57
- ]
58
- }
59
- ],
60
  "source": [
61
  "# Checking the files available in this notebook \n",
62
  "import os\n",
@@ -202,7 +194,7 @@
202
  },
203
  {
204
  "cell_type": "code",
205
- "execution_count": 2,
206
  "metadata": {
207
  "execution": {
208
  "iopub.execute_input": "2023-01-19T22:27:27.062414Z",
@@ -221,7 +213,7 @@
221
  "traceback": [
222
  "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
223
  "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
224
- "\u001b[0;32m<ipython-input-2-ad62a79f7cf8>\u001b[0m in \u001b[0;36m<cell line: 1>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0msns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_context\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'talk'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfont_scale\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m.9\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;31m# Exemple des types d'analyse qui peuvent être effectués\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;31m# Count plot nous aide à visualiser le nombre d'éléments par catégorie\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0msns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcountplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdataset\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'Sex'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhue\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'Risk'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
225
  "\u001b[0;31mNameError\u001b[0m: name 'sns' is not defined"
226
  ]
227
  }
 
38
  },
39
  {
40
  "cell_type": "code",
41
+ "execution_count": null,
42
  "metadata": {
43
  "execution": {
44
  "iopub.execute_input": "2023-01-19T20:23:40.477106Z",
 
48
  "shell.execute_reply.started": "2023-01-19T20:23:40.477010Z"
49
  }
50
  },
51
+ "outputs": [],
 
 
 
 
 
 
 
 
52
  "source": [
53
  "# Checking the files available in this notebook \n",
54
  "import os\n",
 
194
  },
195
  {
196
  "cell_type": "code",
197
+ "execution_count": 1,
198
  "metadata": {
199
  "execution": {
200
  "iopub.execute_input": "2023-01-19T22:27:27.062414Z",
 
213
  "traceback": [
214
  "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
215
  "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
216
+ "\u001b[0;32m<ipython-input-1-ad62a79f7cf8>\u001b[0m in \u001b[0;36m<cell line: 1>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0msns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mset_context\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'talk'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfont_scale\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m.9\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;31m# Exemple des types d'analyse qui peuvent être effectués\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;31m# Count plot nous aide à visualiser le nombre d'éléments par catégorie\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0msns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcountplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdataset\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'Sex'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mhue\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'Risk'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
217
  "\u001b[0;31mNameError\u001b[0m: name 'sns' is not defined"
218
  ]
219
  }
benchmark/NBspecific_5/NBspecific_5_fixed.ipynb CHANGED
@@ -314,7 +314,7 @@
314
  },
315
  {
316
  "cell_type": "code",
317
- "execution_count": 3,
318
  "metadata": {
319
  "execution": {
320
  "iopub.execute_input": "2023-05-22T10:20:41.384744Z",
@@ -324,69 +324,7 @@
324
  "shell.execute_reply.started": "2023-05-22T10:20:41.384638Z"
325
  }
326
  },
327
- "outputs": [
328
- {
329
- "name": "stdout",
330
- "output_type": "stream",
331
- "text": [
332
- "number of classes: 23\n",
333
- "\n"
334
- ]
335
- },
336
- {
337
- "data": {
338
- "text/plain": [
339
- "labels\n",
340
- "normal 67343\n",
341
- "neptune 41214\n",
342
- "satan 3633\n",
343
- "ipsweep 3599\n",
344
- "portsweep 2931\n",
345
- "smurf 2646\n",
346
- "nmap 1493\n",
347
- "back 956\n",
348
- "teardrop 892\n",
349
- "warezclient 890\n",
350
- "pod 201\n",
351
- "guess_passwd 53\n",
352
- "buffer_overflow 30\n",
353
- "warezmaster 20\n",
354
- "land 18\n",
355
- "imap 11\n",
356
- "rootkit 10\n",
357
- "loadmodule 9\n",
358
- "ftp_write 8\n",
359
- "multihop 7\n",
360
- "phf 4\n",
361
- "perl 3\n",
362
- "spy 2\n",
363
- "Name: count, dtype: int64"
364
- ]
365
- },
366
- "metadata": {},
367
- "output_type": "display_data"
368
- },
369
- {
370
- "data": {
371
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABhgAAAIQCAYAAABzDmT/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACUdklEQVR4nOz9fXzP9f///1+f7NiOjLFhrNhm0+ZYltjzFTVk30k5SmZyUEns5SDbu7QNGXIYKaVQL0kReeU42mIOF5aDmVnWVonCNnMws+33h5/np+cLsRkzLufT6XE67XFwv99vj4f+el673++G4uLiYgEAAAAAAAAAAJRApfIuAAAAAAAAAAAAVDwEDAAAAAAAAAAAoMQIGAAAAAAAAAAAQIkRMAAAAAAAAAAAgBIjYAAAAAAAAAAAACVGwAAAAAAAAAAAAEqMgAEAAAAAAAAAAJQYAQMAAAAAAAAAACgxAgYAAAAAAAAAAFBiBAwAAAAA7pqFCxfKYDAoIyOjvEup0AwGg2JiYsq7DAAAADzgCBgAAAAAAAAAAECJETAAAAAAAAAAAIASI2AAAAAAgLvo3Llz5V0CAAAAUCYIGAAAAABc17Jly2QwGJSQkHDNvXnz5slgMOjAgQOSpJ9++knh4eF6+OGHZWNjIzc3N7344os6derUTce50X4Cnp6eCg8PN7uWnZ2tiIgIeXh4yNraWg0aNNDkyZNVVFRk9twXX3yh5s2by8HBQY6OjvL399esWbP+sY6MjAwZDAZNnTpVM2bMUL169WRra6ugoCDTe/7d4cOH9dxzz8nFxUU2NjZq0aKFVq1aZfbM1T0nEhISNGTIENWoUUN16tT5xzouXryomJgYeXt7y8bGRu7u7urWrZvS09Nv2OaXX37RkCFD5OPjI1tbW1WrVk3du3e/Zq+LgoICxcbGysvLSzY2NqpWrZoef/xxbdy40fTMH3/8of79+6tOnTqytraWu7u7QkND2TcDAAAA17Ao7wIAAAAA3Juefvpp2dvb68svv1RQUJDZvaVLl6pRo0Z65JFHJEkbN27Uzz//rP79+8vNzU0HDx7Uhx9+qIMHD2rHjh0yGAy3Xc/58+cVFBSk3377TS+99JLq1q2rbdu2KSoqSsePH9fMmTNNtfTu3Vvt27fX5MmTJUkpKSlKTEzU8OHDbzrOp59+qrNnz+rVV1/VxYsXNWvWLD3xxBPav3+/atasKUk6ePCg2rRpo9q1aysyMlJVqlTRl19+qa5du2r58uV65plnzPocMmSIXF1d9dZbb/3jDIbCwkJ16dJFmzZtUq9evTR8+HCdPXtWGzdu1IEDB1S/fv3rttu9e7e2bdumXr16qU6dOsrIyND7778vo9GoQ4cOyc7OTpIUExOjuLg4DRw4UK1atVJubq6SkpK0Z88ePfnkk5KkZ599VgcPHtRrr70mT09PnTx5Uhs3blRmZqY8PT1v+v0AAADw4CBgAAAAAHBdtra2CgkJ0bJly/Tuu++qcuXKkq78H+4JCQlmsw6GDBmikSNHmrVv3bq1evfura1bt6pt27a3Xc/06dOVnp6uvXv3ysvLS5L00ksvqVatWnrnnXc0cuRIeXh4aPXq1XJ0dNT69etNNZfE0aNHlZaWptq1a0uSOnbsqEcffVSTJ0/W9OnTJUnDhw9X3bp1tXv3bllbW0u68g0ef/xxjRkz5pqAwcXFRZs2bbppPZ9++qk2bdqk6dOn69///rfpemRkpIqLi2/Y7umnn9Zzzz1ndi0kJESBgYFavny5+vbtK0lavXq1OnfurA8//PC6/WRnZ2vbtm165513NGrUKNP1qKiof6wbAAAADyaWSAIAAABwQz179tTJkycVHx9vurZs2TIVFRWpZ8+epmu2tramvy9evKi//vpLrVu3liTt2bOnTGr56quv1LZtW1WtWlV//fWX6ejQoYMKCwv1ww8/SJKcnZ117tw5s2V/SqJr166mcEGSWrVqpUcffVRr1qyRJJ0+fVqbN29Wjx49dPbsWVMdp06dUnBwsNLS0vTbb7+Z9Tlo0KBbCjuWL1+u6tWr67XXXrvm3j/NAvn79y8oKNCpU6fUoEEDOTs7m31/Z2dnHTx4UGlpaTfsx8rKSvHx8Tpz5sxN6wUAAMCDjYABAAAAwA117NhRTk5OWrp0qena0qVL1aRJE3l7e5uunT59WsOHD1fNmjVla2srV1dXPfTQQ5KknJycMqklLS1N69atk6urq9nRoUMHSdLJkyclXZlJ4O3trU6dOqlOnTp68cUXtW7dulse5+rsiL/z9vY27UFw9OhRFRcXa+zYsdfUEh0dbVbLVVe/xc2kp6fLx8dHFhYlm2x+4cIFvfXWW6a9KapXry5XV1dlZ2ebff9x48YpOztb3t7e8vf31+jRo/XTTz+Z7ltbW2vy5Mlau3atatasqXbt2mnKlCn6448/SlQPAAAAHgwskQQAAADghqytrdW1a1etWLFCc+fO1YkTJ5SYmKiJEyeaPdejRw9t27ZNo0ePVpMmTWRvb6+ioiJ17Njxmg2Yb1VhYaHZeVFRkZ588km9/vrr133+auBRo0YN7du3T+vXr9fatWu1du1aLViwQGFhYVq0aFGpavnfOiRp1KhRCg4Ovu4zDRo0MDv/+wyDO+G1117TggULFBERocDAQDk5OclgMKhXr15m379du3ZKT0/XN998ow0bNmj+/PmaMWOGPvjgAw0cOFCSFBERoZCQEK1cuVLr16/X2LFjFRcXp82bN6tp06Z39D0AAABQsRAwAAAAAPhHPXv21KJFi7Rp0yalpKSouLjYbHmkM2fOaNOmTYqNjdVbb71lun6jZXj+V9WqVZWdnW127dKlSzp+/LjZtfr16ysvL880Y+GfWFlZKSQkRCEhISoqKtKQIUM0b948jR079pof///X9eo+cuSIaYPjhx9+WJJkaWl5S7WURP369bVz504VFBTI0tLyltstW7ZM/fr107Rp00zXLl68eM13la7sB9G/f3/1799feXl5ateunWJiYkwBw9U6Ro4cqZEjRyotLU1NmjTRtGnT9J///Oe23g8AAAD3F5ZIAgAAAPCPOnToIBcXFy1dulRLly5Vq1atzJb8ubq3wP9uQjxz5sxb6r9+/fqm/ROu+vDDD6+ZwdCjRw9t375d69evv6aP7OxsXb58WZJ06tQps3uVKlVSQECAJCk/P/+m9axcudJsD4Vdu3Zp586d6tSpk6QrMySMRqPmzZt3TQgiSX/++edNx7iRZ599Vn/99ZfmzJlzzb1/2uS5cuXK19yfPXv2Nd/wf7+Nvb29GjRoYPou58+f18WLF82eqV+/vhwcHG7p2wEAAODBwgwGAAAAAP/I0tJS3bp10xdffKFz585p6tSpZvcdHR1Na/UXFBSodu3a2rBhg44dO3ZL/Q8cOFAvv/yynn32WT355JNKTk7W+vXrVb16dbPnRo8erVWrVqlLly4KDw9X8+bNde7cOe3fv1/Lli1TRkaGqlevroEDB+r06dN64oknVKdOHf3yyy+aPXu2mjRpIl9f35vW06BBAz3++ON65ZVXlJ+fr5kzZ6patWpmSzO99957evzxx+Xv769Bgwbp4Ycf1okTJ7R9+3b9+uuvSk5OvqV3/19hYWH69NNPNWLECO3atUtt27bVuXPn9N1332nIkCEKDQ29brsuXbros88+k5OTk/z8/LR9+3Z99913qlatmtlzfn5+MhqNat68uVxcXJSUlKRly5Zp6NChkq7M1Gjfvr169OghPz8/WVhYaMWKFTpx4oR69epVqncCAADA/YuAAQAAAMBN9ezZU/Pnz5fBYFCPHj2uuf/555/rtdde03vvvafi4mI99dRTWrt2rWrVqnXTvgcNGqRjx47p448/1rp169S2bVtt3LhR7du3N3vOzs5OCQkJmjhxor766it9+umncnR0lLe3t2JjY+Xk5CRJeuGFF/Thhx9q7ty5ys7Olpubm3r27KmYmBhVqnTzSdxhYWGqVKmSZs6cqZMnT6pVq1aaM2eO3N3dTc/4+fkpKSlJsbGxWrhwoU6dOqUaNWqoadOmZstElVTlypW1Zs0avf322/r888+1fPlyVatWzRRm3MisWbNUuXJlLV68WBcvXlSbNm303XffXbNHxLBhw7Rq1Spt2LBB+fn5qlevniZMmKDRo0dLkjw8PNS7d29t2rRJn332mSwsLNSwYUN9+eWXevbZZ0v9XgAAALg/GYr/aZ4tAAAAADwgMjIy9NBDD+mdd97RqFGjyrscAAAA4J7HHgwAAAAAAAAAAKDECBgAAAAAAAAAAECJETAAAAAAAAAAAIASYw8GAAAAAAAAAABQYsxgAAAAAAAAAAAAJUbAAAAAAAAAAAAASsyivAvA/aOoqEi///67HBwcZDAYyrscAAAAAAAAAMB1FBcX6+zZs6pVq5YqVSr9PAQCBpSZ33//XR4eHuVdBgAAAAAAAADgFmRlZalOnTqlbk/AgDLj4OAg6cp/lI6OjuVcDQAAAAAAAADgenJzc+Xh4WH6Tbe0CBhQZq4ui/Tee+/JxsamnKsBAAAAAAAAAHPR0dHlXcI95XaXumeTZwAAAAAAAAAAUGIEDAAAAAAAAAAAoMQIGHBDnp6emjlzZnmXAQAAAAAAAAC4BxEwAAAAAAAAAACAEiNgqMAuXbpU3iUAAAAAAAAAAB5QBAx3kdFo1LBhw/T666/LxcVFbm5uiomJMd3PzMxUaGio7O3t5ejoqB49eujEiROm+zExMWrSpInmz5+vhx56SDY2NpKu7PQ9b948denSRXZ2dvL19dX27dt19OhRGY1GValSRY899pjS09NNfaWnpys0NFQ1a9aUvb29WrZsqe++++6ufQsAAAAAAAAAQMVGwHCXLVq0SFWqVNHOnTs1ZcoUjRs3Ths3blRRUZFCQ0N1+vRpJSQkaOPGjfr555/Vs2dPs/ZHjx7V8uXL9fXXX2vfvn2m6+PHj1dYWJj27dunhg0b6vnnn9dLL72kqKgoJSUlqbi4WEOHDjU9n5eXp86dO2vTpk3au3evOnbsqJCQEGVmZt7yu+Tn5ys3N9fsAAAAAAAAAAA8GCzKu4AHTUBAgKKjoyVJXl5emjNnjjZt2iRJ2r9/v44dOyYPDw9J0qeffqpGjRpp9+7datmypaQryyJ9+umncnV1Neu3f//+6tGjhyRpzJgxCgwM1NixYxUcHCxJGj58uPr37296vnHjxmrcuLHpfPz48VqxYoVWrVplFkT8k7i4OMXGxpbmMwAAAAAAAAAAKjhmMNxlAQEBZufu7u46efKkUlJS5OHhYQoXJMnPz0/Ozs5KSUkxXatXr9414cL/9luzZk1Jkr+/v9m1ixcvmmYZ5OXladSoUfL19ZWzs7Ps7e2VkpJSohkMUVFRysnJMR1ZWVm33BYAAAAAAAAAULExg+Eus7S0NDs3GAwqKiq65fZVqlS5ab8Gg+GG166ONWrUKG3cuFFTp05VgwYNZGtrq+eee65EG0dbW1vL2tr6lp8HAAAAAAAAANw/CBjuEb6+vsrKylJWVpZpFsOhQ4eUnZ0tPz+/Mh8vMTFR4eHheuaZZyRdmdGQkZFR5uMAAAAAAAAAAO5PLJF0j+jQoYP8/f3Vp08f7dmzR7t27VJYWJiCgoLUokWLMh/Py8vLtFF0cnKynn/++RLNpAAAAAAAAAAAPNgIGO4RBoNB33zzjapWrap27dqpQ4cOevjhh7V06dI7Mt706dNVtWpVPfbYYwoJCVFwcLCaNWt2R8YCAAAAAAAAANx/DMXFxcXlXQTuD7m5uXJyclJkZKRsbGzKuxwAAAAAAAAAMBMdHV3eJdwTrv6Wm5OTI0dHx1L3wwwGAAAAAAAAAABQYsxgQJkpq9QLAAAAAAAAAHDnMIMBAAAAAAAAAACUGwIGAAAAAAAAAABQYgQMAAAAAAAAAACgxCzKuwDcf+Li4mRjY1PeZQAAAADANaKjo8u7BAAAgPsGMxgAAAAAAAAAAECJETAAAAAAAAAAAIASI2AAAAAAAAAAAAAlRsBQgYSHh6tr167lXQYAAAAAAAAAAAQMAAAAAAAAAACg5AgYyojRaNSwYcP0+uuvy8XFRW5uboqJiTHdz87O1sCBA+Xq6ipHR0c98cQTSk5ONt2PiYlRkyZNNG/ePHl4eMjOzk49evRQTk6O6f6iRYv0zTffyGAwyGAwKD4+XvHx8TIYDMrOzjb1tW/fPhkMBmVkZEiSFi5cKGdnZ61fv16+vr6yt7dXx44ddfz4cbN3mD9/vnx9fWVjY6OGDRtq7ty5d+x7AQAAAAAAAAAqNgKGMrRo0SJVqVJFO3fu1JQpUzRu3Dht3LhRktS9e3edPHlSa9eu1Y8//qhmzZqpffv2On36tKn90aNH9eWXX+q///2v1q1bp71792rIkCGSpFGjRqlHjx6mYOD48eN67LHHbrm28+fPa+rUqfrss8/0ww8/KDMzU6NGjTLdX7x4sd566y29/fbbSklJ0cSJEzV27FgtWrTohn3m5+crNzfX7AAAAAAAAAAAPBgsyruA+0lAQICio6MlSV5eXpozZ442bdokW1tb7dq1SydPnpS1tbUkaerUqVq5cqWWLVumwYMHS5IuXryoTz/9VLVr15YkzZ49W08//bSmTZsmNzc32draKj8/X25ubiWuraCgQB988IHq168vSRo6dKjGjRtnuh8dHa1p06apW7dukqSHHnpIhw4d0rx589SvX7/r9hkXF6fY2NgS1wIAAAAAAAAAqPgIGMpQQECA2bm7u7tOnjyp5ORk5eXlqVq1amb3L1y4oPT0dNN53bp1TeGCJAUGBqqoqEipqamlChX+zs7OzhQu/L02STp37pzS09M1YMAADRo0yPTM5cuX5eTkdMM+o6KiNGLECNN5bm6uPDw8bqtOAAAAAAAAAEDFQMBQhiwtLc3ODQaDioqKlJeXJ3d3d8XHx1/TxtnZ+bbGrFTpyipXxcXFpmsFBQW3VNvVNnl5eZKkjz76SI8++qjZc5UrV77h2NbW1qYZGQAAAAAAAACABwsBw13QrFkz/fHHH7KwsJCnp+cNn8vMzNTvv/+uWrVqSZJ27NihSpUqycfHR5JkZWWlwsJCszaurq6SpOPHj6tq1aqSrmzyXBI1a9ZUrVq19PPPP6tPnz4lagsAAAAAAAAAeDCxyfNd0KFDBwUGBqpr167asGGDMjIytG3bNr3xxhtKSkoyPWdjY6N+/fopOTlZW7Zs0bBhw9SjRw/T8kienp766aeflJqaqr/++ksFBQVq0KCBPDw8FBMTo7S0NK1evVrTpk0rcY2xsbGKi4vTu+++qyNHjmj//v1asGCBpk+fXmbfAQAAAAAAAABw/yBguAsMBoPWrFmjdu3aqX///vL29lavXr30yy+/qGbNmqbnGjRooG7duqlz58566qmnFBAQoLlz55ruDxo0SD4+PmrRooVcXV2VmJgoS0tLLVmyRIcPH1ZAQIAmT56sCRMmlLjGgQMHav78+VqwYIH8/f0VFBSkhQsX6qGHHiqTbwAAAAAAAAAAuL8Yiv++eD/KTUxMjFauXFni5Y3uJbm5uXJyclJkZKRsbGzKuxwAAAAAuEZ0dHR5lwAAAFDurv6Wm5OTI0dHx1L3wwwGAAAAAAAAAABQYmzyjDIXFRV1W6kXAAAAAAAAAODexxJJKDNlNa0GAAAAAAAAAHDnsEQSAAAAAAAAAAAoNwQMAAAAAAAAAACgxNiDAWUuLi5ONjY25V3GPSk6Orq8SwAAAAAAAACAMsEMBgAAAAAAAAAAUGIEDAAAAAAAAAAAoMQIGAAAAAAAAAAAQIkRMNxnDAaDVq5cWd5lAAAAAAAAAADucwQMAAAAAAAAAACgxAgY7kHLli2Tv7+/bG1tVa1aNXXo0EHnzp3T7t279eSTT6p69epycnJSUFCQ9uzZY2rn6ekpSXrmmWdkMBhM5+np6QoNDVXNmjVlb2+vli1b6rvvvjMb09PTUxMnTtSLL74oBwcH1a1bVx9++OHdemUAAAAAAAAAQAVDwHCPOX78uHr37q0XX3xRKSkpio+PV7du3VRcXKyzZ8+qX79+2rp1q3bs2CEvLy917txZZ8+elSTt3r1bkrRgwQIdP37cdJ6Xl6fOnTtr06ZN2rt3rzp27KiQkBBlZmaajT1t2jS1aNFCe/fu1ZAhQ/TKK68oNTX1hrXm5+crNzfX7AAAAAAAAAAAPBgMxcXFxeVdBP6fPXv2qHnz5srIyFC9evX+8dmioiI5Ozvr888/V5cuXSRd2YNhxYoV6tq16z+2feSRR/Tyyy9r6NChkq7MYGjbtq0+++wzSVJxcbHc3NwUGxurl19++bp9xMTEKDY29prrkZGRsrGxudmrPpCio6PLuwQAAAAAAAAAD7jc3Fw5OTkpJydHjo6Ope6HGQz3mMaNG6t9+/by9/dX9+7d9dFHH+nMmTOSpBMnTmjQoEHy8vKSk5OTHB0dlZeXd81MhP+Vl5enUaNGydfXV87OzrK3t1dKSso17QICAkx/GwwGubm56eTJkzfsNyoqSjk5OaYjKyvrNt4cAAAAAAAAAFCRWJR3ATBXuXJlbdy4Udu2bdOGDRs0e/ZsvfHGG9q5c6deeeUVnTp1SrNmzVK9evVkbW2twMBAXbp06R/7HDVqlDZu3KipU6eqQYMGsrW11XPPPXdNO0tLS7Nzg8GgoqKiG/ZrbW0ta2vr0r8sAAAAAAAAAKDCImC4BxkMBrVp00Zt2rTRW2+9pXr16mnFihVKTEzU3Llz1blzZ0lSVlaW/vrrL7O2lpaWKiwsNLuWmJio8PBwPfPMM5KuzGjIyMi4K+8CAAAAAAAAALg/ETDcY3bu3KlNmzbpqaeeUo0aNbRz5079+eef8vX1lZeXlz777DO1aNFCubm5Gj16tGxtbc3ae3p6atOmTWrTpo2sra1VtWpVeXl56euvv1ZISIgMBoPGjh37jzMTAAAAAAAAAAC4GfZguMc4Ojrqhx9+UOfOneXt7a0333xT06ZNU6dOnfTxxx/rzJkzatasmfr27athw4apRo0aZu2nTZumjRs3ysPDQ02bNpUkTZ8+XVWrVtVjjz2mkJAQBQcHq1mzZuXxegAAAAAAAACA+4ShuLi4uLyLwP3h6s7jkZGRsrGxKe9y7knR0dHlXQIAAAAAAACAB9zV33JzcnLk6OhY6n6YwQAAAAAAAAAAAEqMgAEAAAAAAAAAAJQYSyShzJTVtBoAAAAAAAAAwJ3DEkkAAAAAAAAAAKDcEDAAAAAAAAAAAIASI2AAAAAAAAAAAAAlZlHeBeD+ExcXJxsbm/Iu454THR1d3iUAAAAAAAAAQJlhBgMAAAAAAAAAACgxAoYyYjQaFRERUd5lAAAAAAAAAABwV7BEUhn5+uuvZWlpWd5lAAAAAAAAAABwVxAwlBEXF5fyLgEAAAAAAAAAgLuGJZLKyN+XSPL09NT48ePVu3dvValSRbVr19Z7771nera4uFgxMTGqW7eurK2tVatWLQ0bNkySNGfOHD3yyCOmZ1euXCmDwaAPPvjAdK1Dhw568803TefffPONmjVrJhsbGz388MOKjY3V5cuXTfezs7M1cOBAubq6ytHRUU888YSSk5NN92NiYtSkSRPNmzdPHh4esrOzU48ePZSTk1Pm3wkAAAAAAAAAcH8gYLhD3nnnHTVu3Fh79+5VZGSkhg8fro0bN0qSli9frhkzZmjevHlKS0vTypUr5e/vL0kKCgrSoUOH9Oeff0qSEhISVL16dcXHx0uSCgoKtH37dhmNRknSli1bFBYWpuHDh+vQoUOaN2+eFi5cqLfffttUS/fu3XXy5EmtXbtWP/74o5o1a6b27dvr9OnTpmeOHj2qL7/8Uv/973+1bt067d27V0OGDLkLXwoAAAAAAAAAUBERMNwhbdq0UWRkpLy9vfXaa6/pueee04wZMyRJmZmZcnNzU4cOHVS3bl21atVKgwYNkiQ98sgjcnFxUUJCgiQpPj5eI0eONJ3v2rVLBQUFeuyxxyRJsbGxioyMVL9+/fTwww/rySef1Pjx4zVv3jxJ0tatW7Vr1y599dVXatGihby8vDR16lQ5Oztr2bJlpnovXryoTz/9VE2aNFG7du00e/ZsffHFF/rjjz9u+I75+fnKzc01OwAAAAAAAAAADwYChjskMDDwmvOUlBRJV2YUXLhwQQ8//LAGDRqkFStWmJY0MhgMateuneLj45Wdna1Dhw5pyJAhys/P1+HDh5WQkKCWLVvKzs5OkpScnKxx48bJ3t7edAwaNEjHjx/X+fPnlZycrLy8PFWrVs3smWPHjik9Pd1UX926dVW7dm2zeouKipSamnrDd4yLi5OTk5Pp8PDwKLPvBwAAAAAAAAC4t7HJcznw8PBQamqqvvvuO23cuFFDhgzRO++8o4SEBFlaWspoNOrDDz/Uli1b1LRpUzk6OppCh4SEBAUFBZn6ysvLU2xsrLp163bNODY2NsrLy5O7u7tpiaW/c3Z2vq33iIqK0ogRI0znubm5hAwAAAAAAAAA8IAgYLhDduzYcc25r6+v6dzW1lYhISEKCQnRq6++qoYNG2r//v1q1qyZgoKCFBERoa+++sq014LRaNR3332nxMREjRw50tRPs2bNlJqaqgYNGly3jmbNmumPP/6QhYWFPD09b1hvZmamfv/9d9WqVctUb6VKleTj43PDNtbW1rK2tr7ZpwAAAAAAAAAA3IcIGO6QxMRETZkyRV27dtXGjRv11VdfafXq1ZKkhQsXqrCwUI8++qjs7Oz0n//8R7a2tqpXr54kKSAgQFWrVtXnn3+ub7/9VtKVgGHUqFEyGAxq06aNaZy33npLXbp0Ud26dfXcc8+pUqVKSk5O1oEDBzRhwgR16NBBgYGB6tq1q6ZMmSJvb2/9/vvvWr16tZ555hm1aNFC0pXZDv369dPUqVOVm5urYcOGqUePHnJzc7vLXw4AAAAAAAAAUBGwB8MdMnLkSCUlJalp06aaMGGCpk+fruDgYElXlib66KOP1KZNGwUEBOi7777Tf//7X1WrVk3SlX0Y2rZtK4PBoMcff1zSldDB0dFRLVq0UJUqVUzjBAcH69tvv9WGDRvUsmVLtW7dWjNmzDCFFQaDQWvWrFG7du3Uv39/eXt7q1evXvrll19Us2ZNUz8NGjRQt27d1LlzZz311FMKCAjQ3Llz79bnAgAAAAAAAABUMIbi4uLi8i7ifuPp6amIiAhFRESUdym3JCYmRitXrtS+fftuq5/c3Fw5OTkpMjJSNjY2ZVPcfSQ6Orq8SwAAAAAAAAAA02+5OTk5cnR0LHU/zGAAAAAAAAAAAAAlRsAAAAAAAAAAAABKjCWSUGbKaloNAAAAAAAAAODOYYkkAAAAAAAAAABQbggYAAAAAAAAAABAiREwAAAAAAAAAACAErMo7wJw/4mLi5ONjU15l3FHRUdHl3cJAAAAAAAAAFCumMEAAAAAAAAAAABKjIABAAAAAAAAAACUGAHDHRYeHq6uXbuWdxkAAAAAAAAAAJQp9mC4QwoLC2UwGMq7DAAAAAAAAAAA7ghmMPz/GY1GDR06VEOHDpWTk5OqV6+usWPHqri4WJJ05swZhYWFqWrVqrKzs1OnTp2UlpZmar9w4UI5Oztr1apV8vPzk7W1tV588UUtWrRI33zzjQwGgwwGg+Lj43Xp0iUNHTpU7u7usrGxUb169RQXFydJGjVqlLp06WLqd+bMmTIYDFq3bp3pWoMGDTR//nzT+fz58+Xr6ysbGxs1bNhQc+fONXu3rKws9ejRQ87OznJxcVFoaKgyMjJM96/OsoiNjZWrq6scHR318ssv69KlS2X6jQEAAAAAAAAA9w9mMPzNokWLNGDAAO3atUtJSUkaPHiw6tatq0GDBik8PFxpaWlatWqVHB0dNWbMGHXu3FmHDh2SpaWlJOn8+fOaPHmy5s+fr2rVqsnd3V0XLlxQbm6uFixYIElycXHRu+++q1WrVunLL79U3bp1lZWVpaysLElSUFCQ5s+fr8LCQlWuXFkJCQmqXr264uPj1bFjR/32229KT0+X0WiUJC1evFhvvfWW5syZo6ZNm2rv3r0aNGiQqlSpon79+qmgoEDBwcEKDAzUli1bZGFhoQkTJqhjx4766aefZGVlJUnatGmTbGxsFB8fr4yMDPXv31/VqlXT22+/fff/IQAAAAAAAAAA9zwChr/x8PDQjBkzZDAY5OPjo/3792vGjBkyGo1atWqVEhMT9dhjj0m68sO+h4eHVq5cqe7du0uSCgoKNHfuXDVu3NjUp62trfLz8+Xm5ma6lpmZKS8vLz3++OMyGAyqV6+e6V7btm119uxZ7d27V82bN9cPP/yg0aNHa+XKlZKk+Ph41a5dWw0aNJAkRUdHa9q0aerWrZsk6aGHHtKhQ4c0b9489evXT0uXLlVRUZHmz59vWrJpwYIFcnZ2Vnx8vJ566ilJkpWVlT755BPZ2dmpUaNGGjdunEaPHq3x48erUqXrT3TJz89Xfn6+6Tw3N/e2vj8AAAAAAAAAoOJgiaS/ad26tdm+CYGBgUpLS9OhQ4dkYWGhRx991HSvWrVq8vHxUUpKiumalZWVAgICbjpOeHi49u3bJx8fHw0bNkwbNmww3XN2dlbjxo0VHx+v/fv3y8rKSoMHD9bevXuVl5enhIQEBQUFSZLOnTun9PR0DRgwQPb29qZjwoQJSk9PlyQlJyfr6NGjcnBwMN13cXHRxYsXTc9IUuPGjWVnZ2f27nl5eaaZFdcTFxcnJycn0+Hh4XHTdwcAAAAAAAAA3B+YwVCGbG1tb2lj52bNmunYsWNau3atvvvuO/Xo0UMdOnTQsmXLJF3ZDyI+Pl7W1tYKCgqSi4uLfH19tXXrViUkJGjkyJGSpLy8PEnSRx99ZBZ+SFLlypVNzzRv3lyLFy++pg5XV9fbet+oqCiNGDHCdJ6bm0vIAAAAAAAAAAAPCAKGv9m5c6fZ+Y4dO+Tl5SU/Pz9dvnxZO3fuNC2RdOrUKaWmpsrPz+8f+7SyslJhYeE11x0dHdWzZ0/17NlTzz33nDp27KjTp0/LxcVFQUFB+uSTT2RhYaGOHTtKuhI6LFmyREeOHDHtv1CzZk3VqlVLP//8s/r06XPd8Zs1a6alS5eqRo0acnR0vGGdycnJunDhgmxtbU3vbm9v/4+BgbW1taytrf/x/QEAAAAAAAAA9yeWSPqbzMxMjRgxQqmpqVqyZIlmz56t4cOHy8vLS6GhoRo0aJC2bt2q5ORkvfDCC6pdu7ZCQ0P/sU9PT0/99NNPSk1N1V9//aWCggJNnz5dS5Ys0eHDh3XkyBF99dVXcnNzk7OzsySpXbt2Onv2rL799ltTmGA0GrV48WK5u7vL29vb1H9sbKzi4uL07rvv6siRI9q/f78WLFig6dOnS5L69Omj6tWrKzQ0VFu2bNGxY8cUHx+vYcOG6ddffzX1c+nSJQ0YMECHDh3SmjVrFB0draFDh95w/wUAAAAAAAAAwIONGQx/ExYWpgsXLqhVq1aqXLmyhg8frsGDB0u6sjHy8OHD1aVLF126dEnt2rXTmjVrZGlp+Y99Dho0SPHx8WrRooXy8vL0/fffy8HBQVOmTFFaWpoqV66sli1bas2aNaYf86tWrSp/f3+dOHFCDRs2lHQldCgqKjLtv3DVwIEDZWdnp3feeUejR49WlSpV5O/vr4iICEmSnZ2dfvjhB40ZM0bdunXT2bNnVbt2bbVv395sRkP79u3l5eWldu3aKT8/X71791ZMTEwZfVkAAAAAAAAAwP3GUFxcXFzeRdwLjEajmjRpopkzZ5Z3KXddeHi4srOztXLlytvqJzc3V05OToqMjJSNjU3ZFHePio6OLu8SAAAAAAAAAKBUrv6Wm5OT849L698M698AAAAAAAAAAIASI2AAAAAAAAAAAAAlxhJJKDNlNa0GAAAAAAAAAHDnsEQSAAAAAAAAAAAoNwQMAAAAAAAAAACgxAgYAAAAAAAAAABAiVmUdwG4/8TFxcnGxqa8yygT0dHR5V0CAAAAAAAAANyTmMEAAAAAAAAAAABKjIABNxQTE6OaNWvKYDBo5cqV5V0OAAAAAAAAAOAewhJJuK6UlBTFxsZqxYoVat26tapWrVreJQEAAAAAAAAA7iEEDDBTWFgog8Gg9PR0SVJoaKgMBkM5VwUAAAAAAAAAuNewRNI9ZtmyZfL395etra2qVaumDh066Ny5cwoPD1fXrl01ceJE1axZU87Ozho3bpwuX76s0aNHy8XFRXXq1NGCBQtMfcXHx8tgMCg7O9t0bd++fTIYDMrIyJAkLVy4UM7Ozlq1apX8/PxkbW2tF198USEhIZKkSpUqETAAAAAAAAAAAK7BDIZ7yPHjx9W7d29NmTJFzzzzjM6ePastW7aouLhYkrR582bVqVNHP/zwgxITEzVgwABt27ZN7dq1086dO7V06VK99NJLevLJJ1WnTp1bHvf8+fOaPHmy5s+fr2rVqsnd3V1Go1H9+/fX8ePH79TrAgAAAAAAAAAqMAKGe8jx48d1+fJldevWTfXq1ZMk+fv7m+67uLjo3XffVaVKleTj46MpU6bo/Pnz+r//+z9JUlRUlCZNmqStW7eqV69etzxuQUGB5s6dq8aNG5uuOTs7S5Lc3Nxu2C4/P1/5+fmm89zc3FseEwAAAAAAAABQsbFE0j2kcePGat++vfz9/dW9e3d99NFHOnPmjOl+o0aNVKnS//snq1mzplkAUblyZVWrVk0nT54s0bhWVlYKCAgocb1xcXFycnIyHR4eHiXuAwAAAAAAAABQMREw3EMqV66sjRs3au3atfLz89Ps2bPl4+OjY8eOSZIsLS3NnjcYDNe9VlRUJEmmMOLqEkvSldkK/8vW1rZU+yxERUUpJyfHdGRlZZW4DwAAAAAAAABAxUTAcI8xGAxq06aNYmNjtXfvXllZWWnFihWl6svV1VWSzPZR2LdvX1mUKUmytraWo6Oj2QEAAAAAAAAAeDAQMNxDdu7cqYkTJyopKUmZmZn6+uuv9eeff8rX17dU/TVo0EAeHh6KiYlRWlqaVq9erWnTppVx1QAAAAAAAACABxEBwz3E0dFRP/zwgzp37ixvb2+9+eabmjZtmjp16lSq/iwtLbVkyRIdPnxYAQEBmjx5siZMmFDGVQMAAAAAAAAAHkSG4r8v0A/chtzcXDk5OSkyMlI2NjblXU6ZiI6OLu8SAAAAAAAAAKBMXf0tNycn57aWvmcGAwAAAAAAAAAAKDECBgAAAAAAAAAAUGIskYQyU1bTagAAAAAAAAAAdw5LJAEAAAAAAAAAgHJDwAAAAAAAAAAAAEqMgAEAAAAAAAAAAJSYRXkXgPtPXFycbGxs7tp40dHRd20sAAAAAAAAAMAVzGAAAAAAAAAAAAAlRsAAAAAAAAAAAABKjIABAAAAAAAAAACUGAEDAAAAAAAAAAAoMQKGe4zRaNSwYcP0+uuvy8XFRW5uboqJiTHdNxgMmjdvnrp06SI7Ozv5+vpq+/btOnr0qIxGo6pUqaLHHntM6enppjbp6ekKDQ1VzZo1ZW9vr5YtW+q7774zG9fT01Pjx49X7969VaVKFdWuXVvvvffe3XptAAAAAAAAAEAFQ8BwD1q0aJGqVKminTt3asqUKRo3bpw2btxouj9+/HiFhYVp3759atiwoZ5//nm99NJLioqKUlJSkoqLizV06FDT83l5eercubM2bdqkvXv3qmPHjgoJCVFmZqbZuO+8844aN26svXv3KjIyUsOHDzcbFwAAAAAAAACAqwzFxcXF5V0E/h+j0ajCwkJt2bLFdK1Vq1Z64oknNGnSJBkMBr355psaP368JGnHjh0KDAzUxx9/rBdffFGS9MUXX6h///66cOHCDcd55JFH9PLLL5uCCE9PT/n6+mrt2rWmZ3r16qXc3FytWbPmun3k5+crPz/fdJ6bmysPDw9FRkbKxsam9B+hhKKjo+/aWAAAAAAAAABQ0eXm5srJyUk5OTlydHQsdT/MYLgHBQQEmJ27u7vr5MmT171fs2ZNSZK/v7/ZtYsXLyo3N1fSlRkMo0aNkq+vr5ydnWVvb6+UlJRrZjAEBgZec56SknLDOuPi4uTk5GQ6PDw8SvimAAAAAAAAAICKioDhHmRpaWl2bjAYVFRUdN37BoPhhteuthk1apRWrFihiRMnasuWLdq3b5/8/f116dKl26ozKipKOTk5piMrK+u2+gMAAAAAAAAAVBwW5V0A7rzExESFh4frmWeekXRlRkNGRsY1z+3YseOac19f3xv2a21tLWtr6zKtFQAAAAAAAABQMRAwPAC8vLz09ddfKyQkRAaDQWPHjjWbEXFVYmKipkyZoq5du2rjxo366quvtHr16nKoGAAAAAAAAABwr2OJpAfA9OnTVbVqVT322GMKCQlRcHCwmjVrds1zI0eOVFJSkpo2baoJEyZo+vTpCg4OLoeKAQAAAAAAAAD3OmYw3GPi4+OvubZy5UrT38XFxWb3PD09r7lmNBrNrnl6emrz5s1mz7z66qvXjOPo6Kgvv/yyFFUDAAAAAAAAAB40zGAAAAAAAAAAAAAlRsAAAAAAAAAAAABKzFD8v+vrAKWUm5srJycn5eTkyNHRsbzLAQAAAAAAAABcR1n9lssMBgAAAAAAAAAAUGIEDAAAAAAAAAAAoMQIGAAAAAAAAAAAQIlZlHcBuP/ExcXJxsbmtvuJjo4ug2oAAAAAAAAAAHcCMxgAAAAAAAAAAECJETBUEEajUREREXes//DwcHXt2vWO9Q8AAAAAAAAAuL8QMAAAAAAAAAAAgBIjYAAAAAAAAAAAACVGwFCBXL58WUOHDpWTk5OqV6+usWPHqri4WJL02WefqUWLFnJwcJCbm5uef/55nTx50qz9wYMH1aVLFzk6OsrBwUFt27ZVenr6dcfavXu3XF1dNXny5Dv+XgAAAAAAAACAioeAoQJZtGiRLCwstGvXLs2aNUvTp0/X/PnzJUkFBQUaP368kpOTtXLlSmVkZCg8PNzU9rffflO7du1kbW2tzZs368cff9SLL76oy5cvXzPO5s2b9eSTT+rtt9/WmDFj7tbrAQAAAAAAAAAqEIvyLgC3zsPDQzNmzJDBYJCPj4/279+vGTNmaNCgQXrxxRdNzz388MN699131bJlS+Xl5cne3l7vvfeenJyc9MUXX8jS0lKS5O3tfc0YK1asUFhYmObPn6+ePXv+Yz35+fnKz883nefm5pbRmwIAAAAAAAAA7nXMYKhAWrduLYPBYDoPDAxUWlqaCgsL9eOPPyokJER169aVg4ODgoKCJEmZmZmSpH379qlt27amcOF6du7cqe7du+uzzz67abggSXFxcXJycjIdHh4et/mGAAAAAAAAAICKgoDhPnDx4kUFBwfL0dFRixcv1u7du7VixQpJ0qVLlyRJtra2N+2nfv36atiwoT755BMVFBTc9PmoqCjl5OSYjqysrNt7EQAAAAAAAABAhUHAUIHs3LnT7HzHjh3y8vLS4cOHderUKU2aNElt27ZVw4YNr9ngOSAgQFu2bPnH4KB69eravHmzjh49qh49etw0ZLC2tpajo6PZAQAAAAAAAAB4MBAwVCCZmZkaMWKEUlNTtWTJEs2ePVvDhw9X3bp1ZWVlpdmzZ+vnn3/WqlWrNH78eLO2Q4cOVW5urnr16qWkpCSlpaXps88+U2pqqtlzNWrU0ObNm3X48GH17t37uptAAwAAAAAAAABAwFCBhIWF6cKFC2rVqpVeffVVDR8+XIMHD5arq6sWLlyor776Sn5+fpo0aZKmTp1q1rZatWravHmz8vLyFBQUpObNm+ujjz667p4Mbm5u2rx5s/bv368+ffqosLDwbr0iAAAAAAAAAKCCMBQXFxeXdxG4P+Tm5srJyUmRkZGysbG57f6io6PLoCoAAAAAAAAAwN9d/S03Jyfntpa+ZwYDAAAAAAAAAAAoMQIGAAAAAAAAAABQYiyRhDJTVtNqAAAAAAAAAAB3DkskAQAAAAAAAACAckPAAAAAAAAAAAAASoyAAQAAAAAAAAAAlJhFeReA+09cXJxsbGxuq4/o6OgyqgYAAAAAAAAAcCcwgwEAAAAAAAAAAJQYAQMAAAAAAAAAACgxAoYKLjw8XF27di3vMgAAAAAAAAAADxgChttkNBoVERFR3mUAAAAAAAAAAHBXETBUEAUFBaVqd+nSpTKuBAAAAAAAAAAAAobbEh4eroSEBM2aNUsGg0EGg0EZGRk6cOCAOnXqJHt7e9WsWVN9+/bVX3/9ZWq3bt06Pf7443J2dla1atXUpUsXpaenm+5nZGTIYDBo6dKlCgoKko2NjRYvXqzCwkKNGDHC1O71119XcXGxWU1Go1FDhw5VRESEqlevruDgYElSQkKCWrVqJWtra7m7uysyMlKXL1++pt3QoUPl5OSk6tWra+zYsdf0DwAAAAAAAACARMBwW2bNmqXAwEANGjRIx48f1/Hjx+Xg4KAnnnhCTZs2VVJSktatW6cTJ06oR48epnbnzp3TiBEjlJSUpE2bNqlSpUp65plnVFRUZNZ/ZGSkhg8frpSUFAUHB2vatGlauHChPvnkE23dulWnT5/WihUrrqlr0aJFsrKyUmJioj744AP99ttv6ty5s1q2bKnk5GS9//77+vjjjzVhwoRr2llYWGjXrl2aNWuWpk+frvnz59/w/fPz85Wbm2t2AAAAAAAAAAAeDBblXUBF5uTkJCsrK9nZ2cnNzU2SNGHCBDVt2lQTJ040PffJJ5/Iw8NDR44ckbe3t5599lmzfj755BO5urrq0KFDeuSRR0zXIyIi1K1bN9P5zJkzFRUVZbr2wQcfaP369dfU5eXlpSlTppjO33jjDXl4eGjOnDkyGAxq2LChfv/9d40ZM0ZvvfWWKlW6kjN5eHhoxowZMhgM8vHx0f79+zVjxgwNGjTouu8fFxen2NjYkn42AAAAAAAAAMB9gBkMZSw5OVnff/+97O3tTUfDhg0lybQMUlpamnr37q2HH35Yjo6O8vT0lCRlZmaa9dWiRQvT3zk5OTp+/LgeffRR0zULCwuzZ65q3ry52XlKSooCAwNlMBhM19q0aaO8vDz9+uuvpmutW7c2eyYwMFBpaWkqLCy87rtGRUUpJyfHdGRlZf3jtwEAAAAAAAAA3D+YwVDG8vLyFBISosmTJ19zz93dXZIUEhKievXq6aOPPlKtWrVUVFSkRx555JoNmatUqVKqGkrbrqSsra1lbW19V8YCAAAAAAAAANxbmMFwm6ysrMz+D/9mzZrp4MGD8vT0VIMGDcyOKlWq6NSpU0pNTdWbb76p9u3by9fXV2fOnLnpOE5OTnJ3d9fOnTtN1y5fvqwff/zxpm19fX21fft2sw2bExMT5eDgoDp16piu/b1vSdqxY4e8vLxUuXLlm44BAAAAAAAAAHiwEDDcJk9PT+3cuVMZGRn666+/9Oqrr+r06dPq3bu3du/erfT0dK1fv179+/dXYWGhqlatqmrVqunDDz/U0aNHtXnzZo0YMeKWxho+fLgmTZqklStX6vDhwxoyZIiys7Nv2m7IkCHKysrSa6+9psOHD+ubb75RdHS0RowYYdp/QbqyRNOIESOUmpqqJUuWaPbs2Ro+fHhpPw0AAAAAAAAA4D5GwHCbRo0apcqVK8vPz0+urq66dOmSEhMTVVhYqKeeekr+/v6KiIiQs7OzKlWqpEqVKumLL77Qjz/+qEceeUT//ve/9c4779zSWCNHjlTfvn3Vr18/BQYGysHBQc8888xN29WuXVtr1qzRrl271LhxY7388ssaMGCA3nzzTbPnwsLCdOHCBbVq1Uqvvvqqhg8frsGDB5fquwAAAAAAAAAA7m+G4r+vm4MHltFoVJMmTTRz5sxS95GbmysnJydFRkbKxsbmtuqJjo6+rfYAAAAAAAAAgOu7+ltuTk6OHB0dS90PMxgAAAAAAAAAAECJWZR3Abj/REVF3VbqBQAAAAAAAAC49xEwQJIUHx9f3iUAAAAAAAAAACoQlkgCAAAAAAAAAAAlRsAAAAAAAAAAAABKjCWSUObi4uJkY2NT6vbR0dFlWA0AAAAAAAAA4E5gBgMAAAAAAAAAACgxAgYAAAAAAAAAAFBiBAwVjNFoVEREhOnc09NTM2fOLLd6AAAAAAAAAAAPJvZgqOB2796tKlWqlGmfRqNRTZo0IbgAAAAAAAAAANwQAUMZunTpkqysrO7qmK6urnd1PAAAAAAAAAAApAdsiaRvv/1Wzs7OKiwslCTt27dPBoNBkZGRpmcGDhyoF154QadOnVLv3r1Vu3Zt2dnZyd/fX0uWLDHrz2g0aujQoYqIiFD16tUVHBwsSTpw4IA6deoke3t71axZU3379tVff/0lScrIyJDBYLjmMBqNpn4TExNlNBplZ2enqlWrKjg4WGfOnLnuO/3vEknZ2dkaOHCgXF1d5ejoqCeeeELJycmm+zExMWrSpIk+++wzeXp6ysnJSb169dLZs2clSeHh4UpISNCsWbNMtWVkZJT6mwMAAAAAAAAA7k8PVMDQtm1bnT17Vnv37pUkJSQkqHr16oqPjzc9k5CQIKPRqIsXL6p58+ZavXq1Dhw4oMGDB6tv377atWuXWZ+LFi2SlZWVEhMT9cEHHyg7O1tPPPGEmjZtqqSkJK1bt04nTpxQjx49JEkeHh46fvy46di7d6+qVaumdu3aSboSerRv315+fn7avn27tm7dqpCQEFMocjPdu3fXyZMntXbtWv34449q1qyZ2rdvr9OnT5ueSU9P18qVK/Xtt9/q22+/VUJCgiZNmiRJmjVrlgIDAzVo0CBTjR4eHtcdKz8/X7m5uWYHAAAAAAAAAODB8EAtkeTk5KQmTZooPj5eLVq0UHx8vP79738rNjZWeXl5ysnJ0dGjRxUUFKTatWtr1KhRpravvfaa1q9fry+//FKtWrUyXffy8tKUKVNM5xMmTFDTpk01ceJE07VPPvlEHh4eOnLkiLy9veXm5iZJunjxorp27arAwEDFxMRIkqZMmaIWLVpo7ty5pvaNGjW6pffbunWrdu3apZMnT8ra2lqSNHXqVK1cuVLLli3T4MGDJUlFRUVauHChHBwcJEl9+/bVpk2b9Pbbb8vJyUlWVlays7Mz1XkjcXFxio2NvaXaAAAAAAAAAAD3lwdqBoMkBQUFKT4+XsXFxdqyZYu6desmX19fbd26VQkJCapVq5a8vLxUWFio8ePHy9/fXy4uLrK3t9f69euVmZlp1l/z5s3NzpOTk/X999/L3t7edDRs2FDSlZkDf/fiiy/q7Nmz+vzzz1Wp0pV/iqszGEojOTlZeXl5qlatmtn4x44dMxvb09PTFC5Ikru7u06ePFni8aKiopSTk2M6srKySlU3AAAAAAAAAKDieaBmMEhX9k345JNPlJycLEtLSzVs2FBGo1Hx8fE6c+aMgoKCJEnvvPOOZs2apZkzZ8rf319VqlRRRESELl26ZNZflSpVzM7z8vIUEhKiyZMnXzO2u7u76e8JEyZo/fr12rVrl9mP/ba2tqV+t7y8PLm7u5st+XSVs7Oz6W9LS0uzewaDQUVFRSUez9ra2jRTAgAAAAAAAADwYHngAoar+zDMmDHDFCYYjUZNmjRJZ86c0ciRIyVd2Wg5NDRUL7zwgqQrywodOXJEfn5+/9h/s2bNtHz5cnl6esrC4vqfd/ny5Ro3bpzWrl2r+vXrm90LCAjQpk2bSrX0ULNmzfTHH3/IwsJCnp6eJW5/lZWV1S3v+QAAAAAAAAAAeDA9cEskVa1aVQEBAVq8eLGMRqMkqV27dtqzZ4+OHDliCh28vLy0ceNGbdu2TSkpKXrppZd04sSJm/b/6quv6vTp0+rdu7d2796t9PR0rV+/Xv3791dhYaEOHDigsLAwjRkzRo0aNdIff/yhP/74w7QJc1RUlHbv3q0hQ4bop59+0uHDh/X+++/rr7/+uunYHTp0UGBgoLp27aoNGzYoIyND27Zt0xtvvKGkpKRb/kaenp7auXOnMjIy9Ndff5VqdgMAAAAAAAAA4P72wAUM0pV9GAoLC00Bg4uLi/z8/OTm5iYfHx9J0ptvvqlmzZopODhYRqNRbm5u6tq16037rlWrlhITE1VYWKinnnpK/v7+ioiIkLOzsypVqqSkpCSdP39eEyZMkLu7u+no1q2bJMnb21sbNmxQcnKyWrVqpcDAQH3zzTc3nA3xdwaDQWvWrFG7du3Uv39/eXt7q1evXvrll19Us2bNW/4+o0aNUuXKleXn5ydXV9dr9p0AAAAAAAAAAMBQXFxcXN5F4P6Qm5srJycnRUZGysbGptT9REdHl2FVAAAAAAAAAIC/u/pbbk5OjhwdHUvdzwM5gwEAAAAAAAAAANweZjCgzJRV6gUAAAAAAAAAuHOYwQAAAAAAAAAAAMoNAQMAAAAAAAAAACgxAgYAAAAAAAAAAFBiFuVdAO4/cXFxsrGxkSRFR0eXczUAAAAAAAAAgDuBGQwAAAAAAAAAAKDECBgAAAAAAAAAAECJETDguhYuXChnZ+fyLgMAAAAAAAAAcI8iYAAAAAAAAAAAACVGwAAAAAAAAAAAAEqMgOE+YDQaNXToUA0dOlROTk6qXr26xo4dq+LiYknSmTNnFBYWpqpVq8rOzk6dOnVSWlqaWR8LFy5U3bp1ZWdnp2eeeUanTp0qj1cBAAAAAAAAAFQQBAz3iUWLFsnCwkK7du3SrFmzNH36dM2fP1+SFB4erqSkJK1atUrbt29XcXGxOnfurIKCAknSzp07NWDAAA0dOlT79u3Tv/71L02YMOGmY+bn5ys3N9fsAAAAAAAAAAA8GCzKuwCUDQ8PD82YMUMGg0E+Pj7av3+/ZsyYIaPRqFWrVikxMVGPPfaYJGnx4sXy8PDQypUr1b17d82aNUsdO3bU66+/Lkny9vbWtm3btG7dun8cMy4uTrGxsXf83QAAAAAAAAAA9x5mMNwnWrduLYPBYDoPDAxUWlqaDh06JAsLCz366KOme9WqVZOPj49SUlIkSSkpKWb3r7a/maioKOXk5JiOrKysMnobAAAAAAAAAMC9jhkMKDVra2tZW1uXdxkAAAAAAAAAgHJQJjMYCgsLtW/fPp05c6YsukMp7Ny50+x8x44d8vLykp+fny5fvmx2/9SpU0pNTZWfn58kydfX97rtAQAAAAAAAAC4kVIFDBEREfr4448lXQkXgoKC1KxZM3l4eCg+Pr4s68MtyszM1IgRI5SamqolS5Zo9uzZGj58uLy8vBQaGqpBgwZp69atSk5O1gsvvKDatWsrNDRUkjRs2DCtW7dOU6dOVVpamubMmXPT/RcAAAAAAAAAAA+2UgUMy5YtU+PGjSVJ//3vf3Xs2DEdPnxY//73v/XGG2+UaYG4NWFhYbpw4YJatWqlV199VcOHD9fgwYMlSQsWLFDz5s3VpUsXBQYGqri4WGvWrJGlpaWkK/s3fPTRR5o1a5YaN26sDRs26M033yzP1wEAAAAAAAAA3OMMxcXFxSVtZGNjo6NHj6pOnToaPHiw7OzsNHPmTB07dkyNGzdWbm7unagVN2A0GtWkSRPNnDmzXOvIzc2Vk5OTIiMjZWNjI0mKjo4u15oAAAAAAAAAAOau/pabk5MjR0fHUvdTqhkMNWvW1KFDh1RYWKh169bpySeflCSdP39elStXLnUxAAAAAAAAAACgYrAoTaP+/furR48ecnd3l8FgUIcOHSRd2Wi4YcOGZVogKp6oqKjbSr0AAAAAAAAAAPe+UgUMMTExeuSRR5SVlaXu3bvL2tpaklS5cmVFRkaWaYG4OTbWBgAAAAAAAADcbaXagwG4nrJatwsAAAAAAAAAcOeU1W+5tzyD4d13373lTocNG1aqYgAAAAAAAAAAQMVwyzMYHnrooVvr0GDQzz//fFtFoWJiBgMAAAAAAAAA3Pvu+gyGY8eOlXoQAAAAAAAAAABwf6l0O40vXbqk1NRUXb58uazqAQAAAAAAAAAAFUCpAobz589rwIABsrOzU6NGjZSZmSlJeu211zRp0qQyLRDlJz4+XgaDQdnZ2eVdCgAAAAAAAADgHlOqgCEqKkrJycmKj4+XjY2N6XqHDh20dOnSMisOAAAAAAAAAADcm255D4a/W7lypZYuXarWrVvLYDCYrjdq1Ejp6ellVhwAAAAAAAAAALg3lWoGw59//qkaNWpcc/3cuXNmgUNZOXv2rPr06aMqVarI3d1dM2bMkNFoVEREhCTJYDBo5cqVZm2cnZ21cOFC03lWVpZ69OghZ2dnubi4KDQ0VBkZGab78fHxatWqlapUqSJnZ2e1adNGv/zyiyQpOTlZ//rXv+Tg4CBHR0c1b95cSUlJN6174cKFcnZ21sqVK+Xl5SUbGxsFBwcrKyvL9Ex6erpCQ0NVs2ZN2dvbq2XLlvruu+/M+pk7d66pfc2aNfXcc8+Z7i1btkz+/v6ytbVVtWrV1KFDB507d04HDhxQpUqV9Oeff0qSTp8+rUqVKqlXr16mthMmTNDjjz9uOl+zZo28vb1la2urf/3rX2bfBwAAAAAAAACAvytVwNCiRQutXr3adH41VJg/f74CAwPLprK/GTFihBITE7Vq1Spt3LhRW7Zs0Z49e265fUFBgYKDg+Xg4KAtW7YoMTFR9vb26tixoy5duqTLly+ra9euCgoK0k8//aTt27dr8ODBpvfq06eP6tSpo927d+vHH39UZGSkLC0tb2ns8+fP6+2339ann36qxMREZWdnm/3In5eXp86dO2vTpk3au3evOnbsqJCQENO+FklJSRo2bJjGjRun1NRUrVu3Tu3atZMkHT9+XL1799aLL76olJQUxcfHq1u3biouLlajRo1UrVo1JSQkSJK2bNlidi5JCQkJMhqNkq4EMN26dVNISIj27dungQMHKjIy8h/fLT8/X7m5uWYHAAAAAAAAAODBUKolkiZOnKhOnTrp0KFDunz5smbNmqVDhw5p27ZtZj9gl4WzZ89q0aJF+vzzz9W+fXtJ0oIFC1SrVq1b7mPp0qUqKirS/PnzTaHBggUL5OzsrPj4eLVo0UI5OTnq0qWL6tevL0ny9fU1tc/MzNTo0aPVsGFDSZKXl9ctj11QUKA5c+bo0UcflSQtWrRIvr6+2rVrl1q1aqXGjRurcePGpufHjx+vFStWaNWqVRo6dKgyMzNVpUoVdenSRQ4ODqpXr56aNm0q6UrAcPnyZXXr1k316tWTJPn7+5v6ateuneLj4/Xcc88pPj5e/fv31/z583X48GHVr19f27Zt0+uvvy5Jev/991W/fn1NmzZNkuTj46P9+/dr8uTJN3y3uLg4xcbG3vK3AAAAAAAAAADcP0o1g+Hxxx/Xvn37dPnyZfn7+2vDhg2qUaOGtm/frubNm5dpgT///LMKCgrUqlUr0zUnJyf5+Pjcch/Jyck6evSoHBwcZG9vL3t7e7m4uOjixYtKT0+Xi4uLwsPDFRwcrJCQEM2aNUvHjx83tR8xYoQGDhyoDh06aNKkSSXaZ8LCwkItW7Y0nTds2FDOzs5KSUmRdGUGw6hRo+Tr6ytnZ2fZ29srJSXFNIPhySefVL169fTwww+rb9++Wrx4sc6fPy9Jaty4sdq3by9/f391795dH330kc6cOWMaKygoSPHx8ZKuzFZ44oknTKHD7t27VVBQoDZt2kiSUlJSTCHIVTebjRIVFaWcnBzT8felnwAAAAAAAAAA97dSBQySVL9+fX300UfatWuXDh06pP/85z9m//f83WQwGFRcXGx2raCgwPR3Xl6emjdvrn379pkdR44c0fPPPy/pyoyG7du367HHHtPSpUvl7e2tHTt2SJJiYmJ08OBBPf3009q8ebP8/Py0YsWKMql91KhRWrFihSZOnKgtW7Zo37598vf316VLlyRJDg4O2rNnj5YsWSJ3d3e99dZbaty4sbKzs1W5cmVt3LhRa9eulZ+fn2bPni0fHx8dO3ZMkmQ0GnXo0CGlpaXp0KFDevzxx2U0GhUfH6+EhAS1aNFCdnZ2pa7d2tpajo6OZgcAAAAAAAAA4MFQ6oChsLBQy5Yt0/jx4zV+/HgtX75cly9fLsvaJEkPP/ywLC0ttXv3btO1nJwcHTlyxHTu6upqNuMgLS3N9H/5S1KzZs2UlpamGjVqqEGDBmaHk5OT6bmmTZsqKipK27Zt0yOPPKLPP//cdM/b21v//ve/tWHDBnXr1k0LFiy4pfovX75stiF0amqqsrOzTUswJSYmKjw8XM8884z8/f3l5uZ2zebKFhYW6tChg6ZMmaKffvpJGRkZ2rx5s6Qr4UqbNm0UGxurvXv3ysrKyhR++Pv7q2rVqpowYYKaNGkie3t7GY1GJSQkKD4+3rT/giTTsk1/dzVgAQAAAAAAAADgf5UqYDh48KC8vb3Vr18/rVixQitWrFC/fv3k5eWlAwcOlGmBDg4O6tevn0aPHq3vv/9eBw8e1IABA1SpUiXTfgpPPPGE5syZo7179yopKUkvv/yy2SbMffr0UfXq1RUaGqotW7bo2LFjio+P17Bhw/Trr7/q2LFjioqK0vbt2/XLL79ow4YNSktLk6+vry5cuKChQ4cqPj5ev/zyixITE7V7926zPRr+iaWlpV577TXt3LlTP/74o8LDw9W6dWvTkk9eXl76+uuvtW/fPiUnJ+v5559XUVGRqf23336rd999V/v27dMvv/yiTz/9VEVFRfLx8dHOnTs1ceJEJSUlKTMzU19//bX+/PNPU20Gg0Ht2rXT4sWLTWFCQECA8vPztWnTJgUFBZnGefnll5WWlqbRo0crNTVVn3/+uRYuXHg7/3QAAAAAAAAAgPtYqQKGgQMHqlGjRvr111+1Z88e7dmzR1lZWQoICNDgwYPLukZNnz5dgYGB6tKlizp06KA2bdrI19dXNjY2kqRp06bJw8NDbdu21fPPP69Ro0aZLf1jZ2enH374QXXr1lW3bt3k6+urAQMG6OLFi3J0dJSdnZ0OHz6sZ599Vt7e3ho8eLBeffVVvfTSS6pcubJOnTqlsLAweXt7q0ePHurUqdMtb25sZ2enMWPG6Pnnn1ebNm1kb2+vpUuXmr1b1apV9dhjjykkJETBwcFq1qyZ6b6zs7O+/vprPfHEE/L19dUHH3ygJUuWqFGjRnJ0dNQPP/ygzp07y9vbW2+++aamTZumTp06mdoHBQWpsLDQFDBUqlRJ7dq1M818uKpu3bpavny5Vq5cqcaNG+uDDz7QxIkTS/XvBQAAAAAAAAC4/xmK/3fzgltga2urpKQkNWrUyOz6gQMH1LJlS124cKHMCryec+fOqXbt2po2bZoGDBhwR8e6HQsXLlRERISys7PLu5S7Ijc3V05OTsrJyWE/BgAAAAAAAAC4R5XVb7mlmsHg7e2tEydOXHP95MmTatCgQamLuZG9e/dqyZIlSk9P1549e9SnTx9JUmhoaJmPBQAAAAAAAAAAbs7iVh/Mzc01/R0XF6dhw4YpJiZGrVu3lnRlQ+Bx48Zp8uTJZV+lpKlTpyo1NVVWVlZq3ry5tmzZourVq9+RsW5Vp06dtGXLluve+7//+z/VqlXrLlcEAAAAAAAAAMDdcctLJP19U2VJutrs6rW/nxcWFpZ1nfek33777YbLQbm4uMjFxeUuV1S+WCIJAAAAAAAAAO59ZfVb7i3PYPj+++9LPcj9qnbt2uVdAgAAAAAAAAAA5eKWA4agoKA7WQcAAAAAAAAAAKhAbjlguJ7z588rMzNTly5dMrseEBBwW0UBAAAAAAAAAIB7W6kChj///FP9+/fX2rVrr3v/QdmDAQAAAAAAAACAB1Wl0jSKiIhQdna2du7cKVtbW61bt06LFi2Sl5eXVq1aVdY1AgAAAAAAAACAe0ypAobNmzdr+vTpatGihSpVqqR69erphRde0JQpUxQXF3fL/RiNRkVERJSmBJPDhw+rdevWsrGxUZMmTW547X5z/vx5Pfvss3J0dJTBYFB2drY8PT01c+bM8i4NAAAAAAAAAPAAKNUSSefOnVONGjUkSVWrVtWff/4pb29v+fv7a8+ePWVa4M1ER0erSpUqSk1Nlb29/Q2v3W8WLVqkLVu2aNu2bapevbqcnJzKuyQAAAAAAAAAwAOkVDMYfHx8lJqaKklq3Lix5s2bp99++00ffPCB3N3dy7TAm0lPT9fjjz+uevXqqVq1aje8VlL/u3H1veJqXenp6fL19dUjjzwiNzc3GQyGcq4MAAAAAAAAAPAgKVXAMHz4cB0/flzSldkCa9eulYeHh2bNmqWJEyeWqK/Lly9r6NChcnJyUvXq1TV27FgVFxdLkgwGg1auXGn2vLOzsxYuXGi6/+OPP2rcuHEyGAyKiYm57jVJysrKUo8ePeTs7CwXFxeFhoYqIyPD1G94eLi6du2qt99+W7Vq1ZKPj89Naz9z5ozCwsJUtWpV2dnZqVOnTkpLS5Mk5ebmytbW9pqNsFesWCEHBwedP3++1HUZjUZNmzZNP/zwgwwGg4xG43Xry8zMVGhoqOzt7eXo6KgePXroxIkTkqScnBxVrlxZSUlJkqSioiK5uLiodevWpvb/+c9/5OHhcdPvAAAAAAAAAAB48JQqYHjhhRcUHh4uSWrevLl++eUXJSUl6ddff1XPnj1L1NeiRYtkYWGhXbt2adasWZo+fbrmz59/S22PHz+uRo0aaeTIkTp+/LhGjRp13WsFBQUKDg6Wg4ODtmzZosTERNnb26tjx45mMxU2bdqk1NRUbdy4Ud9+++1Nxw8PD1dSUpJWrVql7du3q7i4WJ07d1ZBQYEcHR3VpUsXff7552ZtFi9erK5du8rOzq7UdX399dcaNGiQAgMDdfz4cX399dfX1FZUVKTQ0FCdPn1aCQkJ2rhxo37++WfTv4+Tk5OaNGmi+Ph4SdL+/ftlMBi0d+9e5eXlSZISEhIUFBR0w/fPz89Xbm6u2QEAAAAAAAAAeDDc8h4MI0aMuOVOp0+ffsvPenh4aMaMGTIYDPLx8dH+/fs1Y8YMDRo06KZt3dzcZGFhIXt7e7m5uUmS7O3tr7n2n//8R0VFRZo/f75pKaEFCxbI2dlZ8fHxeuqppyRJVapU0fz582VlZXXTsdPS0rRq1SolJibqsccek3QlPPDw8NDKlSvVvXt39enTR3379tX58+dlZ2en3NxcrV69WitWrJAkLV26tNR12dnZycrKyvSO/2vTpk3av3+/jh07ZpqF8Omnn6pRo0bavXu3WrZsKaPRqPj4eI0aNUrx8fF68skndfjwYW3dulUdO3ZUfHy8Xn/99Rt+g7i4OMXGxt70WwEAAAAAAAAA7j+3HDDs3bv3lp4r6V4ArVu3NmsTGBioadOmqbCwsET9/JPk5GQdPXpUDg4OZtcvXryo9PR007m/v/8thQuSlJKSIgsLCz366KOma9WqVZOPj49SUlIkSZ07d5alpaVWrVqlXr16afny5XJ0dFSHDh3uWF1/r8/Dw8NsiSM/Pz85OzsrJSVFLVu2VFBQkD7++GMVFhYqISFBTz31lNzc3BQfH6+AgAAdPXr0hssvSVJUVJRZ8JSbm8uSSgAAAAAAAADwgLjlgOH777+/k3Vcl8FgMO3HcFVBQUGJ+8nLy1Pz5s21ePHia+65urqa/q5SpUrJi/wHVlZWeu655/T555+rV69e+vzzz9WzZ09ZWFiUa11XtWvXTmfPntWePXv0ww8/aOLEiXJzc9OkSZPUuHFj1apVS15eXjdsb21tLWtr6ztSGwAAAAAAAADg3nbLAcOdsnPnTrPzHTt2yMvLS5UrV5arq6tpM2npyrJEVzdHLolmzZpp6dKlqlGjhhwdHW+7Zkny9fXV5cuXtXPnTtMSSadOnVJqaqr8/PxMz/Xp00dPPvmkDh48qM2bN2vChAl3tK6/15eVlaWsrCzTrIJDhw4pOzvbVJ+zs7MCAgI0Z84cWVpaqmHDhqpRo4Z69uypb7/99h/3XwAAAAAAAAAAPNhKtclzWcrMzNSIESOUmpqqJUuWaPbs2Ro+fLgk6YknntCcOXO0d+9eJSUl6eWXX5alpWWJx+jTp4+qV6+u0NBQbdmyRceOHVN8fLyGDRumX3/9tVR1e3l5KTQ0VIMGDdLWrVuVnJysF154QbVr11ZoaKjpuXbt2snNzU19+vTRQw89ZLak0p2o66oOHTrI399fffr00Z49e7Rr1y6FhYUpKChILVq0MD1nNBq1ePFiU5jg4uIiX19fLV26lIABAAAAAAAAAHBD5R4whIWF6cKFC2rVqpVeffVVDR8+XIMHD5YkTZs2TR4eHmrbtq2ef/55jRo1SnZ2diUew87OTj/88IPq1q2rbt26ydfXVwMGDNDFixdva+bAggUL1Lx5c3Xp0kWBgYEqLi7WmjVrzEIQg8Gg3r17Kzk5WX369LkrdV0d95tvvlHVqlXVrl07dejQQQ8//LCWLl1q9lxQUJAKCwvN9lowGo3XXAMAAAAAAAAA4O8Mxf+7yQFQSrm5uXJyclJOTk6ZL/kEAAAAAAAAACgbZfVbbrnPYAAAAAAAAAAAABUPAcMNbNmyRfb29jc8AAAAAAAAAAB4kFmUdwH3qhYtWmjfvn3lXQYAAAAAAAAAAPckAoYbsLW1VYMGDcq7DAAAAAAAAAAA7kkskQQAAAAAAAAAAEqMgAEAAAAAAAAAAJQYAQMAAAAAAAAAACgxAgYAAAAAAAAAAFBiBAwAAAAAAAAAAKDECBjuUxkZGTIYDNq3b195lwIAAAAAAAAAuA8RMNzEpUuXyruEcldQUFDeJQAAAAAAAAAA7jEVPmD49ttv5ezsrMLCQknSvn37ZDAYFBkZaXpm4MCBeuGFF3Tq1Cn17t1btWvXlp2dnfz9/bVkyRKz/oxGo4YOHaqIiAhVr15dwcHBkqQDBw6oU6dOsre3V82aNdW3b1/99ddfkv7fbIH/PYxGoyRp4cKFcnZ21rfffisfHx/Z2dnpueee0/nz57Vo0SJ5enqqatWqGjZsmOk9JOmzzz5TixYt5ODgIDc3Nz3//PM6efKk6f6ZM2fUp08fubq6ytbWVl5eXlqwYIEk6aGHHpIkNW3a1KwWSZo/f758fX1lY2Ojhg0bau7cuaZ7V99l6dKlCgoKko2NjRYvXny7/0wAAAAAAAAAgPuMRXkXcLvatm2rs2fPau/evWrRooUSEhJUvXp1xcfHm55JSEjQmDFjdPHiRTVv3lxjxoyRo6OjVq9erb59+6p+/fpq1aqV6flFixbplVdeUWJioiQpOztbTzzxhAYOHKgZM2bowoULGjNmjHr06KHNmzfLw8NDx48fN7X/448/1KFDB7Vr18507fz583r33Xf1xRdf6OzZs+rWrZueeeYZOTs7a82aNfr555/17LPPqk2bNurZs6ekKzMHxo8fLx8fH508eVIjRoxQeHi41qxZI0kaO3asDh06pLVr16p69eo6evSoLly4IEnatWuXWrVqpe+++06NGjWSlZWVJGnx4sV66623NGfOHDVt2lR79+7VoEGDVKVKFfXr189Ub2RkpKZNm6amTZvKxsbmut8+Pz9f+fn5pvPc3NxS/RsCAAAAAAAAACoeQ3FxcXF5F3G7mjdvrt69e2vUqFF65pln1LJlS8XGxurUqVPKyclRnTp1dOTIEXl5eV3TtkuXLmrYsKGmTp0q6coMhtzcXO3Zs8f0zIQJE7RlyxatX7/edO3XX3+Vh4eHUlNT5e3tbbp+8eJFGY1Gubq66ptvvlGlSpW0cOFC9e/fX0ePHlX9+vUlSS+//LI+++wznThxQvb29pKkjh07ytPTUx988MF13zMpKUktW7bU2bNnZW9vr//v//v/VL16dX3yySfXPJuRkaGHHnpIe/fuVZMmTUzXGzRooPHjx6t3795m77dmzRpt27bN1G7mzJkaPnz4P373mJgYxcbGXnM9JydHjo6O/9gWAAAAAAAAAFA+cnNz5eTkdNu/5Vb4JZIkKSgoSPHx8SouLtaWLVvUrVs3+fr6auvWrUpISFCtWrXk5eWlwsJCjR8/Xv7+/nJxcZG9vb3Wr1+vzMxMs/6aN29udp6cnKzvv/9e9vb2pqNhw4aSpPT0dLNnX3zxRZ09e1aff/65KlX6f5/Xzs7OFC5IUs2aNeXp6WkKF65e+/sSSD/++KNCQkJUt25dOTg4KCgoSJJM9b7yyiv64osv1KRJE73++uvatm3bP36nc+fOKT09XQMGDDB7lwkTJlzzHi1atPjHviQpKipKOTk5piMrK+umbQAAAAAAAAAA94cKv0SSdGXWwSeffKLk5GRZWlqqYcOGMhqNio+P15kzZ0w/zL/zzjuaNWuWZs6cKX9/f1WpUkURERHXbORcpUoVs/O8vDyFhIRo8uTJ14zt7u5u+nvChAlav369du3aJQcHB7PnLC0tzc4NBsN1rxUVFUm6EgYEBwcrODhYixcvlqurqzIzMxUcHGyqt1OnTvrll1+0Zs0abdy4Ue3bt9err75qmo3xv/Ly8iRJH330kR599FGze5UrV/7Hb3A91tbWsra2vulzAAAAAAAAAID7z30RMFzdh2HGjBmmMMFoNGrSpEk6c+aMRo4cKUlKTExUaGioXnjhBUlSUVGRjhw5Ij8/v3/sv1mzZlq+fLk8PT1lYXH9T7Z8+XKNGzdOa9euNZupUFqHDx/WqVOnNGnSJHl4eEi6skTS/3J1dVW/fv3Ur18/tW3bVqNHj9bUqVNNey78fdPomjVrqlatWvr555/Vp0+f264RAAAAAAAAAPDgui+WSKpataoCAgK0ePFiGY1GSVK7du20Z88eHTlyxBQ6eHl5aePGjdq2bZtSUlL00ksv6cSJEzft/9VXX9Xp06fVu3dv7d69W+np6Vq/fr369++vwsJCHThwQGFhYRozZowaNWqkP/74Q3/88YdOnz5d6neqW7eurKysNHv2bP38889atWqVxo8fb/bMW2+9pW+++UZHjx7VwYMH9e2338rX11eSVKNGDdna2mrdunU6ceKEcnJyJEmxsbGKi4vTu+++qyNHjmj//v1asGCBpk+fXupaAQAAAAAAAAAPnvsiYJCu7MNQWFhoChhcXFzk5+cnNzc3+fj4SJLefPNNNWvWTMHBwTIajXJzc1PXrl1v2netWrWUmJiowsJCPfXUU/L391dERIScnZ1VqVIlJSUl6fz585owYYLc3d1NR7du3Ur9Pq6urlq4cKG++uor+fn5adKkSdcsfWRlZaWoqCgFBASoXbt2qly5sr744gtJkoWFhd59913NmzdPtWrVUmhoqCRp4MCBmj9/vhYsWCB/f38FBQVp4cKFeuihh0pdKwAAAAAAAADgwWMoLi4uLu8icH8oq53HAQAAAAAAAAB3Tln9lnvfzGAAAAAAAAAAAAB3DwEDAAAAAAAAAAAoMQIGAAAAAAAAAABQYgQMAAAAAAAAAACgxAgYAAAAAAAAAABAiREwAAAAAAAAAACAEiNgAAAAAAAAAAAAJUbAAAAAAAAAAAAASoyAoQIyGo2KiIi4o2PExMSoSZMmd3QMAAAAAAAAAEDFRcAAAAAAAAAAAABKjIABAAAAAAAAAACUGAFDBffZZ5+pRYsWcnBwkJubm55//nmdPHnSdD8+Pl4Gg0GbNm1SixYtZGdnp8cee0ypqalm/UyaNEk1a9aUg4ODBgwYoIsXL97tVwEAAAAAAAAAVCAEDBVcQUGBxo8fr+TkZK1cuVIZGRkKDw+/5rk33nhD06ZNU1JSkiwsLPTiiy+a7n355ZeKiYnRxIkTlZSUJHd3d82dO/cuvgUAAAAAAAAAoKKxKO8CcHv+HhQ8/PDDevfdd9WyZUvl5eXJ3t7edO/tt99WUFCQJCkyMlJPP/20Ll68KBsbG82cOVMDBgzQgAEDJEkTJkzQd999d9NZDPn5+crPzzed5+bmluWrAQAAAAAAAADuYcxgqOB+/PFHhYSEqG7dunJwcDCFCJmZmWbPBQQEmP52d3eXJNNSSikpKXr00UfNng8MDLzp2HFxcXJycjIdHh4et/UuAAAAAAAAAICKg4ChAjt37pyCg4Pl6OioxYsXa/fu3VqxYoUk6dKlS2bPWlpamv42GAySpKKiotsaPyoqSjk5OaYjKyvrtvoDAAAAAAAAAFQcBAwV2OHDh3Xq1ClNmjRJbdu2VcOGDc02eL5Vvr6+2rlzp9m1HTt23LSdtbW1HB0dzQ4AAAAAAAAAwIOBgKECq1u3rqysrDR79mz9/PPPWrVqlcaPH1/ifoYPH65PPvlECxYs0JEjRxQdHa2DBw/egYoBAAAAAAAAAPcLAoYKzNXVVQsXLtRXX30lPz8/TZo0SVOnTi1xPz179tTYsWP1+uuvq3nz5vrll1/0yiuv3IGKAQAAAAAAAAD3C0NxcXFxeReB+0Nubq6cnJyUk5PDckkAAAAAAAAAcI8qq99ymcEAAAAAAAAAAABKjIABAAAAAAAAAACUGAEDAAAAAAAAAAAoMQIGAAAAAAAAAABQYgQMAAAAAAAAAACgxAgYAAAAAAAAAABAiREwAAAAAAAAAACAEiNgAAAAAAAAAAAAJUbAUAEYjUZFRESUdxkAAAAAAAAAAJhYlHcBuLmvv/5alpaW5V0GAAAAAAAAAAAmBAwVgIuLS3mXAAAAAAAAAACAGZZIqgD+vkSSp6enJkyYoLCwMNnb26tevXpatWqV/vzzT4WGhsre3l4BAQFKSkoytT916pR69+6t2rVry87OTv7+/lqyZMk1YwwdOlRDhw6Vk5OTqlevrrFjx6q4uPhuvioAAAAAAAAAoIIgYKiAZsyYoTZt2mjv3r16+umn1bdvX4WFhemFF17Qnj17VL9+fYWFhZnCgYsXL6p58+ZavXq1Dhw4oMGDB6tv377atWuXWb+LFi2ShYWFdu3apVmzZmn69OmaP39+ebwiAAAAAAAAAOAeZyjmf1G/5xmNRjVp0kQzZ86Up6en2rZtq88++0yS9Mcff8jd3V1jx47VuHHjJEk7duxQYGCgjh8/Ljc3t+v22aVLFzVs2FBTp041jXHy5EkdPHhQBoNBkhQZGalVq1bp0KFD1+0jPz9f+fn5pvPc3Fx5eHgoJydHjo6OZfb+AAAAAAAAAICyk5ubKycnp9v+LZcZDBVQQECA6e+aNWtKkvz9/a+5dvLkSUlSYWGhxo8fL39/f7m4uMje3l7r169XZmamWb+tW7c2hQuSFBgYqLS0NBUWFl63jri4ODk5OZkODw+PsnlBAAAAAAAAAMA9j4ChArK0tDT9fTUQuN61oqIiSdI777yjWbNmacyYMfr++++1b98+BQcH69KlS7dVR1RUlHJyckxHVlbWbfUHAAAAAAAAAKg4LMq7ANx5iYmJCg0N1QsvvCDpSvBw5MgR+fn5mT23c+dOs/MdO3bIy8tLlStXvm6/1tbWsra2vjNFAwAAAAAAAADuacxgeAB4eXlp48aN2rZtm1JSUvTSSy/pxIkT1zyXmZmpESNGKDU1VUuWLNHs2bM1fPjwcqgYAAAAAAAAAHCvYwbDA+DNN9/Uzz//rODgYNnZ2Wnw4MHq2rWrcnJyzJ4LCwvThQsX1KpVK1WuXFnDhw/X4MGDy6lqAAAAAAAAAMC9zFBcXFxc3kWg/BmNRjVp0kQzZ84sdR9ltfM4AAAAAAAAAODOKavfclkiCQAAAAAAAAAAlBgBAwAAAAAAAAAAKDH2YIAkKT4+vrxLAAAAAAAAAABUIMxgAAAAAAAAAAAAJUbAAAAAAAAAAAAASoyAAQAAAAAAAAAAlBgBAwAAAAAAAAAAKDECBgAAAAAAAAAAUGIEDA8Ao9GoiIiIG94PDw9X165d71o9AAAAAAAAAICKj4DhPhIfHy+DwaDs7OwStZs1a5YWLlxoOr9ZIAEAAAAAAAAAgEV5F4ArLl26JCsrq3IZ28nJqVzGBQAAAAAAAABUXMxgKCdGo1FDhw5VRESEqlevruDgYCUkJKhVq1aytraWu7u7IiMjdfnyZVOb/Px8DRs2TDVq1JCNjY0ef/xx7d69W5KUkZGhf/3rX5KkqlWrymAwKDw8/Lpjr169Wk5OTlq8eLEk8yWSwsPDlZCQoFmzZslgMMhgMCgjI+OOfQcAAAAAAAAAQMVEwFCOFi1aJCsrKyUmJiomJkadO3dWy5YtlZycrPfff18ff/yxJkyYYHr+9ddf1/Lly7Vo0SLt2bNHDRo0UHBwsE6fPi0PDw8tX75ckpSamqrjx49r1qxZ14z5+eefq3fv3lq8eLH69Olzzf1Zs2YpMDBQgwYN0vHjx3X8+HF5eHjcuY8AAAAAAAAAAKiQWCKpHHl5eWnKlCmSpE8//VQeHh6aM2eODAaDGjZsqN9//11jxozRW2+9pQsXLuj999/XwoUL1alTJ0nSRx99pI0bN+rjjz/W6NGj5eLiIkmqUaOGnJ2drxnvvffe0xtvvKH//ve/CgoKum5NTk5OsrKykp2dndzc3P6x/vz8fOXn55vOc3NzS/MZAAAAAAAAAAAVEAFDOWrevLnp75SUFAUGBspgMJiutWnTRnl5efr111+VnZ2tgoICtWnTxnTf0tJSrVq1UkpKyk3HWrZsmU6ePKnExES1bNmyTOqPi4tTbGxsmfQFAAAAAAAAAKhYWCKpHFWpUuWujdW0aVO5urrqk08+UXFxcZn0GRUVpZycHNORlZVVJv0CAAAAAAAAAO59BAz3CF9fX23fvt3sx//ExEQ5ODioTp06ql+/vmm/hqsKCgq0e/du+fn5SZKsrKwkSYWFhdf0X79+fX3//ff65ptv9Nprr/1jLVZWVtft439ZW1vL0dHR7AAAAAAAAAAAPBgIGO4RQ4YMUVZWll577TUdPnxY33zzjaKjozVixAhVqlRJVapU0SuvvKLRo0dr3bp1OnTokAYNGqTz589rwIABkqR69erJYDDo22+/1Z9//qm8vDyzMby9vfX9999r+fLlioiIuGEtnp6e2rlzpzIyMvTXX3+pqKjoTr46AAAAAAAAAKACImC4R9SuXVtr1qzRrl271LhxY7388ssaMGCA3nzzTdMzkyZN0rPPPqu+ffuqWbNmOnr0qNavX6+qVaua+oiNjVVkZKRq1qypoUOHXjOOj4+PNm/erCVLlmjkyJHXrWXUqFGqXLmy/Pz85OrqqszMzDvz0gAAAAAAAACACstQXFYL8uOBl5ubKycnJ+Xk5LBcEgAAAAAAAADco8rqt1xmMAAAAAAAAAAAgBIjYAAAAAAAAAAAACVGwAAAAAAAAAAAAEqMgAEAAAAAAAAAAJQYAQMAAAAAAAAAACgxAgYAAAAAAAAAAFBiBAwAAAAAAAAAAKDECBgAAAAAAAAAAECJPTABg9FoVERERIUf40Y8PT01c+bMW34+Pj5eBoNB2dnZd6wmAAAAAAAAAMD964EJGAAAAAAAAAAAQNkhYAAAAAAAAAAAACX2QAYMZ86cUVhYmKpWrSo7Ozt16tRJaWlppvunTp1S7969Vbt2bdnZ2cnf319Lliwx6+PcuXMKCwuTvb293N3dNW3atGvG8fT01IQJE0zP1atXT6tWrdKff/6p0NBQ2dvbKyAgQElJSWbtli9frkaNGsna2lqenp7X9H3y5EmFhITI1tZWDz30kBYvXmx2PyMjQwaDQfv27TNdy87OlsFgUHx8/A2/y9atW9W2bVvZ2trKw8NDw4YN07lz5272OQEAAAAAAAAAD6AHMmAIDw9XUlKSVq1ape3bt6u4uFidO3dWQUGBJOnixYtq3ry5Vq9erQMHDmjw4MHq27evdu3aZepj9OjRSkhI0DfffKMNGzYoPj5ee/bsuWasGTNmqE2bNtq7d6+efvpp9e3bV2FhYXrhhRe0Z88e1a9fX2FhYSouLpYk/fjjj+rRo4d69eql/fv3KyYmRmPHjtXChQvN6s/KytL333+vZcuWae7cuTp58uRtfZP09HR17NhRzz77rH766SctXbpUW7du1dChQ2+rXwAAAAAAAADA/cmivAu429LS0rRq1SolJibqsccekyQtXrxYHh4eWrlypbp3767atWtr1KhRpjavvfaa1q9fry+//FKtWrVSXl6ePv74Y/3nP/9R+/btJUmLFi1SnTp1rhmvc+fOeumllyRJb731lt5//321bNlS3bt3lySNGTNGgYGBOnHihNzc3DR9+nS1b99eY8eOlSR5e3vr0KFDeueddxQeHq4jR45o7dq12rVrl1q2bClJ+vjjj+Xr63tb3yUuLk59+vQxbVLt5eWld999V0FBQXr//fdlY2NzTZv8/Hzl5+ebznNzc2+rBgAAAAAAAABAxfHAzWBISUmRhYWFHn30UdO1atWqycfHRykpKZKkwsJCjR8/Xv7+/nL5/7V391FV1fkexz+Hh3OEjhxEFMQBrUR8AkW5KeID68pNzZnRsaVNQw9kqaUkLrVrzpii04RNTzreydvkBHZr6VRLrSYfxjEho8RkfCIJ0WxwvJhNCWgpIvzuH7PctxNaHSEPcN6vtfZa7P377t/ve1j71+7w9bd3WJicTqe2bt2qiooKSf/61/4XLlxw6yMsLExxcXGNxktISLB+joiIkCTFx8c3OnZpBUJpaalSUlLc+khJSVF5ebnq6+ut/AcNGmS19+rVS6GhoVf1+7hk//79ysvLk9PptLbRo0eroaFBx44du+w5OTk5crlc1hYdHd2kHAAAAAAAAAAArYfPrWD4Pp544gmtWLFCy5cvV3x8vK677jrNnj1bFy5c8LivwMBA62ebzXbFYw0NDU3M+v/5+f2rbnTpsUuSrMc/XcnZs2c1ffp0zZo1q1FbTEzMZc9ZsGCB5syZY+3X1NRQZAAAAAAAAAAAH+FzKxh69+6tixcvqqioyDr2+eefq6ysTH369JEkFRYWavz48brjjjvUv39/3XDDDTp8+LAVf+ONNyowMNCtj9OnT7vFNCW/wsJCt2OFhYXq2bOn/P391atXL128eFHFxcVWe1lZmaqqqqz9Tp06SZIqKyutY19/4fPlDBw4UIcOHVKPHj0abXa7/bLnOBwOhYSEuG0AAAAAAAAAAN/gcwWG2NhYjR8/XlOnTtW7776r/fv364477lDXrl01fvx4K2bbtm167733VFpaqunTp+vTTz+1+nA6nbr33nv10EMP6e2331ZJSYkyMjKslQNNMXfuXG3fvl2//vWvdfjwYa1Zs0b/9V//Zb0TIi4uTmPGjNH06dNVVFSk4uJi3XfffQoKCrL6CAoK0pAhQ7Rs2TKVlpaqoKBACxcu/NZx58+fr/fee0+ZmZnat2+fysvL9frrr/OSZwAAAAAAAADAZflcgUGScnNzNWjQIP34xz9WcnKyjDHatGmT9eiihQsXauDAgRo9erRSU1MVGRmpCRMmuPXxxBNPaPjw4frJT36itLQ0DRs2zO29CFdr4MCBeuWVV7Ru3Tr169dPixYt0tKlS5WRkeGWf1RUlEaOHKmJEydq2rRp6ty5s1s/L7zwgi5evKhBgwZp9uzZevTRR7913ISEBBUUFOjw4cMaPny4EhMTtWjRIkVFRTX5MwEAAAAAAAAA2h6b+fqD+oEmqKmpkcvlUnV1NY9LAgAAAAAAAIAWqrn+luuTKxgAAAAAAAAAAEDTUGAAAAAAAAAAAAAeo8AAAAAAAAAAAAA8RoEBAAAAAAAAAAB4jAIDAAAAAAAAAADwGAUGAAAAAAAAAADgMQoMAAAAAAAAAADAYxQYAAAAAAAAAACAxygwAAAAAAAAAAAAj1FguErGGE2bNk1hYWGy2Wzat2+ft1O6rOzsbA0YMMDbaQAAAAAAAAAA2hgKDFdpy5YtysvL05///GdVVlYqMTFRGzdu9HZajcybN0/bt2+39jMyMjRhwgTvJQQAAAAAAAAAaBMCvJ1Aa3X06FF16dJFQ4cO9XYql2WMUX19vZxOp5xOp7fTAQAAAAAAAAC0MaxguAoZGRl68MEHVVFRIZvNpu7du0uSfvazn7ntX3o80XPPPafo6GgFBwdr8uTJqq6u/s4xSkpK5Ofnp88++0yS9MUXX8jPz08///nPrZhHH31Uw4YNkyTl5+fLZrNp8+bNGjRokBwOh9599123RyRlZ2drzZo1ev3112Wz2WSz2ZSfny9JOn78uCZPnqzQ0FCFhYVp/Pjx+uSTT5rl9wUAAAAAAAAAaHsoMFyFFStWaOnSpfrRj36kyspKffDBB5Kk3Nxct31JOnLkiF555RW9+eab2rJli/bu3asZM2Z85xh9+/ZVx44dVVBQIEnauXOn274kFRQUKDU11e28hx9+WMuWLVNpaakSEhLc2ubNm6fJkydrzJgxqqysVGVlpYYOHaq6ujqNHj1a7du3186dO1VYWCin06kxY8bowoULV8yxtrZWNTU1bhsAAAAAAAAAwDdQYLgKLpdL7du3l7+/vyIjI9WpUydJUmhoqNu+JJ0/f14vvviiBgwYoBEjRmjlypVat26dTp48+a1j2Gw2jRgxwlphkJ+fr3vuuUe1tbX66KOPVFdXp/fee08jR450O2/p0qX6j//4D914440KCwtza3M6nQoKCpLD4VBkZKQiIyNlt9v1pz/9SQ0NDVq9erXi4+PVu3dv5ebmqqKiwhr/cnJycuRyuawtOjrag98iAAAAAAAAAKA1o8DwA4uJiVHXrl2t/eTkZDU0NKisrOw7zx05cqT1B/6CggL9+7//u1V0+OCDD1RXV6eUlBS3c5KSkjzOcf/+/Tpy5Ijat29vvbMhLCxM58+f19GjR6943oIFC1RdXW1tx48f93hsAAAAAAAAAEDrxEueW7DU1FTNnj1b5eXlOnTokIYNG6aPPvpI+fn5On36tJKSkhQcHOx2znXXXefxOGfPntWgQYP08ssvN2r7+mqMb3I4HHI4HB6PBwAAAAAAAABo/SgwNJPAwEDV19c3Ol5RUaH//d//VVRUlCRp165d8vPzU1xc3Hf2GR8frw4dOujRRx/VgAED5HQ6lZqaqscff1ynT59u9P6F78NutzfKc+DAgfrTn/6kzp07KyQkxOM+AQAAAAAAAAC+h0ckNZPu3btr+/btOnnypE6fPm0db9eune6++27t379fO3fu1KxZszR58mRFRkZ+Z5+X3sPw8ssvW8WEhIQE1dbWavv27Y3ev/B98zxw4IDKysr0z3/+U3V1dUpPT1d4eLjGjx+vnTt36tixY8rPz9esWbP0j3/8w+MxAAAAAAAAAABtHwWGZvLUU09p27Ztio6OVmJionW8R48emjhxom655RbdfPPNSkhI0LPPPvu9+x05cqTq6+utAoOfn59GjBghm83W6P0L38fUqVMVFxenpKQkderUSYWFhQoODtY777yjmJgYTZw4Ub1799a9996r8+fPs6IBAAAAAAAAAHBZNmOM8XYSbVV2drY2btyoffv2eTuVa6KmpkYul0vV1dUUJgAAAAAAAACghWquv+WyggEAAAAAAAAAAHiMAoMXOZ3OK247d+70dnoAAAAAAAAAAFwRj0jyoiNHjlyxrWvXrgoKCrqG2TQdj0gCAAAAAAAAgJavuf6WG9CMOcFDPXr08HYKAAAAAAAAAABcFR6RBAAAAAAAAAAAPEaBAQAAAAAAAAAAeIwCAwAAAAAAAAAA8BgFBgAAAAAAAAAA4DEKDC1Idna2BgwY8K0xn3zyiWw2m/bt2ydJys/Pl81mU1VV1Q+eHwAAAAAAAAAAlwR4OwFcWUZGhqqqqrRx40brWHR0tCorKxUeHu69xAAAAAAAAAAAPo8CQyvj7++vyMhIb6cBAAAAAAAAAPBxPCLpKqWmpurBBx/U7Nmz1aFDB0VEROj555/Xl19+qXvuuUft27dXjx49tHnzZklSXl6eQkND3frYuHGjbDbbZfvPzs7WmjVr9Prrr8tms8lmsyk/P7/RI5IuKS4uVlJSkoKDgzV06FCVlZW5ta9atUo33nij7Ha74uLi9D//8z9u7TabTatWrdLYsWMVFBSkG264Qa+99lrTfkkAAAAAAAAAgDaLAkMTrFmzRuHh4dq9e7cefPBBPfDAA5o0aZKGDh2qv/3tb7r55pt155136quvvvK473nz5mny5MkaM2aMKisrVVlZqaFDh14x/le/+pWeeuop7dmzRwEBAZoyZYrVtmHDBmVlZWnu3LkqKSnR9OnTdc8992jHjh1ufTzyyCO69dZbtX//fqWnp+vnP/+5SktLrzhmbW2tampq3DYAAAAAAAAAgG+gwNAE/fv318KFCxUbG6sFCxaoXbt2Cg8P19SpUxUbG6tFixbp888/14EDBzzu2+l0KigoSA6HQ5GRkYqMjJTdbr9i/G9+8xuNHDlSffr00cMPP6z33ntP58+flyQ9+eSTysjI0IwZM9SzZ0/NmTNHEydO1JNPPunWx6RJk3TfffepZ8+e+vWvf62kpCStXLnyimPm5OTI5XJZW3R0tMefEwAAAAAAAADQOlFgaIKEhATrZ39/f3Xs2FHx8fHWsYiICEnSqVOnrmkuXbp0cRu3tLRUKSkpbvEpKSmNVickJyc32v+2FQwLFixQdXW1tR0/frxJnwEAAAAAAAAA0HrwkucmCAwMdNu32Wxuxy69X6GhoUF+fn4yxrjF19XV/SC5fH3cH5LD4ZDD4fhBxwAAAAAAAAAAtEysYLhGOnXqpDNnzujLL7+0jn3zRc3fZLfbVV9f3+Sxe/furcLCQrdjhYWF6tOnj9uxXbt2Ndrv3bt3k8cHAAAAAAAAALQ9rGC4RgYPHqzg4GD98pe/1KxZs1RUVKS8vLxvPad79+7aunWrysrK1LFjR7lcrqsa+6GHHtLkyZOVmJiotLQ0vfnmm1q/fr3++te/usW9+uqrSkpK0rBhw/Tyyy9r9+7d+uMf/3hVYwIAAAAAAAAA2jZWMFwjYWFheumll7Rp0ybFx8dr7dq1ys7O/tZzpk6dqri4OCUlJalTp06NViF8XxMmTNCKFSv05JNPqm/fvnruueeUm5ur1NRUt7glS5Zo3bp1SkhI0Isvvqi1a9c2WuUAAAAAAAAAAIAk2cw3XwwAn2Sz2bRhwwZNmDDhqvuoqamRy+VSdXW1QkJCmi85AAAAAAAAAECzaa6/5bKCAQAAAAAAAAAAeIwCAwAAAAAAAAAA8BgveYYkiSdlAQAAAAAAAAA8wQoGAAAAAAAAAADgMQoMAAAAAAAAAADAYxQYAAAAAAAAAACAxygwAAAAAAAAAAAAj1FgAAAAAAAAAAAAHqPA4IO6d++u5cuXf2vMRx99pCFDhqhdu3YaMGDANckLAAAAAAAAANB6BHg7AbRMixcv1nXXXaeysjI5nU5vpwMAAAAAAAAAaGEoMOCyjh49qnHjxqlbt27eTgUAAAAAAAAA0ALxiKQ2KDU1VZmZmcrMzJTL5VJ4eLgeeeQRGWOsmK+++kpTpkxR+/btFRMToz/84Q9Wm81mU3FxsZYuXSqbzabs7GwvfAoAAAAAAAAAQEtGgaGNWrNmjQICArR7926tWLFCTz/9tFavXm21P/XUU0pKStLevXs1Y8YMPfDAAyorK5MkVVZWqm/fvpo7d64qKys1b968y45RW1urmpoatw0AAAAAAAAA4BsoMLRR0dHReuaZZxQXF6f09HQ9+OCDeuaZZ6z2W265RTNmzFCPHj00f/58hYeHa8eOHZKkyMhIBQQEyOl0KjIy8orvYMjJyZHL5bK26Ojoa/LZAAAAAAAAAADeR4GhjRoyZIhsNpu1n5ycrPLyctXX10uSEhISrDabzabIyEidOnXKozEWLFig6upqazt+/HjzJA8AAAAAAAAAaPF4ybOPCgwMdNu32WxqaGjwqA+HwyGHw9GcaQEAAAAAAAAAWglWMLRRRUVFbvu7du1SbGys/P39vZQRAAAAAAAAAKAtocDQRlVUVGjOnDkqKyvT2rVrtXLlSmVlZXk7LQAAAAAAAABAG8Ejktqou+66S+fOndNNN90kf39/ZWVladq0ad5OCwAAAAAAAADQRtiMMcbbSaB5paamasCAAVq+fPk1HbempkYul0vV1dUKCQm5pmMDAAAAAAAAAL6f5vpbLo9IAgAAAAAAAAAAHqPAAAAAAAAAAAAAPMY7GNqg/Px8b6cAAAAAAAAAAGjjWMEAAAAAAAAAAAA8RoEBAAAAAAAAAAB4jAIDAAAAAAAAAADwGAUGAAAAAAAAAADgMQoMAAAAAAAAAADAYxQYcFkZGRmaMGGCt9MAAAAAAAAAALRQFBgAAAAAAAAAAIDHArydAFqW+vp62Ww2b6cBAAAAAAAAAGjhWMHQyqWmpiozM1OZmZlyuVwKDw/XI488ImOMJKm2tlbz5s1T165ddd1112nw4MHKz8+3zs/Ly1NoaKjeeOMN9enTRw6HQxUVFV76NAAAAAAAAACA1oICQxuwZs0aBQQEaPfu3VqxYoWefvpprV69WpKUmZmp999/X+vWrdOBAwc0adIkjRkzRuXl5db5X331lR5//HGtXr1aH374oTp37vy9xq2trVVNTY3bBgAAAAAAAADwDTwiqQ2Ijo7WM888I5vNpri4OB08eFDPPPOMRo8erdzcXFVUVCgqKkqSNG/ePG3ZskW5ubl67LHHJEl1dXV69tln1b9/f4/GzcnJ0ZIlS5r98wAAAAAAAAAAWj5WMLQBQ4YMcXtvQnJyssrLy3Xw4EHV19erZ8+ecjqd1lZQUKCjR49a8Xa7XQkJCR6Pu2DBAlVXV1vb8ePHm+XzAAAAAAAAAABaPlYwtGFnz56Vv7+/iouL5e/v79bmdDqtn4OCgq7qxc4Oh0MOh6PJeQIAAAAAAAAAWh8KDG1AUVGR2/6uXbsUGxurxMRE1dfX69SpUxo+fLiXsgMAAAAAAAAAtEU8IqkNqKio0Jw5c1RWVqa1a9dq5cqVysrKUs+ePZWenq677rpL69ev17Fjx7R7927l5OTorbfe8nbaAAAAAAAAAIBWjBUMbcBdd92lc+fO6aabbpK/v7+ysrI0bdo0SVJubq4effRRzZ07VydOnFB4eLiGDBmiH//4x17OGgAAAAAAAADQmtmMMcbbSeDqpaamasCAAVq+fLm3U1FNTY1cLpeqq6sVEhLi7XQAAAAAAAAAAJfRXH/L5RFJAAAAAAAAAADAYxQYAAAAAAAAAACAx3gHQyuXn5/v7RQAAAAAAAAAAD6IFQwAAAAAAAAAAMBjFBgAAAAAAAAAAIDHKDAAAAAAAAAAAACPUWAAAAAAAAAAAAAeo8AAAAAAAAAAAAA8RoEBAAAAAAAAAAB4jAIDAAAAAAAAAADwGAUGAAAAAAAAAADgMQoMbcxrr72m+Ph4BQUFqWPHjkpLS9OXX36pjIwMTZgwQUuWLFGnTp0UEhKi+++/XxcuXJAkvfjii+rYsaNqa2vd+pswYYLuvPNOb3wUAAAAAAAAAEALRoGhDamsrNTtt9+uKVOmqLS0VPn5+Zo4caKMMZKk7du3W8fXrl2r9evXa8mSJZKkSZMmqb6+Xm+88YbV36lTp/TWW29pypQplx2vtrZWNTU1bhsAAAAAAAAAwDdQYGhDKisrdfHiRU2cOFHdu3dXfHy8ZsyYIafTKUmy2+164YUX1LdvX40bN05Lly7V7373OzU0NCgoKEi/+MUvlJuba/X30ksvKSYmRqmpqZcdLycnRy6Xy9qio6OvxccEAAAAAAAAALQAFBjakP79+2vUqFGKj4/XpEmT9Pzzz+v06dNu7cHBwdZ+cnKyzp49q+PHj0uSpk6dqr/85S86ceKEJCkvL08ZGRmy2WyXHW/BggWqrq62tkv9AAAAAAAAAADaPgoMbYi/v7+2bdumzZs3q0+fPlq5cqXi4uJ07Nix73V+YmKi+vfvrxdffFHFxcX68MMPlZGRccV4h8OhkJAQtw0AAAAAAAAA4BsCvJ0AmpfNZlNKSopSUlK0aNEidevWTRs2bJAk7d+/X+fOnVNQUJAkadeuXXI6nW6PNrrvvvu0fPlynThxQmlpaTz2CAAAAAAAAABwWaxgaEOKior02GOPac+ePaqoqND69ev12WefqXfv3pKkCxcu6N5779WhQ4e0adMmLV68WJmZmfLz+//L4Be/+IX+8Y9/6Pnnn7/iy50BAAAAAAAAAKDA0IaEhITonXfe0S233KKePXtq4cKFeuqppzR27FhJ0qhRoxQbG6sRI0botttu009/+lNlZ2e79eFyuXTrrbfK6XRqwoQJ1/5DAAAAAAAAAABaBR6R1Ib07t1bW7Zs+daYJUuWaMmSJd8ac+LECaWnp8vhcDRnegAAAAAAAACANoQCAyynT59Wfn6+8vPz9eyzz3o7HQAAAAAAAABAC0aBAZbExESdPn1ajz/+uOLi4rydDgAAAAAAAACgBbMZY4y3k0DbUF1drdDQUB0/flwhISHeTgcAAAAAAAAAcBk1NTWKjo5WVVWVXC7XVffDCgY0m88//1ySFB0d7eVMAAAAAAAAAADf5cyZMxQY0DKEhYVJkioqKpp0UQJtxaVKMKt6gH9hTgCNMS8Ad8wJwB1zAmiMeQG4u9o5YYzRmTNnFBUV1aTxKTCg2fj5+UmSXC4X/4EHviYkJIQ5AXwNcwJojHkBuGNOAO6YE0BjzAvA3dXMieb4R+J+Te4BAAAAAAAAAAD4HAoMAAAAAAAAAADAYxQY0GwcDocWL14sh8Ph7VSAFoE5AbhjTgCNMS8Ad8wJwB1zAmiMeQG48/acsBljjFdGBgAAAAAAAAAArRYrGAAAAAAAAAAAgMcoMAAAAAAAAAAAAI9RYAAAAAAAAAAAAB6jwAAAAAAAAAAAADxGgQHN4ve//726d++udu3aafDgwdq9e7e3UwKuyjvvvKOf/OQnioqKks1m08aNG93ajTFatGiRunTpoqCgIKWlpam8vNwt5osvvlB6erpCQkIUGhqqe++9V2fPnnWLOXDggIYPH6527dopOjpav/3tbxvl8uqrr6pXr15q166d4uPjtWnTpmb/vMB3ycnJ0b/927+pffv26ty5syZMmKCysjK3mPPnz2vmzJnq2LGjnE6nbr31Vn366aduMRUVFRo3bpyCg4PVuXNnPfTQQ7p48aJbTH5+vgYOHCiHw6EePXooLy+vUT7cb+Btq1atUkJCgkJCQhQSEqLk5GRt3rzZamc+wNctW7ZMNptNs2fPto4xL+BrsrOzZbPZ3LZevXpZ7cwJ+KITJ07ojjvuUMeOHRUUFKT4+Hjt2bPHaue7NnxJ9+7dG90nbDabZs6cKakV3icM0ETr1q0zdrvdvPDCC+bDDz80U6dONaGhoebTTz/1dmqAxzZt2mR+9atfmfXr1xtJZsOGDW7ty5YtMy6Xy2zcuNHs37/f/PSnPzXXX3+9OXfunBUzZswY079/f7Nr1y6zc+dO06NHD3P77bdb7dXV1SYiIsKkp6ebkpISs3btWhMUFGSee+45K6awsND4+/ub3/72t+bQoUNm4cKFJjAw0Bw8ePAH/x0AXzd69GiTm5trSkpKzL59+8wtt9xiYmJizNmzZ62Y+++/30RHR5vt27ebPXv2mCFDhpihQ4da7RcvXjT9+vUzaWlpZu/evWbTpk0mPDzcLFiwwIr5+OOPTXBwsJkzZ445dOiQWblypfH39zdbtmyxYrjfoCV44403zFtvvWUOHz5sysrKzC9/+UsTGBhoSkpKjDHMB/i23bt3m+7du5uEhASTlZVlHWdewNcsXrzY9O3b11RWVlrbZ599ZrUzJ+BrvvjiC9OtWzeTkZFhioqKzMcff2y2bt1qjhw5YsXwXRu+5NSpU273iG3bthlJZseOHcaY1nefoMCAJrvpppvMzJkzrf36+noTFRVlcnJyvJgV0HTfLDA0NDSYyMhI88QTT1jHqqqqjMPhMGvXrjXGGHPo0CEjyXzwwQdWzObNm43NZjMnTpwwxhjz7LPPmg4dOpja2lorZv78+SYuLs7anzx5shk3bpxbPoMHDzbTp09v1s8IeOrUqVNGkikoKDDG/GsOBAYGmldffdWKKS0tNZLM+++/b4z5V+HOz8/PnDx50opZtWqVCQkJsebBf/7nf5q+ffu6jXXbbbeZ0aNHW/vcb9BSdejQwaxevZr5AJ925swZExsba7Zt22ZGjhxpFRiYF/BFixcvNv37979sG3MCvmj+/Plm2LBhV2znuzZ8XVZWlrnxxhtNQ0NDq7xP8IgkNMmFCxdUXFystLQ065ifn5/S0tL0/vvvezEzoPkdO3ZMJ0+edLveXS6XBg8ebF3v77//vkJDQ5WUlGTFpKWlyc/PT0VFRVbMiBEjZLfbrZjRo0errKxMp0+ftmK+Ps6lGOYVvK26ulqSFBYWJkkqLi5WXV2d2/Xaq1cvxcTEuM2L+Ph4RUREWDGjR49WTU2NPvzwQyvm26557jdoierr67Vu3Tp9+eWXSk5OZj7Ap82cOVPjxo1rdO0yL+CrysvLFRUVpRtuuEHp6emqqKiQxJyAb3rjjTeUlJSkSZMmqXPnzkpMTNTzzz9vtfNdG77swoULeumllzRlyhTZbLZWeZ+gwIAm+ec//6n6+nq3C1qSIiIidPLkSS9lBfwwLl3T33a9nzx5Up07d3ZrDwgIUFhYmFvM5fr4+hhXimFewZsaGho0e/ZspaSkqF+/fpL+da3a7XaFhoa6xX5zXlztNV9TU6Nz585xv0GLcvDgQTmdTjkcDt1///3asGGD+vTpw3yAz1q3bp3+9re/KScnp1Eb8wK+aPDgwcrLy9OWLVu0atUqHTt2TMOHD9eZM2eYE/BJH3/8sVatWqXY2Fht3bpVDzzwgGbNmqU1a9ZI4rs2fNvGjRtVVVWljIwMSa3z/50CPIoGAAA+a+bMmSopKdG7777r7VQAr4qLi9O+fftUXV2t1157TXfffbcKCgq8nRbgFcePH1dWVpa2bdumdu3aeTsdoEUYO3as9XNCQoIGDx6sbt266ZVXXlFQUJAXMwO8o6GhQUlJSXrsscckSYmJiSopKdF///d/6+677/ZydoB3/fGPf9TYsWMVFRXl7VSuGisY0CTh4eHy9/dv9CbzTz/9VJGRkV7KCvhhXLqmv+16j4yM1KlTp9zaL168qC+++MIt5nJ9fH2MK8Uwr+AtmZmZ+vOf/6wdO3boRz/6kXU8MjJSFy5cUFVVlVv8N+fF1V7zISEhCgoK4n6DFsVut6tHjx4aNGiQcnJy1L9/f61YsYL5AJ9UXFysU6dOaeDAgQoICFBAQIAKCgr0u9/9TgEBAYqIiGBewOeFhoaqZ8+eOnLkCPcK+KQuXbqoT58+bsd69+5tPTqM79rwVX//+9/117/+Vffdd591rDXeJygwoEnsdrsGDRqk7du3W8caGhq0fft2JScnezEzoPldf/31ioyMdLvea2pqVFRUZF3vycnJqqqqUnFxsRXz9ttvq6GhQYMHD7Zi3nnnHdXV1Vkx27ZtU1xcnDp06GDFfH2cSzHMK1xrxhhlZmZqw4YNevvtt3X99de7tQ8aNEiBgYFu12tZWZkqKirc5sXBgwfdvhBs27ZNISEh1heN77rmud+gJWtoaFBtbS3zAT5p1KhROnjwoPbt22dtSUlJSk9Pt35mXsDXnT17VkePHlWXLl24V8AnpaSkqKyszO3Y4cOH1a1bN0l814bvys3NVefOnTVu3DjrWKu8T3j0SmjgMtatW2ccDofJy8szhw4dMtOmTTOhoaFubzIHWoszZ86YvXv3mr179xpJ5umnnzZ79+41f//7340xxixbtsyEhoaa119/3Rw4cMCMHz/eXH/99ebcuXNWH2PGjDGJiYmmqKjIvPvuuyY2NtbcfvvtVntVVZWJiIgwd955pykpKTHr1q0zwcHB5rnnnrNiCgsLTUBAgHnyySdNaWmpWbx4sQkMDDQHDx68dr8MwBjzwAMPGJfLZfLz801lZaW1ffXVV1bM/fffb2JiYszbb79t9uzZY5KTk01ycrLVfvHiRdOvXz9z8803m3379pktW7aYTp06mQULFlgxH3/8sQkODjYPPfSQKS0tNb///e+Nv7+/2bJlixXD/QYtwcMPP2wKCgrMsWPHzIEDB8zDDz9sbDab+ctf/mKMYT4AxhgzcuRIk5WVZe0zL+Br5s6da/Lz882xY8dMYWGhSUtLM+Hh4ebUqVPGGOYEfM/u3btNQECA+c1vfmPKy8vNyy+/bIKDg81LL71kxfBdG76mvr7exMTEmPnz5zdqa233CQoMaBYrV640MTExxm63m5tuusns2rXL2ykBV2XHjh1GUqPt7rvvNsYY09DQYB555BETERFhHA6HGTVqlCkrK3Pr4/PPPze33367cTqdJiQkxNxzzz3mzJkzbjH79+83w4YNMw6Hw3Tt2tUsW7asUS6vvPKK6dmzp7Hb7aZv377mrbfe+sE+N3All5sPkkxubq4Vc+7cOTNjxgzToUMHExwcbH72s5+ZyspKt34++eQTM3bsWBMUFGTCw8PN3LlzTV1dnVvMjh07zIABA4zdbjc33HCD2xiXcL+Bt02ZMsV069bN2O1206lTJzNq1CiruGAM8wEwpnGBgXkBX3PbbbeZLl26GLvdbrp27Wpuu+02c+TIEaudOQFf9Oabb5p+/foZh8NhevXqZf7whz+4tfNdG75m69atRlKj69yY1nefsBljjGdrHgAAAAAAAAAAgK/jHQwAAAAAAAAAAMBjFBgAAAAAAAAAAIDHKDAAAAAAAAAAAACPUWAAAAAAAAAAAAAeo8AAAAAAAAAAAAA8RoEBAAAAAAAAAAB4jAIDAAAAAAAAAADwGAUGAAAAAAAAAADgMQoMAAAAAAAAAADAYxQYAAAAAAAAAACAxygwAAAAAAAAAAAAj1FgAAAAAAAAAAAAHvs//5bpQqXJh+MAAAAASUVORK5CYII=\n",
372
- "text/plain": [
373
- "<Figure size 1800x600 with 1 Axes>"
374
- ]
375
- },
376
- "metadata": {},
377
- "output_type": "display_data"
378
- },
379
- {
380
- "data": {
381
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAGFCAYAAAAvsY4uAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA7dklEQVR4nO3dd3hUVcIG8Hdaeu8BAiQESAKELhA6Ik1piuCiIugifqiAgAK764ro7iJKEWFZC2tbC0hRRKQKKF1KIECANEgCgZDey8zc74/RQCRAhsydM3Pn/T1PHsidyeQlQN6ce+49RyVJkgQiIiIZqEUHICIi5WLJEBGRbFgyREQkG5YMERHJhiVDRESyYckQEZFsWDJERCQblgwREcmGJUNERLJhyRARkWxYMkREJBuWDBERyYYlQ0REsmHJEBGRbFgyREQkG5YMERHJhiVDRESyYckQEZFsWDJERCQblgwREcmGJUNERLJhyRARkWxYMkREJBuWDBERyYYlQ0REsmHJkMNr3rw5li1bJjoGkSKxZIiISDYsGbJ5VVVVoiMQ0T1iyZDF9evXD9OmTcMrr7wCPz8/hISEYP78+TWPp6enY+TIkfDw8ICXlxfGjh2La9eu1Tw+f/58dOjQAR999BHCw8Ph4uICAFCpVHj//ffx0EMPwc3NDdHR0Th48CCSk5PRr18/uLu7Iy4uDikpKTWvlZKSgpEjRyI4OBgeHh7o2rUrdu7cabWvBZGjY8mQLD799FO4u7vj8OHDWLRoERYsWIAdO3bAaDRi5MiRyMvLw969e7Fjxw6kpqZi3LhxtT4+OTkZ69evx4YNGxAfH19z/I033sCECRMQHx+PqKgojB8/HlOmTMG8efNw9OhRSJKEF154oeb5JSUlGDZsGHbt2oUTJ05gyJAhGD58ONLT0631pSBybBKRhfXt21fq1atXrWNdu3aV5syZI23fvl3SaDRSenp6zWNnzpyRAEhHjhyRJEmSXnvtNUmn00nZ2dm1XgOA9Le//a3m/YMHD0oApNWrV9cc++qrryQXF5c75mvTpo303nvv1bzfrFkzaenSpWb/OYno7jiSIVnExsbWej80NBTZ2dlITExEWFgYwsLCah6LiYmBj48PEhMTa441a9YMgYGBd3zd4OBgAEC7du1qHauoqEBRUREA00hm9uzZiI6Oho+PDzw8PJCYmMiRDJGVaEUHIGXS6XS13lepVDAajfX+eHd397u+rkqluu2x3z/X7NmzsWPHDrzzzjuIjIyEq6srxowZw4sJiKyEJUNWFR0djYyMDGRkZNSMZs6ePYuCggLExMRY/PPt378fEydOxOjRowGYRjYXL160+OchorrxdBlZ1cCBA9GuXTs8/vjjOH78OI4cOYIJEyagb9++6NKli8U/X8uWLWsuHjh58iTGjx9v1oiKiBqGJUNWpVKp8N1338HX1xd9+vTBwIEDERERgTVr1sjy+ZYsWQJfX1/ExcVh+PDhGDx4MDp16iTL5yKiW6kkSZJEhyAiImXiSIaIiGTDkiEiItmwZIiISDYsGSIikg1LhoiIZMOSISIi2bBkiIhINiwZIiKSDdcuI7oDSZKQW1qF3JIqFFdUo7hSj+IKPUoq9CiprDb9vlKPSr3xt+cDgARJMv1eguleZxedBm5OWng4//6rFm7OGrg7a+HlokWghwuCvJzhotOI+8MSyYAlQw5NbzDiYm4ZUq6XIDO/HFcKfnsrrEB2UQVySipRbbDeohjerjoEezkj2MsFQZ4uCPZyRmNfV0QEeKBFkDuCPF2sloXIErisDDmESr0BKdmlSL5eguRrxUjKLkFydgku5pZatUQaytNFi4hAD7QIdEeLQA+0CPRAm0ZeCPNzEx2NqE4sGVKk9NwynMjIx4n0ApxIz0diVjGqDMpdfdnf3QmxTbwR28QHHcJ8ENvEG/4ezqJjEbFkyP4ZjBLiM/JxKDUPxy/lIz6jALml3JSsia8rOjb1RVwLf/SKDOBoh4RgyZBdSs8tw96k69iXdB0HUnJRXKEXHcnmhfm5oldkAHpGBiCuRQD83J1ERyIHwJIhu1CpN+CXCznYfT4bvyTlID2vTHQku6ZSATGhXujfOgiD2gQjtomP6EikUCwZslkV1QbsOX8dWxKy8NO5bJRUcrQil1BvFwyKCcaQtqHoFu4HtVolOhIpBEuGbEp5lQG7z2djS0IWdp/LRmmVQXQkhxPg4YwhbYMxPLYRukX4i45Ddo4lQzbh2KU8rPk1Az+cymKx2JBm/m4Y06kJxnRpglBvV9FxyA6xZEiY3JJKbDh+GWuOZiA5u0R0HLoDtQroGRmAR7uEYXCbYDhruTIB1Q9LhqxKkiT8nJSDNb+mY+fZbEXfu6JU3q46jOrQCE/FNUdEoIfoOGTjWDJkFRXVBmw4fhkf7UtF6vVS0XHIAlQqoH/rIPy5VzjiIgNExyEbxZIhWeWWVOKzg5fwv0OXeIOkgkWHeuHpns0xskNjOGm5uDvdwJIhWaRcL8FHv6Rhw/HMmhWKSfkCPJwxoUczTOzZHF4uOtFxyAawZMiikrNLsHTnBWxJyAL/ZTkuLxctnukVgad7NYcny8ahsWTIIjLyyrB05wV8F38FBiP/SZGJj5sOk3tHYGJcc7g7c2cRR8SSoQbJKizH8l3JWHcsw66WzCfr8nN3wuTeEXgqrhncnFg2joQlQ/ckv7QKy39KwheH01HFOReqpwAPZ8we1Apju4Rx6RoHwZIhs1QbjPjs4CW8u/MCirjyMd2jNo288NrwNrgv3E90FJIZS4bqbff5bLyx+SzvcyGLGdYuBPOGRnOvGwVjydBdZeSV4fXvz2Jn4jXRUUiBnLVq/Ll3OKb2i+TFAQrEkqHbqjYYsWpPClbuTua9LiS7xj6ueHN0W/RvHSQ6ClkQS4bqlJBZiJfXncS5q8Wio5CDGdWhEV4b3ga+3LlTEVgyVEul3oClO5Lw4S+pvN+FhPF3d8Lfh8dgZIfGoqNQA7FkqMaxS/l4Zd1JpHBin2zE/VFBeHN0W+5lY8dYMoSKagMWbT2PTw6kgYMXsjWezlq8ObotRzV2iiXj4C5cK8YLXx7HhWvcNIxs28OdGuONkW15BZqdYck4sC8Pp2PB5jOoqOaVY2Qfmvu7YfmfOiK2iY/oKFRPLBkHVFRRjXkbEvDDqSzRUYjMptOoMGtQa0zpEwGVikvT2DqWjIOJzyjAi18dR0ZeuegoRA3SKzIAS8d1QKCns+godAcsGQeyel8aFv6YyNWSSTFCvV3w/pOdefrMhrFkHECl3oC/bjyNdccyRUchsjhnrRr/HN0Oj3RuIjoK1YElo3DZxRV47vNjOJ5eIDoKkawmxjXH3x6MhlajFh2FbsKSUbBTmQWY8vkxZBVWiI5CZBVxLfyxYnwn+HFJGpvBklGo7+IvY876U7w8mRxOE19XfPRUF0SFeImOQmDJKNLSHRfw7q4k0TGIhPF00eL9JzojLjJAdBSHx5JREKNRwt++O40vD6eLjkIknE6jwqIxsRjdkRcEiMSSUYhKvQHTv4rH1jNXRUchshkqFTB3SBSm9G0hOorDYskoQHFFNSZ/dhSHUvNERyGySZN7h+Mvw6K5QoAALBk7l11cgYn//RVns4pERyGyaQ93aoy3x7SHRs2isSaWjB3LzC/D+A8PIz2vTHQUIrvwYGwo3h3XgffSWBHXzLZTlwvK8dgHh5CZzzXIiOrrh1NZgAS8+xiLxlr4VbZDVwrK8ScWDNE9+SEhC9O/jofewHvIrIElY2eyCsvxpw8P8RQZUQP8kJCFaV+fYNFYAUvGjlwrqsCfPjiES7ksGKKG2pJwlUVjBSwZO5H9W8FcZMEQWcyWhKuYsSYeRiOvf5ILS8YOFJZX48nVR5CaUyo6CpHibD6VhQWbz4qOoVgsGRtXqTfg2c+O4vy1YtFRiBTrkwMXsXJ3sugYisSSsWGSJGHmmpM4nMY7+Ynk9va281h7NEN0DMVhydiwBZvP4oeELNExiBzGXzYk4Kdz10THUBSWjI364OcUfLz/ougYRA5Fb5Tw/BcncOxSvugoisGSsUGbTl7Bv348JzoGkUMqrzZg8mdHkZnPKzktgSVjY05lFuDlb06CK8oRiZNXWoXJnx1DeZVBdBS7x5KxITkllXju82Oo1PPmMCLRErOKMHvdSdEx7B4XyLQReoMRz39xHFcKK0RHsVsF+75A4f6vah3T+jVB48n/AQDkbl2BikvxMJTkQaVzgXPjaPj2mwidf1i9Xj932wqUxG+F74DJ8Oo6stZjZSm/onD/V6i+fhEqjQ7OTdsh6OG/AQAM5cXI/WEJKtIToPVthIBh0+EUfGMTrdztq6DzCYbXfQ835I9PMvjhVBZiQpPxfP9I0VHsFkvGRrz5QyIvVbYAXUBTBI/7x40D6huDdaeQSLi36QetVyAM5cUo3P8lrq35Oxo/9xFUas0dX7fswgFUXjkPjYffLY+Vnt+PvK3vwafPBLg0aw/JaED19Us1jxceXANjVTlCJ76L4hNbkLv1PYQ+tQwAUHn5HKqyzsNv4LMN+4OTbBZvP4+oEE/cHx0sOopd4ukyG7DuWCY+OXBRdAxlUGug8fC98ebmXfOQZ4chcAlrC613MJxDIuHT+0kYiq9DX5h9x5fUF+cgb8f7CHhoNqCu/XOZZDQgf+cH8On3NDw7DoPOrzGcAprCPbp3zXOqczPgHt0HOr/G8Gw/BNW5pnsxJIMeudtXwm/Q83ctORLHKAEzvo5HcnaJ6Ch2iSMZwRIyC/HXjQmiYyiGPv8KMldOgEqjg1PjKPj2fQpar6BbnmesqkBJwk5ovYOh9Qq47etJkhE5m5fAq9vDcApsdsvjVVeTYSjJhUqlwpWPp8FYmg9dUAR8+0+CU2BzAIBTUDgqLp2CR/vBKE87Dt1vx4sOr4dLWDs4h7a0yJ+d5FNcqcdz/zuG71/oBVcn/kBgDo5kBCqqqMbULznRbynOoa3hP+wlBD36OvwGTYWh4BqufjEHxsobl6IWH/8B6UvGIGPpGJSnHkPQuDeh0uhu+5pFh9ZBpdbAs/OIOh/XF1wFABTs/xLeceMQOOY1qF08cO2rv8BQbloKyLv7o4Bag8vv/xllSQfhP3Q6qvMuo+T0Lnj3fAy521bg8n+ewfVvF8JYyfXpbFVydgkWbD4jOobdYckI9JcNCcjI48ZjluLaogvco3rBKSgcrhGdEfTofBgrSlF6bl/Nc9zb9EPoxHcRPH4hdH6NkPPdQkj6qjpfr/JqMoqObYL/sBlQqW63L7zpWnPvHuPg3ronnEMiETBsBgCg7Lzp86qd3RE44mU0+b+PETJ+IZwCmiJ320r49n8apWf2QF9wDY0mvw+VzhkFf7hwgWzLV0cyTLtrUr2xZARZ82s6NvMfq6zULh7Q+TWGvuDKjWPO7tD5NYZLWFsEjpqH6rxMlF04WOfHV2acgbG0EJdXTcKlRSNwadEIGIqykb97NTJXPQ0A0LibLgTQBdy4Qk2l1UHrEwJ90fU6X7fk1A6oXdzh1rI7KjIS4NayO1QaLdyieqEynadObd28Dad4o6YZOCcjQOr1Erz+PZcWl5uxqhz6gixo3PvX/QTJ9CYZqut82L1tf7g0b1/rWPbav8O9zQB4tBsIwHTFGjQ6VOdehkuTNqaXNeihL8yucy7IUFaIggNfI+Txt34LaYRk1P/2oB6SxFOntq6oQo9pX53A2ik9oNXw5/S7YclYmd5gxEtr4lHGO4ktLv+n1XCNvA9a7yDoi/NQuO8LQKWGe0xfVBdcRVniz3AJ7wSNmxf0RbkoOvwNVFonuEZ0qXmNyx8+B9++E+DWKg4aVy9oXL1qfxK1Fhp3X+j8m5jedXaDZ4ehKNz3BbReAdB6BaHoyAYAgFtUr1sy5u36AF5dR0HrabrYwLlJNErP7IZr804oPrkVzo1jZPrqkCUdTy/Asp1JmD24tegoNo8lY2XLdibhZGah6BiKpC/OQc73b8NQXgSNqzecm8Qg5MnF0Lh5QzLoUZF5BkVHN8FYUQKNuw+cw9og5Im3oXH3ufEaeZm1LhSoD9/+T0Ol1iBn8xJI+ko4h7ZG8GP/gMbFo9bzylOPQZ+fhYCHZtUc8+z0EKqykpH1+Uw4h7aCT88/NehrQNbz7z3J6Ns6EF2b33rvFN2gkiSukmUtJzMK8PCqAzBwq1ciRYgIcMeW6b3houNlzbfDE4pWUm0wYs76UywYIgVJzSnFsp1JomPYNJaMlby/NwXnrnILZSKl+fCXVCTwFPhtsWSsIOV6CZb/xP3DiZTIYJTw8rqTqDbwysC6sGRkJkkS5q1PQBXv6idSrHNXi7FqT4roGDaJJSOzLw6n48hFrq5MpHQrfkpG0jWeEv8jloyMsosq8NZWbqNM5AiqDEa8tolrm/0RS0ZGC7eeQ3GFXnQMIrKSAym52Hqay0XdjCUjk1OZBdh44rLoGERkZf/YkohKPVf0+B1LRiYLvj8L3uZK5Hgy8srx0S9pomPYDJaMDDafuoKjl/JFxyAiQf69OxnXiipEx7AJLBkLq6g2YOGPnOwncmSlVfw+8DuWjIWt3peGzHxuREbk6L6Nv4z4jALRMYRjyVhQbkkl/r2bd/YTESBJwOLt50XHEI4lY0Hv/5yKUu4TQ0S/+SUpB786+M3YLBkLySmpxOcHL4mOQUQ2xtFHMywZC3l/bwrKqzmKIaLaDqXm4UBKjugYwrBkLOB6cSX+dyhddAwislFLtl8QHUEYlowFcBRDRHdy9FI+9l64LjqGECyZBrpeXIkvDnMUQ0R3tmynY45mWDIN9NEvqRzFENFdnUgvwJE0x7vSjCXTAKWVenx1hKMYIqqfD352vI3NWDINsO5YJoq4lD8R1dOuc9lIznasjc3MLpmtW7di3759Ne+vXLkSHTp0wPjx45Gf7ziLQkqShE8OXBQdg4jsiCQBq/ddFB3DqswumZdffhlFRUUAgISEBMyaNQvDhg1DWloaZs6cafGAtuqnc9lIyykVHYOI7MzGE5koKKsSHcNqzC6ZtLQ0xMTEAADWr1+Phx56CP/85z+xcuVK/PjjjxYPaKv+u5/7RRCR+SqqjfjSgeZyzS4ZJycnlJWVAQB27tyJQYMGAQD8/PxqRjhKd/5qMfYn54qOQUR26vODl2AwOsauhlpzP6BXr16YOXMmevbsiSNHjmDNmjUAgAsXLqBJkyYWD2iLOBdDRA2RVViBny9cR/+oINFRZGf2SGbFihXQarVYt24dVq1ahcaNGwMAfvzxRwwZMsTiAW1NeZUB35+8IjoGEdm5Nb9miI5gFSpJ4k705thwPBMz154UHYOI7JxOo8KheffD38NZdBRZmX26DACMRiOSk5ORnZ0No9FY67E+ffpYJJitWncsU3QEIlKAaoOEjScu48+9I0RHkZXZJXPo0CGMHz8ely5dwh8HQSqVCgaDcpdYycwvw8FUTvgTkWWsPZqh+JIxe07mueeeQ5cuXXD69Gnk5eUhPz+/5i0vT9nr8qw/dhk8uUhElnLhWglOpCv7JnazRzJJSUlYt24dIiMj5chjsyRJwvrjPFVGRJa19mgmOjb1FR1DNmaPZLp164bk5GQ5sti0I2l5SM8rEx2DiBRm6+ks6A3Guz/RTpk9knnxxRcxa9YsXL16Fe3atYNOp6v1eGxsrMXC2ZIfErJERyAiBcovq8ah1Dz0ahkgOooszL6EWa2+dfCjUqkgSZJiJ/4lSUKPf/2Eq0UVoqMQkQI93q0p/jG6negYsjB7JJOW5nhrdp3MLGTBEJFstp25hjdGtoVarRIdxeLMLplmzZrJkcOmbT19VXQEIlKwnJJK/HoxD90i/EVHsbh7uhkzJSUFy5YtQ2JiIgAgJiYG06dPR4sWLSwazlZsP8OSISJ5/Xj6qiJLxuyry7Zt24aYmBgcOXIEsbGxiI2NxeHDh9GmTRvs2LFDjoxCJV0rRir3jSEimW07c/WWG9yVwOyJ/44dO2Lw4MFYuHBhreNz587F9u3bcfz4cYsGFO29XUlYvOOC6BhE5AA2v9gLbRt7i45hUWaPZBITE/HMM8/ccvzpp5/G2bNnLRLKlvx0Plt0BCJyEL8k5YiOYHFml0xgYCDi4+NvOR4fH4+gIGXtjVBcUY1TmYWiYxCRg9iXfF10BIsze+J/8uTJePbZZ5Gamoq4uDgAwP79+/HWW29h5syZFg8o0uHUPIfZvY6IxPv1Yj4qqg1w0WlER7EYs0vm1VdfhaenJxYvXox58+YBABo1aoT58+dj2rRpFg8o0v4U5Q1dich2VemN+PViHnq3DBQdxWIatGlZcXExAMDT09NigWzJ4KU/4/y1YtExiMiBTOkTgXnDokXHsBiz52Ru5unpqdiCySmpxIVsFgwRWZfSJv/rdbqsU6dO2LVrF3x9fdGxY0eoVLdf+kAplzAfSMnl3jFEZHWJV4uQV1oFP3cn0VEsol4lM3LkSDg7O9f8/k4loxQHOR9DRAJIEnAiPR/3RweLjmIRDZqTUbJBS/fiwrUS0TGIyAFNGxCJmYNai45hEWbPyURERCA399Z97gsKChARoYy9qksq9UjOZsEQkRgnMgpER7AYs0vm4sWLde4ZU1lZicxMZWxPfCqzALw9hohEOZVZqJh1zOp9n8ymTZtqfr9t2zZ4e99YX8dgMGDXrl0IDw+3bDpBTmbwLn8iEqewvBppOaWICPQQHaXB6l0yo0aNqvn9U089VesxnU6H5s2bY/HixRYLJlLC5QLREYjIwZ3MLHCskjEajQCA8PBwHD16FP7+ytv34HenLxeJjkBEDi4+vQCjOzYRHaPBzJqTqa6uRkREBPLy8uTKI1xheTXS88pExyAiB3f6ijJ+2DWrZHQ6HU6dOiVXFptwLksZf7FEZN9SrivjClezry574oknsHr1ajmy2ATugklEtqCgrBo5JZWiYzSY2asw6/V6/Pe//8XOnTvRuXNnuLu713p8yZIlFgsnQqpCfnogIvuXnF2CAA9n0TEaxOySOX36NDp16gQAuHCh9rbESlhuJvU6RzJEZBuSs0vQPcK+L7Iyu2R2794tRw6bkcbTZURkI5QwL9Ogpf4zMzMVc5c/AFQbjLyyjIhshhKWtzK7ZIxGIxYsWABvb280a9YMzZo1g4+PD954442ae2nsVXpeGfRcT4aIbESKAkrG7NNlf/3rX7F69WosXLgQPXv2BADs27cP8+fPR0VFBf7xj39YPKS1pHE+hohsyNWiCugNRmg1DTrpJJTZJfPpp5/io48+wogRI2qOxcbGonHjxpg6dapdl0xmPk+VEZHtMErA9ZJKhHq7io5yz8yux7y8PERFRd1yPCoqyu5XAsgutv9r0olIWa4WVoiO0CBml0z79u2xYsWKW46vWLEC7du3t0goUVgyRGRrrhXZd8mYfbps0aJFePDBB7Fz50706NEDAHDw4EFkZGRgy5YtFg9oTSwZIrI1DjeS6du3Ly5cuIDRo0ejoKAABQUFePjhh3H+/Hn07t1bjoxWk23nPzEQkfJcLbLvH37NHskAQKNGjex6gv92rnMkQ0Q25mphuegIDXJPJZOfn4/Vq1cjMTERABATE4NJkybBz8/PouGsqdpgRF5ZlegYRES1XLPzkYzZp8t+/vlnNG/eHMuXL0d+fj7y8/OxfPlyhIeH4+eff5Yjo1XkllRBIVtqE5GCFFdWi47QIGaPZJ5//nmMGzcOq1atgkajAQAYDAZMnToVzz//PBISEiwe0hqKK+z7L5KIlKm00iA6QoOYPZJJTk7GrFmzagoGADQaDWbOnInk5GSLhrOm0ir7/oskImUqrtCLjtAgZpdMp06dauZibpaYmGjX98mUVdn3XyQRKVNppX1/bzL7dNm0adMwffp0JCcno3v37gCAQ4cOYeXKlVi4cGGt7ZljY2Mtl1RmZXY+JCUiZSqvNsBglKBR2+d+XSpJMm+6W62+8+BHpVJBkiSoVCoYDPbzjXvTySuY9tUJ0TGIiG5x8rVB8HbViY5xT8weyaSlpcmRQ7gyOx+SEpFylVbqHadkmjVrJkcO4TjxT0S2qsyOvz/d082YKSkpWLZsWa2bMadPn44WLVpYNJw1Vert9y+RiJTNaMc38Zl9ddm2bdsQExODI0eOIDY2FrGxsTh8+DDatGmDHTt2yJGRiMih2XPJmD2SmTt3Ll566SUsXLjwluNz5szBAw88YLFw1qRW2eeVG0SkfAY73hbe7JJJTEzE2rVrbzn+9NNPY9myZZbIJISdXh1INkKjMuJ+/3wM9s5AR1USgivToDbyYhKyDLX6vwC8Rce4J2aXTGBgIOLj49GyZctax+Pj4xEUFGSxYNamAluG6q+pawVGBV5BT+eLaFWdCJ/8U1CVFAMlopORIqnsd87Y7JKZPHkynn32WaSmpiIuLg4AsH//frz11luYOXOmxQNaC8+W0e3o1BIe8M/FIK90dFAloVFJAnQFaVBl2+8pDLIz6nu6RssmmJ381VdfhaenJxYvXox58+YBMO0vM3/+fEybNs3iAa2FczL0uxZu5RgVeAVxTqmIrEqEV34CVMWlQLHoZOSw1Jq7P8dGmVUyer0eX375JcaPH4+XXnoJxcWm/3Wenp6yhLMmzsk4Jme1EUMCc/CAZzpicQGhxaehK7wIXBOdjOgmjjKS0Wq1eO6552ruj1FCufzOSWu/PylQ/UV5lGGE/2X0cE5Fi4qz8Mw/A1VhGVAoOhnRHThKyQDAfffdhxMnTijuzn9PF/v9S6S6uWoMeDAwB/d7XEQ7JCGk8BS0xZkcpZD9cZTTZQAwdepUzJo1C5mZmejcuTPc3d1rPW5PKy/fzMtO1wWiG9p5lmK4fya661IRUXkW7nlnoCqoAApEJyNqIGf7PWtkkVWY7XXl5ZsdT8/Hw/8+IDoG1ZO71oDhgdkY4H4JbaULCC48BU3JFdGxiCzPyQP4y2XRKe4ZV2H+jRdPl9m0Tt7FeMgvE/dpUxBecRZueWehyq8C8kUnI5KZe6DoBA3CVZh/4+nC02W2wlunx4jAa+jvfgkxhvMILDwFTek1IEt0MiIBPIJFJ2iQe/rx/fz583jvvfdqrjKLjo7Giy++iNatW1s0nDV5sWSE6eZThAd9M9BVm4Jm5WfgmncOqrxqIE90MiIb4GG/K6kA91Ay69evx2OPPYYuXbqgR48eAEzbL7dt2xZff/01HnnkEYuHtAZXJw10GhWqDbyLW07+TtUYGXgVfd0uItpwAQEFJ6Euy+Eoheh27LxkzJ74b9GiBR5//HEsWLCg1vHXXnsN//vf/5CSkmLRgNbU/Z+7cLWoQnQMRentV4ChPhnorElG07KzcMk7B5VknxeHEAnR/69A31dEp7hnZo9ksrKyMGHChFuOP/HEE3j77bctEkqUUB8XlkwDBDlXY1RgFvq4piHKcB5++aegLssDykQnI7Jjjjbx369fP/zyyy+IjIysdXzfvn3o3bu3xYKJ0MjbFSd4U0W9qFQS+vnmY4hPJjprktCk9Ayc8y9AlWMUHY1IWRxt4n/EiBGYM2cOjh07hu7duwMwzcl88803eP3117Fp06Zaz7Unod4uoiPYrMYulRgZkIXerhfRujoRPgUJUJcVcJRCJDc7LxmL3IxZ5wvb4Y2Zq/el4Y3NZ0XHEM60AVcBBntfQkdVMhqXnoZTfjJU4EURRFY3IwHwaSo6xT0zeyRjNCr3dEgjBx3JNHWtwOjAK+jpnIaW1ee4AReRLbHzkQxvc79JqI+r6Aiy4wZcRHbExRvQOotO0SAsmZs08lHeSIYbcBHZMc9Q0QkajCVzkyBPF3i6aFFcoRcd5Z5wAy4ihQmKFp2gwVgyf9Aq2BPHLtnHqovcgItI4ULaiU7QYCyZP2gZ5GGTJcMNuIgcULADlsyWLVug0WgwePDgWse3bdsGo9GIoUOHWiycCC2DbWNzoHaepRjhn4luuhREVCZyAy4iR+SII5m5c+di4cKFtxyXJAlz5861/5IJ8rD653TXGjAi8BoGuKejrXQeQYUJpg24rlo9ChHZCrcAwMsBJ/6TkpIQExNzy/GoqCgkJydbJJRIrawwkvl9A65u2hQ0Lz8Dt/xEbsBFRLWFtBWdwCLMLhlvb2+kpqaiefPmtY4nJyfD3d3dUrmECfG27BVm3ICLiO6JAk6VAfdQMiNHjsSMGTOwceNGtGjRAoCpYGbNmmV3a5XdTlSIJ369eG/DCm7ARUQWoYBJf+AeSmbRokUYMmQIoqKi0KRJEwBAZmYmevfujXfeecfiAUWIbeJTr5LhBlxEJBtHHcl4e3vjwIED2LFjB06ePAlXV1fExsaiT58+cuQTokOYT53H69yAK9cA5Fo3HxEpnMYZCGglOoVFmL0KsyPIyCvDI+9ux6jAK+jjehFR+nPwK0iAupznvIjICkLbA1N+Fp3CIuo1klm+fDmeffZZuLi4YPny5Xd87rRp0ywSTKQwPzcc9poLVQ7PexGRAAo5VQbUcyQTHh6Oo0ePwt/fH+Hh4bd/MZUKqampFg0ozNoJwNnvRKcgIkc0dBHQbYroFBZRr5FMfHw8vL29AQBpaWmyBrIZTXuwZIhIjOa9RCewmHptc+nn54fs7GwAwIABA1BQUCBnJtvQtIfoBETkiDwbAcFtRKewmHqVjIeHB3JzTZdQ7dmzB9XV1bKGsgkh7QAn21jHjIgcSOQA0Qksql6nywYOHIj+/fsjOtq0t8Ho0aPh5ORU53N/+ukny6UTSa0Bwu4DUnaJTkJEjiTyAdEJLKpeJfO///0Pn376KVJSUrB37160adMGbm5ucmcTr1kcS4aIrEetBVr0F53Coup1dVlRURG8vLwAAP3798fGjRvh4+MjdzbxriYA/1HOBBwR2biw7sAz20SnsKh6zcn4+vrWTPyrVCpZA9mUkHaA7+0v2SYisqjIgaITWJzZE/979+51jIn/30U/JDoBETmKyPtFJ7A4syf+JUlyjIn/30WPAA68JzoFESmdWwDQqKPoFBbHif+7adIV8AgBSrhNJRHJqMUAQIHTEWYvkOlQE/+/2zwTOLpadAoiUrLRHwDtx4lOYXFchbk+UnYDn48SnYKIFEsFvJwMuAeIDmJxZu8nA5g2Kdu0aRPS09NRVVVV67ElS5ZYJJhNad4bcPUFyu9tt0wiojtq1FGRBQPcQ8ns2rULI0aMQEREBM6dO4e2bdvi4sWLkCQJnTp1kiOjeBot0GoIcPIr0UmISIlix4pOIJt6XcJ8s3nz5mH27NlISEiAi4sL1q9fj4yMDPTt2xePPvqoHBltQ/Rw0QmISIk0TkA7lkyNxMRETJgwAQCg1WpRXl4ODw8PLFiwAG+99ZbFA9qMFvcDOnfRKYhIaVoNAdz9RaeQjdkl4+7uXjMPExoaipSUlJrHcnJyLJfM1uhcgJbKuxuXiATr+KToBLIye06me/fu2LdvH6KjozFs2DDMmjULCQkJ2LBhA7p37y5HRtsRM5IbmRGR5Xg2UuRd/jczu2SWLFmCkpISAMDrr7+OkpISrFmzBi1btlTmlWU3ixoOuAcCpddFJyEiJWj/mGlbEQUz6z4Zg8GA/fv3IzY21rFuxrzZrjeAX94RnYKIlODF44B/C9EpZGXWnIxGo8GgQYOQn+/A94t0fca05wMRUUM0jVN8wQD3MPHftm1bpKamypHFPng1AqIeFJ2CiOxdxydEJ7AKs0vmzTffxOzZs7F582ZkZWWhqKio1ptDuG+K6AREZM+cPIE2o0SnsAqz1y5Tq2/00s0bmEmSBJVKBYPBYLl0tmxVT+DaadEpiMgedXwSGLlCdAqrMHtyYffu3XLksD/3TQa+ny46BRHZI4XfG3Mzs0smPDwcYWFht2zDLEkSMjIyLBbM5rUbC+x4DagoEJ2EiOxJcFugaTfRKazG7DmZ8PBwXL9+630ieXl5CA8Pt0gou+Dk5jATd0RkQX1mi05gVWaXzO9zL39UUlICFxcXi4SyG13/DKjM/hISkaMKjAZiRolOYVX1Pl02c+ZMAKbJ/ldffbXW9ssGgwGHDx9Ghw4dLB7QpvmFAy0HARe2ik5CRPagz2xFbrF8J/UumRMnTgAwjWQSEhLg5ORU85iTkxPat2+P2bMdaxgIwHQBAEuGiO7GvyXQ5mHRKazO7EuYJ02ahHfffRdeXl5yZbIvkgR82B+4ckJ0EiKyZaP+A3T4k+gUVmd2yVAdUvcAn40UnYKIbJVvOPDiMcUvhlkXzlpbQkQ/IKK/6BREZKt6z3LIggFYMpYzcD4Ax5rQI6J68GlqWtLfQbFkLKVRB6DNaNEpiMjW9HoJ0OhEpxCGJWNJA/4GqB33HxMR/YFXE6CDY9+0zZKxJP8WQKcJolMQka3oNQPQOt31aUrGkrG0fnMBnbvoFEQkmk9Th1oI83ZYMpbmEQT0mCo6BRGJNnQRoHOwpbbqwJKRQ9w0wM1fdAoiEqX1MKD1UNEpbAJLRg4uXqbr4onI8ejcgKFviU5hM1gycuk62XROlogcS5/Z/L9/E5aMXLROwLB3RKcgImsKaG06XU41WDJyajUYiB0nOgURWcuD7zj0jZd1YcnIbchCwCNYdAoiklu7R4HwPqJT2ByWjNzc/IAHF4tOQURycvYGBv1DdAqbxJKxhujhDrlZEZHDGPBXwJNnLOrCkrGWYW/z3hkiJQptD3T9s+gUNoslYy3uAaaiISLlUKmBB5c47F4x9cGSsaa2jwBRD4lOQfdg4b5KqF4vwoytFbWOH8zQY8CnpXD/ZxG8/lWEPh+Xorz69pvNzt9TAdXrRbXeolaU1PlcSZIw9ItSqF4vwrfnqmuO55VLGP5VGTz+WYSO75fgRJah1sc9/0M5Fh+obMCfluqt9yygSRfRKWyaVnQAh/PQUuDSfqA8X3QSqqdfLxvw/rEqxAbX/pnsYIYeQ74ow7xeznhvqAu0auDkNSPUd9m7rk2gGjsnuNW8r73Nj3rLDlVBVcdGeP/4uRLFlRKOT3HHql+rMfn7chx91gMAcChTj8OXDVg+lGtmya5ZT6DfPNEpbB5HMtbmEWS6rJnsQkmVhMc3lOPD4a7wdan9Df+lbZWYdp8T5vZyRpsgDVoHaDC2jQ7O2ju3jFYNhHioa94C3G79bxh/1YDFB6vw35G3lkVijhGPtdWhlb8Gz3bWITHHCACoNkh4bnMF/vOQKzR3azpqGDd/4JGPeJqsHlgyIrR/DGg5WHQKqofnt1TgwZZaDIyoPejPLjXi8GUDgtzViFtdiuB3itH3k1LsS9ff9TWT8oxotLgYEe8W4/ENZUgvNNZ6vKxawvj15Vg5zAUhHrf+F20frMZPaXrojRK2pegRG2z6RrdofxX6NdeiSyN+45OXChj1H8CrkeggdoElI8qI9wDPUNEp6A6+Pl2N41kG/Gug8y2PpeabimH+3kpM7qTD1sfd0ClEg/s/K0NSruGW5/+uW2MNPhnpiq1PuGHVg65Iy5fQ++NSFFfemMd5aWsF4sI0GBlV953jc3s5Q6sGWiwvwcZzeqwe4YKkXAM+PVmNV/s44bnN5Yh4txhjvylDYcXt54foHsW9CLQaJDqF3WDJiOIZDIz9HNA49q55tiqj0IjpWyvwxcOucKnj9Jfxt+/dUzrrMKmjEzqGarB0iAta+6vx3xPVtzz/d0Nb6vBoGx1igzUYHKnFlsfdUFAhYe0Z08dsOl+Nny4asGzI7edUvF1U+PIRN1ya4Ym9E90RE6jBlM0VePsBZ3yRUI3UfCPOv+ABN50KC/byAgCLanIfcP9rolPYFU78ixTW1bSI5vdcUM/WHMsyILtUQqf3S2uOGSTg50sGrDhShfMvmCbaYwJr/5wWHahGelHt01934uOiQit/NZLzTB/zU5oBKXlG+CwsrvW8R9aWo3fTKuyZeOuuqx+fqIKPiwojo3R4eE0ZRkXpoNOo8GiMFn/fw5KxGBcfYMxqQMNvm+bgV0u0zk8BV44Dxz4RnYRucn+4Fgn/V/sb+qTvyhEVoMGcnk6I8FWhkacK53NqF8qFXCOGRtb/v1VJlYSUPCOejDWNlub2csKfO9U+TdZuVSmWDnbG8Fa3nj67XmrEgp8rsW+SKatBMl0AAADVRsBQ/76juxm5kkv43wOWjC0Y+jaQnQhkHBadhH7j6axC26DaE+juOhX8XW8cfznOCa/tqUT7EA06hGjwaXwVzuUYse7RG6dA7/+sFKOjdHjhPtOx2dsrMLyVFs181LhSbMRreyqhUavwp7amAjFdcXZrnqbeaoT73np2e8a2Cszq4YzGXqbHeoZp8PmpagxqocUHx6rRM4wXAVjEfVOAaN7jdi9YMrZA6wSM/Qx4vy9QclV0GqqnGd2dUaEHXtpWgbxyCe2DNdjxpBta+N0og5Q8I3LKbgwnMouM+NP6cuSWSwh0U6FXUw0OPeOOQHfzp0e3JeuRnGfE56NvjHBeuM8JR68Y0O2jUtzXWIPX+vF+mQYL7QAMelN0CrulkiSJl5/YiowjwCcPAoYq0UmICDCtrjxlD+AXITqJ3eLVZbYk7D7uDU5kK9Q6YOynLJgGYsnYmi5PA52eEp2CiIYvA1r0F53C7rFkbNGwd4AmXUWnIHJcfV4BOj4hOoUisGRskdbJdKOmJ5etILK62MdMm5CRRbBkbJVXKPDUJsA9UHQSIsfRvLdpySeyGJaMLQtoCTz5LeDqKzoJkfKFtAMe+8J0JoEshiVj60LaAk9sAJy9RCchUi6/FsATGwEXb9FJFIclYw8adwIe/wbQ3bpuFRE1kGcjYMK3gAdPTcuBJWMvmnYH/vQloOUd3EQW4+oHPLmRa5LJiCVjTyL6mZafUde9zwgRmcHJA3h8HRAUJTqJorFk7E2rwablxlVc+JDonrn4mC6qadJZdBLFY8nYo5iRwOj/ACr+9RGZzSMEmPSjaT8nkh2/S9mr2LHAQ0tFpyCyL77hwDPbgOAY0UkcBpf6t2edJwKSEfhhNiDdfl95IgIQ1MY0ye8ZLDqJQ+FS/0pwfiuw7mmguvTuzyVyRGHdgPFrAVcf0UkcDktGKa7EA1+O46ZnRH8UOdC0FqCTm+gkDokloyQFGcAXjwLXE0UnIbINbR8BRr8PaHjZvygsGaWpKATWPAmk7RWdhEisLk8DwxYDal7fJBK/+krj4g08sR7o8LjoJETi9J5luvqSBSMcRzJKtuctYM8/Racgsh6tCzB0EdCZu8vaCpaM0p38Gtj0ImCoEp2ESF4+zUzLLjXqIDoJ3YQl4wjSfgHWPG6aryFSolZDTKtgcO8lm8OScRQ5ScDap4DsM6KTEFmOSmPaKrnXTEClEp2G6sCScSTV5cDWucCxT0QnIWo490BgzH+B8D6ik9AdsGQc0en1wPczgMoi0UmI7k3THsCYjwGvUNFJ6C5YMo4qLxX4ZhKQFS86CZF5erwADHwd0HDpRXvAknFk+ipg1+vAwZUA+M+AbJyzFzByhWmrC7IbLBkyXX327f8BhRmikxDVLaw7MOrfgH8L0UnITCwZMqkoBLa8Apz6WnQSohucvYGBr5mWiOHVY3aJJUO1nfkW2PwSUJ4nOgk5uujhwNC3Oblv51gydKvia8COV4FTa8G5GrI6r8bAsLeBqAdFJyELYMnQ7aUfBn58hVegkXWo1ECXZ0ynx5w9RachC2HJ0J0ZjcCJz4BdbwBlOaLTkFIFxQDD3wXC7hOdhCyMJUP1U14A7PkX8OtHgFEvOg0phdYF6DMb6DmDG4spFEuGzJOdaDqFlvaz6CRk7yIfAIa+xcuSFY4lQ/fm7HfAtr8Bhemik5C9Ce8D9P8b0LSb6CRkBSwZunfV5cC+ZcD+dwF9ueg0ZOvCuptWTOaClg6FJUMNV5QFHFxhWt25qkR0GrI1jToB/f8KtBwoOgkJwJIhyynPB458CBz+D1CWKzoNiRbcDuj/FyBqmOgkJBBLhiyvqgw48Tlw4D2uh+aIAloD/ecBMaO4FAyxZEhGBj2Q8I1pzuZ6oug0JLfAKNMOle0eBdRq0WnIRrBkSH6SBJz/Edi3FMg8IjoNWZLG2bT0fpdJQLM40WnIBrFkyLou7gf2LwOSdwKSUXQaulf+kUDnSUCH8YCbn+g0ZMNYMiRG0RXTqbRTa4Frp0WnofrQOAFRD5lGLbwMmeqJJUPiXT1t2scmYR1QnCU6Df2Rb3Og80SgwxOAR6DoNGRnWDJkO4xGIG0vcGoNkPg977kRSecGtHzAVC4R/XmVGN0zlgzZpqoy4NxmU+Gk7AYkg+hEyufZCGg9BGg11HQ6TOciOhEpAEuGbF/xNSBxk6lsLu4DKgtFJ1IIFdCog6lUWg8BQtuLDkQKxJIh+2I0AFfigbQ9QOpeIOMwoK8Qncp+aF2BiH6mUmk5mFsbk+xYMmTfqiuAjEOmwknbayognlq7Qa0FgqKBJl1NpRLRF9C5ik5FDoQlQ8pSXmA6pZa2F7h0AMi5ABiqRKeyDpUGCGgFNOp44y2kHedWSCiWDCmbQQ/kpZqWtck+d+PX3GTAWC06XQOoTDdE3lwoobGAk7voYES1sGTIMRmqgdyUm8rnt7fcZBvaXloFeAQBPk1rv/m3NE3Su3iJDkh0VywZopsZDUBZHlCeV/vXstybjuXf9Fiu6f3fi0mlMc2DqLWARnvj92otoNYAat1Nj+sAN3/AI9hUJjf/6hkKeDfhqS6yeywZIksw6E2lQkS1sGSIiEg23PSBiIhkw5IhIiLZsGSIiEg2LBkiIpINS4aIiGTDkiFyQBMnTsSoUaNq3u/Xrx9mzJhRr4/ds2cPVCoVCgoKZMlGysIL+4kIGzZsgE6nq9dz4+LikJWVBW9vb5lTkRKwZIgIfn5+9X6uk5MTQkJCZExDSsLTZUQ2rl+/fnjxxRcxY8YM+Pr6Ijg4GB9++CFKS0sxadIkeHp6IjIyEj/++CMAwGAw4JlnnkF4eDhcXV3RunVrvPvuu3f9HDefLqusrMScOXMQFhYGZ2dnREZGYvXq1QDqPl22fv16tGnTBs7OzmjevDkWL15c6/VVKhW+/fbbWsd8fHzwySefAACqqqrwwgsvIDQ0FC4uLmjWrBn+9a9/3dsXjGwKRzJEduDTTz/FK6+8giNHjmDNmjX4v//7P2zcuBGjR4/GX/7yFyxduhRPPvkk0tPTodPp0KRJE3zzzTfw9/fHgQMH8OyzzyI0NBRjx46t1+ebMGECDh48iOXLl6N9+/ZIS0tDTk5Onc89duwYxo4di/nz52PcuHE4cOAApk6dCn9/f0ycOLFen2/58uXYtGkT1q5di6ZNmyIjIwMZGRn1/fKQLZOIyKb17dtX6tWrV837er1ecnd3l5588smaY1lZWRIA6eDBg3W+xvPPPy898sgjNe8/9dRT0siRI2t9junTp0uSJEnnz5+XAEg7duyo87V2794tAZDy8/MlSZKk8ePHSw888ECt57z88stSTExMzfsApI0bN9Z6jre3t/Txxx9LkiRJL774ojRgwADJaDTW+TnJfvF0GZEdiI2Nrfm9RqOBv78/2rVrV3MsODgYAJCdnQ0AWLlyJTp37ozAwEB4eHjggw8+QHp6er0+V3x8PDQaDfr27Vuv5ycmJqJnz561jvXs2RNJSUkwGOq3S+nEiRMRHx+P1q1bY9q0adi+fXu9Po5sH0uGyA788covlUpV65hKpQIAGI1GfP3115g9ezaeeeYZbN++HfHx8Zg0aRKqquq3Q6irq+W3Z1apVJD+sBZvdfWNTeM6deqEtLQ0vPHGGygvL8fYsWMxZswYi+cg6+OcDJHC7N+/H3FxcZg6dWrNsZSUlHp/fLt27WA0GrF3714MHDjwrs+Pjo7G/v37b8nQqlUraDQaAEBgYCCysrJqHk9KSkJZWVmtj/Hy8sK4ceMwbtw4jBkzBkOGDEFeXp5ZV76R7WHJEClMy5Yt8dlnn2Hbtm0IDw/H559/jl9//RXh4eH1+vjmzZvjqaeewtNPP10z8X/p0iVkZ2fXeeHArFmz0LVrV7zxxhsYN24cDh48iBUrVuDf//53zXMGDBiAFStWoEePHjAYDJgzZ06tkdiSJUsQGhqKjh07Qq1W45tvvkFISAh8fHwa/PUgsXi6jEhhpkyZgocffhjjxo1Dt27dkJubW2tUUx+rVq3CmDFjMHXqVERFRWHy5MkoLS2t87mdOnXC2rVr8fXXX6Nt27b4+9//jgULFtS6smzx4sUICwtD7969MX78eMyePRtubm41j3t6emLRokXo0qULunbtiosXL2LLli1Qq/ktyt5x0zIiIpINf0wgIiLZsGSIiEg2LBkiIpINS4aIiGTDkiEiItmwZIiISDYsGSIikg1LhoiIZMOSISIi2bBkiIhINiwZIiKSDUuGiIhkw5IhIiLZsGSIiEg2LBkiIpINS4aIiGTDkiEiItmwZIiISDYsGSIikg1LhoiIZMOSISIi2bBkiIhINiwZIiKSDUuGiIhkw5IhIiLZsGSIiEg2LBkiIpINS4aIiGTz/73k42U4MqcWAAAAAElFTkSuQmCC\n",
382
- "text/plain": [
383
- "<Figure size 640x480 with 1 Axes>"
384
- ]
385
- },
386
- "metadata": {},
387
- "output_type": "display_data"
388
- }
389
- ],
390
  "source": [
391
  "print('number of classes:', df['labels'].nunique())\n",
392
  "print('')\n",
@@ -516,7 +454,7 @@
516
  },
517
  {
518
  "cell_type": "code",
519
- "execution_count": 4,
520
  "metadata": {
521
  "execution": {
522
  "iopub.execute_input": "2023-05-22T10:21:20.505401Z",
@@ -609,7 +547,7 @@
609
  },
610
  {
611
  "cell_type": "code",
612
- "execution_count": 5,
613
  "metadata": {
614
  "execution": {
615
  "iopub.execute_input": "2023-05-22T10:24:08.098032Z",
 
314
  },
315
  {
316
  "cell_type": "code",
317
+ "execution_count": null,
318
  "metadata": {
319
  "execution": {
320
  "iopub.execute_input": "2023-05-22T10:20:41.384744Z",
 
324
  "shell.execute_reply.started": "2023-05-22T10:20:41.384638Z"
325
  }
326
  },
327
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
328
  "source": [
329
  "print('number of classes:', df['labels'].nunique())\n",
330
  "print('')\n",
 
454
  },
455
  {
456
  "cell_type": "code",
457
+ "execution_count": 3,
458
  "metadata": {
459
  "execution": {
460
  "iopub.execute_input": "2023-05-22T10:21:20.505401Z",
 
547
  },
548
  {
549
  "cell_type": "code",
550
+ "execution_count": 4,
551
  "metadata": {
552
  "execution": {
553
  "iopub.execute_input": "2023-05-22T10:24:08.098032Z",
benchmark/NBspecific_5/NBspecific_5_reproduced.ipynb CHANGED
@@ -314,7 +314,7 @@
314
  },
315
  {
316
  "cell_type": "code",
317
- "execution_count": 3,
318
  "metadata": {
319
  "execution": {
320
  "iopub.execute_input": "2023-05-22T10:20:41.384744Z",
@@ -324,69 +324,7 @@
324
  "shell.execute_reply.started": "2023-05-22T10:20:41.384638Z"
325
  }
326
  },
327
- "outputs": [
328
- {
329
- "name": "stdout",
330
- "output_type": "stream",
331
- "text": [
332
- "number of classes: 23\n",
333
- "\n"
334
- ]
335
- },
336
- {
337
- "data": {
338
- "text/plain": [
339
- "labels\n",
340
- "normal 67343\n",
341
- "neptune 41214\n",
342
- "satan 3633\n",
343
- "ipsweep 3599\n",
344
- "portsweep 2931\n",
345
- "smurf 2646\n",
346
- "nmap 1493\n",
347
- "back 956\n",
348
- "teardrop 892\n",
349
- "warezclient 890\n",
350
- "pod 201\n",
351
- "guess_passwd 53\n",
352
- "buffer_overflow 30\n",
353
- "warezmaster 20\n",
354
- "land 18\n",
355
- "imap 11\n",
356
- "rootkit 10\n",
357
- "loadmodule 9\n",
358
- "ftp_write 8\n",
359
- "multihop 7\n",
360
- "phf 4\n",
361
- "perl 3\n",
362
- "spy 2\n",
363
- "Name: count, dtype: int64"
364
- ]
365
- },
366
- "metadata": {},
367
- "output_type": "display_data"
368
- },
369
- {
370
- "data": {
371
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABhgAAAIQCAYAAABzDmT/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACUdklEQVR4nOz9fXzP9f///1+f7NiOjLFhrNhm0+ZYltjzFTVk30k5SmZyUEns5SDbu7QNGXIYKaVQL0kReeU42mIOF5aDmVnWVonCNnMws+33h5/np+cLsRkzLufT6XE67XFwv99vj4f+el673++G4uLiYgEAAAAAAAAAAJRApfIuAAAAAAAAAAAAVDwEDAAAAAAAAAAAoMQIGAAAAAAAAAAAQIkRMAAAAAAAAAAAgBIjYAAAAAAAAAAAACVGwAAAAAAAAAAAAEqMgAEAAAAAAAAAAJQYAQMAAAAAAAAAACgxAgYAAAAAAAAAAFBiBAwAAAAA7pqFCxfKYDAoIyOjvEup0AwGg2JiYsq7DAAAADzgCBgAAAAAAAAAAECJETAAAAAAAAAAAIASI2AAAAAAgLvo3Llz5V0CAAAAUCYIGAAAAABc17Jly2QwGJSQkHDNvXnz5slgMOjAgQOSpJ9++knh4eF6+OGHZWNjIzc3N7344os6derUTce50X4Cnp6eCg8PN7uWnZ2tiIgIeXh4yNraWg0aNNDkyZNVVFRk9twXX3yh5s2by8HBQY6OjvL399esWbP+sY6MjAwZDAZNnTpVM2bMUL169WRra6ugoCDTe/7d4cOH9dxzz8nFxUU2NjZq0aKFVq1aZfbM1T0nEhISNGTIENWoUUN16tT5xzouXryomJgYeXt7y8bGRu7u7urWrZvS09Nv2OaXX37RkCFD5OPjI1tbW1WrVk3du3e/Zq+LgoICxcbGysvLSzY2NqpWrZoef/xxbdy40fTMH3/8of79+6tOnTqytraWu7u7QkND2TcDAAAA17Ao7wIAAAAA3Juefvpp2dvb68svv1RQUJDZvaVLl6pRo0Z65JFHJEkbN27Uzz//rP79+8vNzU0HDx7Uhx9+qIMHD2rHjh0yGAy3Xc/58+cVFBSk3377TS+99JLq1q2rbdu2KSoqSsePH9fMmTNNtfTu3Vvt27fX5MmTJUkpKSlKTEzU8OHDbzrOp59+qrNnz+rVV1/VxYsXNWvWLD3xxBPav3+/atasKUk6ePCg2rRpo9q1aysyMlJVqlTRl19+qa5du2r58uV65plnzPocMmSIXF1d9dZbb/3jDIbCwkJ16dJFmzZtUq9evTR8+HCdPXtWGzdu1IEDB1S/fv3rttu9e7e2bdumXr16qU6dOsrIyND7778vo9GoQ4cOyc7OTpIUExOjuLg4DRw4UK1atVJubq6SkpK0Z88ePfnkk5KkZ599VgcPHtRrr70mT09PnTx5Uhs3blRmZqY8PT1v+v0AAADw4CBgAAAAAHBdtra2CgkJ0bJly/Tuu++qcuXKkq78H+4JCQlmsw6GDBmikSNHmrVv3bq1evfura1bt6pt27a3Xc/06dOVnp6uvXv3ysvLS5L00ksvqVatWnrnnXc0cuRIeXh4aPXq1XJ0dNT69etNNZfE0aNHlZaWptq1a0uSOnbsqEcffVSTJ0/W9OnTJUnDhw9X3bp1tXv3bllbW0u68g0ef/xxjRkz5pqAwcXFRZs2bbppPZ9++qk2bdqk6dOn69///rfpemRkpIqLi2/Y7umnn9Zzzz1ndi0kJESBgYFavny5+vbtK0lavXq1OnfurA8//PC6/WRnZ2vbtm165513NGrUKNP1qKiof6wbAAAADyaWSAIAAABwQz179tTJkycVHx9vurZs2TIVFRWpZ8+epmu2tramvy9evKi//vpLrVu3liTt2bOnTGr56quv1LZtW1WtWlV//fWX6ejQoYMKCwv1ww8/SJKcnZ117tw5s2V/SqJr166mcEGSWrVqpUcffVRr1qyRJJ0+fVqbN29Wjx49dPbsWVMdp06dUnBwsNLS0vTbb7+Z9Tlo0KBbCjuWL1+u6tWr67XXXrvm3j/NAvn79y8oKNCpU6fUoEEDOTs7m31/Z2dnHTx4UGlpaTfsx8rKSvHx8Tpz5sxN6wUAAMCDjYABAAAAwA117NhRTk5OWrp0qena0qVL1aRJE3l7e5uunT59WsOHD1fNmjVla2srV1dXPfTQQ5KknJycMqklLS1N69atk6urq9nRoUMHSdLJkyclXZlJ4O3trU6dOqlOnTp68cUXtW7dulse5+rsiL/z9vY27UFw9OhRFRcXa+zYsdfUEh0dbVbLVVe/xc2kp6fLx8dHFhYlm2x+4cIFvfXWW6a9KapXry5XV1dlZ2ebff9x48YpOztb3t7e8vf31+jRo/XTTz+Z7ltbW2vy5Mlau3atatasqXbt2mnKlCn6448/SlQPAAAAHgwskQQAAADghqytrdW1a1etWLFCc+fO1YkTJ5SYmKiJEyeaPdejRw9t27ZNo0ePVpMmTWRvb6+ioiJ17Njxmg2Yb1VhYaHZeVFRkZ588km9/vrr133+auBRo0YN7du3T+vXr9fatWu1du1aLViwQGFhYVq0aFGpavnfOiRp1KhRCg4Ovu4zDRo0MDv/+wyDO+G1117TggULFBERocDAQDk5OclgMKhXr15m379du3ZKT0/XN998ow0bNmj+/PmaMWOGPvjgAw0cOFCSFBERoZCQEK1cuVLr16/X2LFjFRcXp82bN6tp06Z39D0AAABQsRAwAAAAAPhHPXv21KJFi7Rp0yalpKSouLjYbHmkM2fOaNOmTYqNjdVbb71lun6jZXj+V9WqVZWdnW127dKlSzp+/LjZtfr16ysvL880Y+GfWFlZKSQkRCEhISoqKtKQIUM0b948jR079pof///X9eo+cuSIaYPjhx9+WJJkaWl5S7WURP369bVz504VFBTI0tLyltstW7ZM/fr107Rp00zXLl68eM13la7sB9G/f3/1799feXl5ateunWJiYkwBw9U6Ro4cqZEjRyotLU1NmjTRtGnT9J///Oe23g8AAAD3F5ZIAgAAAPCPOnToIBcXFy1dulRLly5Vq1atzJb8ubq3wP9uQjxz5sxb6r9+/fqm/ROu+vDDD6+ZwdCjRw9t375d69evv6aP7OxsXb58WZJ06tQps3uVKlVSQECAJCk/P/+m9axcudJsD4Vdu3Zp586d6tSpk6QrMySMRqPmzZt3TQgiSX/++edNx7iRZ599Vn/99ZfmzJlzzb1/2uS5cuXK19yfPXv2Nd/wf7+Nvb29GjRoYPou58+f18WLF82eqV+/vhwcHG7p2wEAAODBwgwGAAAAAP/I0tJS3bp10xdffKFz585p6tSpZvcdHR1Na/UXFBSodu3a2rBhg44dO3ZL/Q8cOFAvv/yynn32WT355JNKTk7W+vXrVb16dbPnRo8erVWrVqlLly4KDw9X8+bNde7cOe3fv1/Lli1TRkaGqlevroEDB+r06dN64oknVKdOHf3yyy+aPXu2mjRpIl9f35vW06BBAz3++ON65ZVXlJ+fr5kzZ6patWpmSzO99957evzxx+Xv769Bgwbp4Ycf1okTJ7R9+3b9+uuvSk5OvqV3/19hYWH69NNPNWLECO3atUtt27bVuXPn9N1332nIkCEKDQ29brsuXbros88+k5OTk/z8/LR9+3Z99913qlatmtlzfn5+MhqNat68uVxcXJSUlKRly5Zp6NChkq7M1Gjfvr169OghPz8/WVhYaMWKFTpx4oR69epVqncCAADA/YuAAQAAAMBN9ezZU/Pnz5fBYFCPHj2uuf/555/rtdde03vvvafi4mI99dRTWrt2rWrVqnXTvgcNGqRjx47p448/1rp169S2bVtt3LhR7du3N3vOzs5OCQkJmjhxor766it9+umncnR0lLe3t2JjY+Xk5CRJeuGFF/Thhx9q7ty5ys7Olpubm3r27KmYmBhVqnTzSdxhYWGqVKmSZs6cqZMnT6pVq1aaM2eO3N3dTc/4+fkpKSlJsbGxWrhwoU6dOqUaNWqoadOmZstElVTlypW1Zs0avf322/r888+1fPlyVatWzRRm3MisWbNUuXJlLV68WBcvXlSbNm303XffXbNHxLBhw7Rq1Spt2LBB+fn5qlevniZMmKDRo0dLkjw8PNS7d29t2rRJn332mSwsLNSwYUN9+eWXevbZZ0v9XgAAALg/GYr/aZ4tAAAAADwgMjIy9NBDD+mdd97RqFGjyrscAAAA4J7HHgwAAAAAAAAAAKDECBgAAAAAAAAAAECJETAAAAAAAAAAAIASYw8GAAAAAAAAAABQYsxgAAAAAAAAAAAAJUbAAAAAAAAAAAAASsyivAvA/aOoqEi///67HBwcZDAYyrscAAAAAAAAAMB1FBcX6+zZs6pVq5YqVSr9PAQCBpSZ33//XR4eHuVdBgAAAAAAAADgFmRlZalOnTqlbk/AgDLj4OAg6cp/lI6OjuVcDQAAAAAAAADgenJzc+Xh4WH6Tbe0CBhQZq4ui/Tee+/JxsamnKsBAAAAAAAAAHPR0dHlXcI95XaXumeTZwAAAAAAAAAAUGIEDAAAAAAAAAAAoMQIGHBDnp6emjlzZnmXAQAAAAAAAAC4BxEwAAAAAAAAAACAEiNgqMAuXbpU3iUAAAAAAAAAAB5QBAx3kdFo1LBhw/T666/LxcVFbm5uiomJMd3PzMxUaGio7O3t5ejoqB49eujEiROm+zExMWrSpInmz5+vhx56SDY2NpKu7PQ9b948denSRXZ2dvL19dX27dt19OhRGY1GValSRY899pjS09NNfaWnpys0NFQ1a9aUvb29WrZsqe++++6ufQsAAAAAAAAAQMVGwHCXLVq0SFWqVNHOnTs1ZcoUjRs3Ths3blRRUZFCQ0N1+vRpJSQkaOPGjfr555/Vs2dPs/ZHjx7V8uXL9fXXX2vfvn2m6+PHj1dYWJj27dunhg0b6vnnn9dLL72kqKgoJSUlqbi4WEOHDjU9n5eXp86dO2vTpk3au3evOnbsqJCQEGVmZt7yu+Tn5ys3N9fsAAAAAAAAAAA8GCzKu4AHTUBAgKKjoyVJXl5emjNnjjZt2iRJ2r9/v44dOyYPDw9J0qeffqpGjRpp9+7datmypaQryyJ9+umncnV1Neu3f//+6tGjhyRpzJgxCgwM1NixYxUcHCxJGj58uPr37296vnHjxmrcuLHpfPz48VqxYoVWrVplFkT8k7i4OMXGxpbmMwAAAAAAAAAAKjhmMNxlAQEBZufu7u46efKkUlJS5OHhYQoXJMnPz0/Ozs5KSUkxXatXr9414cL/9luzZk1Jkr+/v9m1ixcvmmYZ5OXladSoUfL19ZWzs7Ps7e2VkpJSohkMUVFRysnJMR1ZWVm33BYAAAAAAAAAULExg+Eus7S0NDs3GAwqKiq65fZVqlS5ab8Gg+GG166ONWrUKG3cuFFTp05VgwYNZGtrq+eee65EG0dbW1vL2tr6lp8HAAAAAAAAANw/CBjuEb6+vsrKylJWVpZpFsOhQ4eUnZ0tPz+/Mh8vMTFR4eHheuaZZyRdmdGQkZFR5uMAAAAAAAAAAO5PLJF0j+jQoYP8/f3Vp08f7dmzR7t27VJYWJiCgoLUokWLMh/Py8vLtFF0cnKynn/++RLNpAAAAAAAAAAAPNgIGO4RBoNB33zzjapWrap27dqpQ4cOevjhh7V06dI7Mt706dNVtWpVPfbYYwoJCVFwcLCaNWt2R8YCAAAAAAAAANx/DMXFxcXlXQTuD7m5uXJyclJkZKRsbGzKuxwAAAAAAAAAMBMdHV3eJdwTrv6Wm5OTI0dHx1L3wwwGAAAAAAAAAABQYsxgQJkpq9QLAAAAAAAAAHDnMIMBAAAAAAAAAACUGwIGAAAAAAAAAABQYgQMAAAAAAAAAACgxCzKuwDcf+Li4mRjY1PeZQAAAADANaKjo8u7BAAAgPsGMxgAAAAAAAAAAECJETAAAAAAAAAAAIASI2AAAAAAAAAAAAAlRsBQgYSHh6tr167lXQYAAAAAAAAAAAQMAAAAAAAAAACg5AgYyojRaNSwYcP0+uuvy8XFRW5uboqJiTHdz87O1sCBA+Xq6ipHR0c98cQTSk5ONt2PiYlRkyZNNG/ePHl4eMjOzk49evRQTk6O6f6iRYv0zTffyGAwyGAwKD4+XvHx8TIYDMrOzjb1tW/fPhkMBmVkZEiSFi5cKGdnZ61fv16+vr6yt7dXx44ddfz4cbN3mD9/vnx9fWVjY6OGDRtq7ty5d+x7AQAAAAAAAAAqNgKGMrRo0SJVqVJFO3fu1JQpUzRu3Dht3LhRktS9e3edPHlSa9eu1Y8//qhmzZqpffv2On36tKn90aNH9eWXX+q///2v1q1bp71792rIkCGSpFGjRqlHjx6mYOD48eN67LHHbrm28+fPa+rUqfrss8/0ww8/KDMzU6NGjTLdX7x4sd566y29/fbbSklJ0cSJEzV27FgtWrTohn3m5+crNzfX7AAAAAAAAAAAPBgsyruA+0lAQICio6MlSV5eXpozZ442bdokW1tb7dq1SydPnpS1tbUkaerUqVq5cqWWLVumwYMHS5IuXryoTz/9VLVr15YkzZ49W08//bSmTZsmNzc32draKj8/X25ubiWuraCgQB988IHq168vSRo6dKjGjRtnuh8dHa1p06apW7dukqSHHnpIhw4d0rx589SvX7/r9hkXF6fY2NgS1wIAAAAAAAAAqPgIGMpQQECA2bm7u7tOnjyp5ORk5eXlqVq1amb3L1y4oPT0dNN53bp1TeGCJAUGBqqoqEipqamlChX+zs7OzhQu/L02STp37pzS09M1YMAADRo0yPTM5cuX5eTkdMM+o6KiNGLECNN5bm6uPDw8bqtOAAAAAAAAAEDFQMBQhiwtLc3ODQaDioqKlJeXJ3d3d8XHx1/TxtnZ+bbGrFTpyipXxcXFpmsFBQW3VNvVNnl5eZKkjz76SI8++qjZc5UrV77h2NbW1qYZGQAAAAAAAACABwsBw13QrFkz/fHHH7KwsJCnp+cNn8vMzNTvv/+uWrVqSZJ27NihSpUqycfHR5JkZWWlwsJCszaurq6SpOPHj6tq1aqSrmzyXBI1a9ZUrVq19PPPP6tPnz4lagsAAAAAAAAAeDCxyfNd0KFDBwUGBqpr167asGGDMjIytG3bNr3xxhtKSkoyPWdjY6N+/fopOTlZW7Zs0bBhw9SjRw/T8kienp766aeflJqaqr/++ksFBQVq0KCBPDw8FBMTo7S0NK1evVrTpk0rcY2xsbGKi4vTu+++qyNHjmj//v1asGCBpk+fXmbfAQAAAAAAAABw/yBguAsMBoPWrFmjdu3aqX///vL29lavXr30yy+/qGbNmqbnGjRooG7duqlz58566qmnFBAQoLlz55ruDxo0SD4+PmrRooVcXV2VmJgoS0tLLVmyRIcPH1ZAQIAmT56sCRMmlLjGgQMHav78+VqwYIH8/f0VFBSkhQsX6qGHHiqTbwAAAAAAAAAAuL8Yiv++eD/KTUxMjFauXFni5Y3uJbm5uXJyclJkZKRsbGzKuxwAAAAAuEZ0dHR5lwAAAFDurv6Wm5OTI0dHx1L3wwwGAAAAAAAAAABQYmzyjDIXFRV1W6kXAAAAAAAAAODexxJJKDNlNa0GAAAAAAAAAHDnsEQSAAAAAAAAAAAoNwQMAAAAAAAAAACgxNiDAWUuLi5ONjY25V3GPSk6Orq8SwAAAAAAAACAMsEMBgAAAAAAAAAAUGIEDAAAAAAAAAAAoMQIGAAAAAAAAAAAQIkRMNxnDAaDVq5cWd5lAAAAAAAAAADucwQMAAAAAAAAAACgxAgY7kHLli2Tv7+/bG1tVa1aNXXo0EHnzp3T7t279eSTT6p69epycnJSUFCQ9uzZY2rn6ekpSXrmmWdkMBhM5+np6QoNDVXNmjVlb2+vli1b6rvvvjMb09PTUxMnTtSLL74oBwcH1a1bVx9++OHdemUAAAAAAAAAQAVDwHCPOX78uHr37q0XX3xRKSkpio+PV7du3VRcXKyzZ8+qX79+2rp1q3bs2CEvLy917txZZ8+elSTt3r1bkrRgwQIdP37cdJ6Xl6fOnTtr06ZN2rt3rzp27KiQkBBlZmaajT1t2jS1aNFCe/fu1ZAhQ/TKK68oNTX1hrXm5+crNzfX7AAAAAAAAAAAPBgMxcXFxeVdBP6fPXv2qHnz5srIyFC9evX+8dmioiI5Ozvr888/V5cuXSRd2YNhxYoV6tq16z+2feSRR/Tyyy9r6NChkq7MYGjbtq0+++wzSVJxcbHc3NwUGxurl19++bp9xMTEKDY29prrkZGRsrGxudmrPpCio6PLuwQAAAAAAAAAD7jc3Fw5OTkpJydHjo6Ope6HGQz3mMaNG6t9+/by9/dX9+7d9dFHH+nMmTOSpBMnTmjQoEHy8vKSk5OTHB0dlZeXd81MhP+Vl5enUaNGydfXV87OzrK3t1dKSso17QICAkx/GwwGubm56eTJkzfsNyoqSjk5OaYjKyvrNt4cAAAAAAAAAFCRWJR3ATBXuXJlbdy4Udu2bdOGDRs0e/ZsvfHGG9q5c6deeeUVnTp1SrNmzVK9evVkbW2twMBAXbp06R/7HDVqlDZu3KipU6eqQYMGsrW11XPPPXdNO0tLS7Nzg8GgoqKiG/ZrbW0ta2vr0r8sAAAAAAAAAKDCImC4BxkMBrVp00Zt2rTRW2+9pXr16mnFihVKTEzU3Llz1blzZ0lSVlaW/vrrL7O2lpaWKiwsNLuWmJio8PBwPfPMM5KuzGjIyMi4K+8CAAAAAAAAALg/ETDcY3bu3KlNmzbpqaeeUo0aNbRz5079+eef8vX1lZeXlz777DO1aNFCubm5Gj16tGxtbc3ae3p6atOmTWrTpo2sra1VtWpVeXl56euvv1ZISIgMBoPGjh37jzMTAAAAAAAAAAC4GfZguMc4Ojrqhx9+UOfOneXt7a0333xT06ZNU6dOnfTxxx/rzJkzatasmfr27athw4apRo0aZu2nTZumjRs3ysPDQ02bNpUkTZ8+XVWrVtVjjz2mkJAQBQcHq1mzZuXxegAAAAAAAACA+4ShuLi4uLyLwP3h6s7jkZGRsrGxKe9y7knR0dHlXQIAAAAAAACAB9zV33JzcnLk6OhY6n6YwQAAAAAAAAAAAEqMgAEAAAAAAAAAAJQYSyShzJTVtBoAAAAAAAAAwJ3DEkkAAAAAAAAAAKDcEDAAAAAAAAAAAIASI2AAAAAAAAAAAAAlZlHeBeD+ExcXJxsbm/Iu454THR1d3iUAAAAAAAAAQJlhBgMAAAAAAAAAACgxAoYyYjQaFRERUd5lAAAAAAAAAABwV7BEUhn5+uuvZWlpWd5lAAAAAAAAAABwVxAwlBEXF5fyLgEAAAAAAAAAgLuGJZLKyN+XSPL09NT48ePVu3dvValSRbVr19Z7771nera4uFgxMTGqW7eurK2tVatWLQ0bNkySNGfOHD3yyCOmZ1euXCmDwaAPPvjAdK1Dhw568803TefffPONmjVrJhsbGz388MOKjY3V5cuXTfezs7M1cOBAubq6ytHRUU888YSSk5NN92NiYtSkSRPNmzdPHh4esrOzU48ePZSTk1Pm3wkAAAAAAAAAcH8gYLhD3nnnHTVu3Fh79+5VZGSkhg8fro0bN0qSli9frhkzZmjevHlKS0vTypUr5e/vL0kKCgrSoUOH9Oeff0qSEhISVL16dcXHx0uSCgoKtH37dhmNRknSli1bFBYWpuHDh+vQoUOaN2+eFi5cqLfffttUS/fu3XXy5EmtXbtWP/74o5o1a6b27dvr9OnTpmeOHj2qL7/8Uv/973+1bt067d27V0OGDLkLXwoAAAAAAAAAUBERMNwhbdq0UWRkpLy9vfXaa6/pueee04wZMyRJmZmZcnNzU4cOHVS3bl21atVKgwYNkiQ98sgjcnFxUUJCgiQpPj5eI0eONJ3v2rVLBQUFeuyxxyRJsbGxioyMVL9+/fTwww/rySef1Pjx4zVv3jxJ0tatW7Vr1y599dVXatGihby8vDR16lQ5Oztr2bJlpnovXryoTz/9VE2aNFG7du00e/ZsffHFF/rjjz9u+I75+fnKzc01OwAAAAAAAAAADwYChjskMDDwmvOUlBRJV2YUXLhwQQ8//LAGDRqkFStWmJY0MhgMateuneLj45Wdna1Dhw5pyJAhys/P1+HDh5WQkKCWLVvKzs5OkpScnKxx48bJ3t7edAwaNEjHjx/X+fPnlZycrLy8PFWrVs3smWPHjik9Pd1UX926dVW7dm2zeouKipSamnrDd4yLi5OTk5Pp8PDwKLPvBwAAAAAAAAC4t7HJcznw8PBQamqqvvvuO23cuFFDhgzRO++8o4SEBFlaWspoNOrDDz/Uli1b1LRpUzk6OppCh4SEBAUFBZn6ysvLU2xsrLp163bNODY2NsrLy5O7u7tpiaW/c3Z2vq33iIqK0ogRI0znubm5hAwAAAAAAAAA8IAgYLhDduzYcc25r6+v6dzW1lYhISEKCQnRq6++qoYNG2r//v1q1qyZgoKCFBERoa+++sq014LRaNR3332nxMREjRw50tRPs2bNlJqaqgYNGly3jmbNmumPP/6QhYWFPD09b1hvZmamfv/9d9WqVctUb6VKleTj43PDNtbW1rK2tr7ZpwAAAAAAAAAA3IcIGO6QxMRETZkyRV27dtXGjRv11VdfafXq1ZKkhQsXqrCwUI8++qjs7Oz0n//8R7a2tqpXr54kKSAgQFWrVtXnn3+ub7/9VtKVgGHUqFEyGAxq06aNaZy33npLXbp0Ud26dfXcc8+pUqVKSk5O1oEDBzRhwgR16NBBgYGB6tq1q6ZMmSJvb2/9/vvvWr16tZ555hm1aNFC0pXZDv369dPUqVOVm5urYcOGqUePHnJzc7vLXw4AAAAAAAAAUBGwB8MdMnLkSCUlJalp06aaMGGCpk+fruDgYElXlib66KOP1KZNGwUEBOi7777Tf//7X1WrVk3SlX0Y2rZtK4PBoMcff1zSldDB0dFRLVq0UJUqVUzjBAcH69tvv9WGDRvUsmVLtW7dWjNmzDCFFQaDQWvWrFG7du3Uv39/eXt7q1evXvrll19Us2ZNUz8NGjRQt27d1LlzZz311FMKCAjQ3Llz79bnAgAAAAAAAABUMIbi4uLi8i7ifuPp6amIiAhFRESUdym3JCYmRitXrtS+fftuq5/c3Fw5OTkpMjJSNjY2ZVPcfSQ6Orq8SwAAAAAAAAAA02+5OTk5cnR0LHU/zGAAAAAAAAAAAAAlRsAAAAAAAAAAAABKjCWSUGbKaloNAAAAAAAAAODOYYkkAAAAAAAAAABQbggYAAAAAAAAAABAiREwAAAAAAAAAACAErMo7wJw/4mLi5ONjU15l3FHRUdHl3cJAAAAAAAAAFCumMEAAAAAAAAAAABKjIABAAAAAAAAAACUGAHDHRYeHq6uXbuWdxkAAAAAAAAAAJQp9mC4QwoLC2UwGMq7DAAAAAAAAAAA7ghmMPz/GY1GDR06VEOHDpWTk5OqV6+usWPHqri4WJJ05swZhYWFqWrVqrKzs1OnTp2UlpZmar9w4UI5Oztr1apV8vPzk7W1tV588UUtWrRI33zzjQwGgwwGg+Lj43Xp0iUNHTpU7u7usrGxUb169RQXFydJGjVqlLp06WLqd+bMmTIYDFq3bp3pWoMGDTR//nzT+fz58+Xr6ysbGxs1bNhQc+fONXu3rKws9ejRQ87OznJxcVFoaKgyMjJM96/OsoiNjZWrq6scHR318ssv69KlS2X6jQEAAAAAAAAA9w9mMPzNokWLNGDAAO3atUtJSUkaPHiw6tatq0GDBik8PFxpaWlatWqVHB0dNWbMGHXu3FmHDh2SpaWlJOn8+fOaPHmy5s+fr2rVqsnd3V0XLlxQbm6uFixYIElycXHRu+++q1WrVunLL79U3bp1lZWVpaysLElSUFCQ5s+fr8LCQlWuXFkJCQmqXr264uPj1bFjR/32229KT0+X0WiUJC1evFhvvfWW5syZo6ZNm2rv3r0aNGiQqlSpon79+qmgoEDBwcEKDAzUli1bZGFhoQkTJqhjx4766aefZGVlJUnatGmTbGxsFB8fr4yMDPXv31/VqlXT22+/fff/IQAAAAAAAAAA9zwChr/x8PDQjBkzZDAY5OPjo/3792vGjBkyGo1atWqVEhMT9dhjj0m68sO+h4eHVq5cqe7du0uSCgoKNHfuXDVu3NjUp62trfLz8+Xm5ma6lpmZKS8vLz3++OMyGAyqV6+e6V7btm119uxZ7d27V82bN9cPP/yg0aNHa+XKlZKk+Ph41a5dWw0aNJAkRUdHa9q0aerWrZsk6aGHHtKhQ4c0b9489evXT0uXLlVRUZHmz59vWrJpwYIFcnZ2Vnx8vJ566ilJkpWVlT755BPZ2dmpUaNGGjdunEaPHq3x48erUqXrT3TJz89Xfn6+6Tw3N/e2vj8AAAAAAAAAoOJgiaS/ad26tdm+CYGBgUpLS9OhQ4dkYWGhRx991HSvWrVq8vHxUUpKiumalZWVAgICbjpOeHi49u3bJx8fHw0bNkwbNmww3XN2dlbjxo0VHx+v/fv3y8rKSoMHD9bevXuVl5enhIQEBQUFSZLOnTun9PR0DRgwQPb29qZjwoQJSk9PlyQlJyfr6NGjcnBwMN13cXHRxYsXTc9IUuPGjWVnZ2f27nl5eaaZFdcTFxcnJycn0+Hh4XHTdwcAAAAAAAAA3B+YwVCGbG1tb2lj52bNmunYsWNau3atvvvuO/Xo0UMdOnTQsmXLJF3ZDyI+Pl7W1tYKCgqSi4uLfH19tXXrViUkJGjkyJGSpLy8PEnSRx99ZBZ+SFLlypVNzzRv3lyLFy++pg5XV9fbet+oqCiNGDHCdJ6bm0vIAAAAAAAAAAAPCAKGv9m5c6fZ+Y4dO+Tl5SU/Pz9dvnxZO3fuNC2RdOrUKaWmpsrPz+8f+7SyslJhYeE11x0dHdWzZ0/17NlTzz33nDp27KjTp0/LxcVFQUFB+uSTT2RhYaGOHTtKuhI6LFmyREeOHDHtv1CzZk3VqlVLP//8s/r06XPd8Zs1a6alS5eqRo0acnR0vGGdycnJunDhgmxtbU3vbm9v/4+BgbW1taytrf/x/QEAAAAAAAAA9yeWSPqbzMxMjRgxQqmpqVqyZIlmz56t4cOHy8vLS6GhoRo0aJC2bt2q5ORkvfDCC6pdu7ZCQ0P/sU9PT0/99NNPSk1N1V9//aWCggJNnz5dS5Ys0eHDh3XkyBF99dVXcnNzk7OzsySpXbt2Onv2rL799ltTmGA0GrV48WK5u7vL29vb1H9sbKzi4uL07rvv6siRI9q/f78WLFig6dOnS5L69Omj6tWrKzQ0VFu2bNGxY8cUHx+vYcOG6ddffzX1c+nSJQ0YMECHDh3SmjVrFB0draFDh95w/wUAAAAAAAAAwIONGQx/ExYWpgsXLqhVq1aqXLmyhg8frsGDB0u6sjHy8OHD1aVLF126dEnt2rXTmjVrZGlp+Y99Dho0SPHx8WrRooXy8vL0/fffy8HBQVOmTFFaWpoqV66sli1bas2aNaYf86tWrSp/f3+dOHFCDRs2lHQldCgqKjLtv3DVwIEDZWdnp3feeUejR49WlSpV5O/vr4iICEmSnZ2dfvjhB40ZM0bdunXT2bNnVbt2bbVv395sRkP79u3l5eWldu3aKT8/X71791ZMTEwZfVkAAAAAAAAAwP3GUFxcXFzeRdwLjEajmjRpopkzZ5Z3KXddeHi4srOztXLlytvqJzc3V05OToqMjJSNjU3ZFHePio6OLu8SAAAAAAAAAKBUrv6Wm5OT849L698M698AAAAAAAAAAIASI2AAAAAAAAAAAAAlxhJJKDNlNa0GAAAAAAAAAHDnsEQSAAAAAAAAAAAoNwQMAAAAAAAAAACgxAgYAAAAAAAAAABAiVmUdwG4/8TFxcnGxqa8yygT0dHR5V0CAAAAAAAAANyTmMEAAAAAAAAAAABKjIABNxQTE6OaNWvKYDBo5cqV5V0OAAAAAAAAAOAewhJJuK6UlBTFxsZqxYoVat26tapWrVreJQEAAAAAAAAA7iEEDDBTWFgog8Gg9PR0SVJoaKgMBkM5VwUAAAAAAAAAuNewRNI9ZtmyZfL395etra2qVaumDh066Ny5cwoPD1fXrl01ceJE1axZU87Ozho3bpwuX76s0aNHy8XFRXXq1NGCBQtMfcXHx8tgMCg7O9t0bd++fTIYDMrIyJAkLVy4UM7Ozlq1apX8/PxkbW2tF198USEhIZKkSpUqETAAAAAAAAAAAK7BDIZ7yPHjx9W7d29NmTJFzzzzjM6ePastW7aouLhYkrR582bVqVNHP/zwgxITEzVgwABt27ZN7dq1086dO7V06VK99NJLevLJJ1WnTp1bHvf8+fOaPHmy5s+fr2rVqsnd3V1Go1H9+/fX8ePH79TrAgAAAAAAAAAqMAKGe8jx48d1+fJldevWTfXq1ZMk+fv7m+67uLjo3XffVaVKleTj46MpU6bo/Pnz+r//+z9JUlRUlCZNmqStW7eqV69etzxuQUGB5s6dq8aNG5uuOTs7S5Lc3Nxu2C4/P1/5+fmm89zc3FseEwAAAAAAAABQsbFE0j2kcePGat++vfz9/dW9e3d99NFHOnPmjOl+o0aNVKnS//snq1mzplkAUblyZVWrVk0nT54s0bhWVlYKCAgocb1xcXFycnIyHR4eHiXuAwAAAAAAAABQMREw3EMqV66sjRs3au3atfLz89Ps2bPl4+OjY8eOSZIsLS3NnjcYDNe9VlRUJEmmMOLqEkvSldkK/8vW1rZU+yxERUUpJyfHdGRlZZW4DwAAAAAAAABAxUTAcI8xGAxq06aNYmNjtXfvXllZWWnFihWl6svV1VWSzPZR2LdvX1mUKUmytraWo6Oj2QEAAAAAAAAAeDAQMNxDdu7cqYkTJyopKUmZmZn6+uuv9eeff8rX17dU/TVo0EAeHh6KiYlRWlqaVq9erWnTppVx1QAAAAAAAACABxEBwz3E0dFRP/zwgzp37ixvb2+9+eabmjZtmjp16lSq/iwtLbVkyRIdPnxYAQEBmjx5siZMmFDGVQMAAAAAAAAAHkSG4r8v0A/chtzcXDk5OSkyMlI2NjblXU6ZiI6OLu8SAAAAAAAAAKBMXf0tNycn57aWvmcGAwAAAAAAAAAAKDECBgAAAAAAAAAAUGIskYQyU1bTagAAAAAAAAAAdw5LJAEAAAAAAAAAgHJDwAAAAAAAAAAAAEqMgAEAAAAAAAAAAJSYRXkXgPtPXFycbGxs7tp40dHRd20sAAAAAAAAAMAVzGAAAAAAAAAAAAAlRsAAAAAAAAAAAABKjIABAAAAAAAAAACUGAEDAAAAAAAAAAAoMQKGe4zRaNSwYcP0+uuvy8XFRW5uboqJiTHdNxgMmjdvnrp06SI7Ozv5+vpq+/btOnr0qIxGo6pUqaLHHntM6enppjbp6ekKDQ1VzZo1ZW9vr5YtW+q7774zG9fT01Pjx49X7969VaVKFdWuXVvvvffe3XptAAAAAAAAAEAFQ8BwD1q0aJGqVKminTt3asqUKRo3bpw2btxouj9+/HiFhYVp3759atiwoZ5//nm99NJLioqKUlJSkoqLizV06FDT83l5eercubM2bdqkvXv3qmPHjgoJCVFmZqbZuO+8844aN26svXv3KjIyUsOHDzcbFwAAAAAAAACAqwzFxcXF5V0E/h+j0ajCwkJt2bLFdK1Vq1Z64oknNGnSJBkMBr355psaP368JGnHjh0KDAzUxx9/rBdffFGS9MUXX6h///66cOHCDcd55JFH9PLLL5uCCE9PT/n6+mrt2rWmZ3r16qXc3FytWbPmun3k5+crPz/fdJ6bmysPDw9FRkbKxsam9B+hhKKjo+/aWAAAAAAAAABQ0eXm5srJyUk5OTlydHQsdT/MYLgHBQQEmJ27u7vr5MmT171fs2ZNSZK/v7/ZtYsXLyo3N1fSlRkMo0aNkq+vr5ydnWVvb6+UlJRrZjAEBgZec56SknLDOuPi4uTk5GQ6PDw8SvimAAAAAAAAAICKioDhHmRpaWl2bjAYVFRUdN37BoPhhteuthk1apRWrFihiRMnasuWLdq3b5/8/f116dKl26ozKipKOTk5piMrK+u2+gMAAAAAAAAAVBwW5V0A7rzExESFh4frmWeekXRlRkNGRsY1z+3YseOac19f3xv2a21tLWtr6zKtFQAAAAAAAABQMRAwPAC8vLz09ddfKyQkRAaDQWPHjjWbEXFVYmKipkyZoq5du2rjxo366quvtHr16nKoGAAAAAAAAABwr2OJpAfA9OnTVbVqVT322GMKCQlRcHCwmjVrds1zI0eOVFJSkpo2baoJEyZo+vTpCg4OLoeKAQAAAAAAAAD3OmYw3GPi4+OvubZy5UrT38XFxWb3PD09r7lmNBrNrnl6emrz5s1mz7z66qvXjOPo6Kgvv/yyFFUDAAAAAAAAAB40zGAAAAAAAAAAAAAlRsAAAAAAAAAAAABKzFD8v+vrAKWUm5srJycn5eTkyNHRsbzLAQAAAAAAAABcR1n9lssMBgAAAAAAAAAAUGIEDAAAAAAAAAAAoMQIGAAAAAAAAAAAQIlZlHcBuP/ExcXJxsbmtvuJjo4ug2oAAAAAAAAAAHcCMxgAAAAAAAAAAECJETBUEEajUREREXes//DwcHXt2vWO9Q8AAAAAAAAAuL8QMAAAAAAAAAAAgBIjYAAAAAAAAAAAACVGwFCBXL58WUOHDpWTk5OqV6+usWPHqri4WJL02WefqUWLFnJwcJCbm5uef/55nTx50qz9wYMH1aVLFzk6OsrBwUFt27ZVenr6dcfavXu3XF1dNXny5Dv+XgAAAAAAAACAioeAoQJZtGiRLCwstGvXLs2aNUvTp0/X/PnzJUkFBQUaP368kpOTtXLlSmVkZCg8PNzU9rffflO7du1kbW2tzZs368cff9SLL76oy5cvXzPO5s2b9eSTT+rtt9/WmDFj7tbrAQAAAAAAAAAqEIvyLgC3zsPDQzNmzJDBYJCPj4/279+vGTNmaNCgQXrxxRdNzz388MN699131bJlS+Xl5cne3l7vvfeenJyc9MUXX8jS0lKS5O3tfc0YK1asUFhYmObPn6+ePXv+Yz35+fnKz883nefm5pbRmwIAAAAAAAAA7nXMYKhAWrduLYPBYDoPDAxUWlqaCgsL9eOPPyokJER169aVg4ODgoKCJEmZmZmSpH379qlt27amcOF6du7cqe7du+uzzz67abggSXFxcXJycjIdHh4et/mGAAAAAAAAAICKgoDhPnDx4kUFBwfL0dFRixcv1u7du7VixQpJ0qVLlyRJtra2N+2nfv36atiwoT755BMVFBTc9PmoqCjl5OSYjqysrNt7EQAAAAAAAABAhUHAUIHs3LnT7HzHjh3y8vLS4cOHderUKU2aNElt27ZVw4YNr9ngOSAgQFu2bPnH4KB69eravHmzjh49qh49etw0ZLC2tpajo6PZAQAAAAAAAAB4MBAwVCCZmZkaMWKEUlNTtWTJEs2ePVvDhw9X3bp1ZWVlpdmzZ+vnn3/WqlWrNH78eLO2Q4cOVW5urnr16qWkpCSlpaXps88+U2pqqtlzNWrU0ObNm3X48GH17t37uptAAwAAAAAAAABAwFCBhIWF6cKFC2rVqpVeffVVDR8+XIMHD5arq6sWLlyor776Sn5+fpo0aZKmTp1q1rZatWravHmz8vLyFBQUpObNm+ujjz667p4Mbm5u2rx5s/bv368+ffqosLDwbr0iAAAAAAAAAKCCMBQXFxeXdxG4P+Tm5srJyUmRkZGysbG57f6io6PLoCoAAAAAAAAAwN9d/S03Jyfntpa+ZwYDAAAAAAAAAAAoMQIGAAAAAAAAAABQYiyRhDJTVtNqAAAAAAAAAAB3DkskAQAAAAAAAACAckPAAAAAAAAAAAAASoyAAQAAAAAAAAAAlJhFeReA+09cXJxsbGxuq4/o6OgyqgYAAAAAAAAAcCcwgwEAAAAAAAAAAJQYAQMAAAAAAAAAACgxAoYKLjw8XF27di3vMgAAAAAAAAAADxgChttkNBoVERFR3mUAAAAAAAAAAHBXETBUEAUFBaVqd+nSpTKuBAAAAAAAAAAAAobbEh4eroSEBM2aNUsGg0EGg0EZGRk6cOCAOnXqJHt7e9WsWVN9+/bVX3/9ZWq3bt06Pf7443J2dla1atXUpUsXpaenm+5nZGTIYDBo6dKlCgoKko2NjRYvXqzCwkKNGDHC1O71119XcXGxWU1Go1FDhw5VRESEqlevruDgYElSQkKCWrVqJWtra7m7uysyMlKXL1++pt3QoUPl5OSk6tWra+zYsdf0DwAAAAAAAACARMBwW2bNmqXAwEANGjRIx48f1/Hjx+Xg4KAnnnhCTZs2VVJSktatW6cTJ06oR48epnbnzp3TiBEjlJSUpE2bNqlSpUp65plnVFRUZNZ/ZGSkhg8frpSUFAUHB2vatGlauHChPvnkE23dulWnT5/WihUrrqlr0aJFsrKyUmJioj744AP99ttv6ty5s1q2bKnk5GS9//77+vjjjzVhwoRr2llYWGjXrl2aNWuWpk+frvnz59/w/fPz85Wbm2t2AAAAAAAAAAAeDBblXUBF5uTkJCsrK9nZ2cnNzU2SNGHCBDVt2lQTJ040PffJJ5/Iw8NDR44ckbe3t5599lmzfj755BO5urrq0KFDeuSRR0zXIyIi1K1bN9P5zJkzFRUVZbr2wQcfaP369dfU5eXlpSlTppjO33jjDXl4eGjOnDkyGAxq2LChfv/9d40ZM0ZvvfWWKlW6kjN5eHhoxowZMhgM8vHx0f79+zVjxgwNGjTouu8fFxen2NjYkn42AAAAAAAAAMB9gBkMZSw5OVnff/+97O3tTUfDhg0lybQMUlpamnr37q2HH35Yjo6O8vT0lCRlZmaa9dWiRQvT3zk5OTp+/LgeffRR0zULCwuzZ65q3ry52XlKSooCAwNlMBhM19q0aaO8vDz9+uuvpmutW7c2eyYwMFBpaWkqLCy87rtGRUUpJyfHdGRlZf3jtwEAAAAAAAAA3D+YwVDG8vLyFBISosmTJ19zz93dXZIUEhKievXq6aOPPlKtWrVUVFSkRx555JoNmatUqVKqGkrbrqSsra1lbW19V8YCAAAAAAAAANxbmMFwm6ysrMz+D/9mzZrp4MGD8vT0VIMGDcyOKlWq6NSpU0pNTdWbb76p9u3by9fXV2fOnLnpOE5OTnJ3d9fOnTtN1y5fvqwff/zxpm19fX21fft2sw2bExMT5eDgoDp16piu/b1vSdqxY4e8vLxUuXLlm44BAAAAAAAAAHiwEDDcJk9PT+3cuVMZGRn666+/9Oqrr+r06dPq3bu3du/erfT0dK1fv179+/dXYWGhqlatqmrVqunDDz/U0aNHtXnzZo0YMeKWxho+fLgmTZqklStX6vDhwxoyZIiys7Nv2m7IkCHKysrSa6+9psOHD+ubb75RdHS0RowYYdp/QbqyRNOIESOUmpqqJUuWaPbs2Ro+fHhpPw0AAAAAAAAA4D5GwHCbRo0apcqVK8vPz0+urq66dOmSEhMTVVhYqKeeekr+/v6KiIiQs7OzKlWqpEqVKumLL77Qjz/+qEceeUT//ve/9c4779zSWCNHjlTfvn3Vr18/BQYGysHBQc8888xN29WuXVtr1qzRrl271LhxY7388ssaMGCA3nzzTbPnwsLCdOHCBbVq1Uqvvvqqhg8frsGDB5fquwAAAAAAAAAA7m+G4r+vm4MHltFoVJMmTTRz5sxS95GbmysnJydFRkbKxsbmtuqJjo6+rfYAAAAAAAAAgOu7+ltuTk6OHB0dS90PMxgAAAAAAAAAAECJWZR3Abj/REVF3VbqBQAAAAAAAAC49xEwQJIUHx9f3iUAAAAAAAAAACoQlkgCAAAAAAAAAAAlRsAAAAAAAAAAAABKjCWSUObi4uJkY2NT6vbR0dFlWA0AAAAAAAAA4E5gBgMAAAAAAAAAACgxAgYAAAAAAAAAAFBiBAwVjNFoVEREhOnc09NTM2fOLLd6AAAAAAAAAAAPJvZgqOB2796tKlWqlGmfRqNRTZo0IbgAAAAAAAAAANwQAUMZunTpkqysrO7qmK6urnd1PAAAAAAAAAAApAdsiaRvv/1Wzs7OKiwslCTt27dPBoNBkZGRpmcGDhyoF154QadOnVLv3r1Vu3Zt2dnZyd/fX0uWLDHrz2g0aujQoYqIiFD16tUVHBwsSTpw4IA6deoke3t71axZU3379tVff/0lScrIyJDBYLjmMBqNpn4TExNlNBplZ2enqlWrKjg4WGfOnLnuO/3vEknZ2dkaOHCgXF1d5ejoqCeeeELJycmm+zExMWrSpIk+++wzeXp6ysnJSb169dLZs2clSeHh4UpISNCsWbNMtWVkZJT6mwMAAAAAAAAA7k8PVMDQtm1bnT17Vnv37pUkJSQkqHr16oqPjzc9k5CQIKPRqIsXL6p58+ZavXq1Dhw4oMGDB6tv377atWuXWZ+LFi2SlZWVEhMT9cEHHyg7O1tPPPGEmjZtqqSkJK1bt04nTpxQjx49JEkeHh46fvy46di7d6+qVaumdu3aSboSerRv315+fn7avn27tm7dqpCQEFMocjPdu3fXyZMntXbtWv34449q1qyZ2rdvr9OnT5ueSU9P18qVK/Xtt9/q22+/VUJCgiZNmiRJmjVrlgIDAzVo0CBTjR4eHtcdKz8/X7m5uWYHAAAAAAAAAODB8EAtkeTk5KQmTZooPj5eLVq0UHx8vP79738rNjZWeXl5ysnJ0dGjRxUUFKTatWtr1KhRpravvfaa1q9fry+//FKtWrUyXffy8tKUKVNM5xMmTFDTpk01ceJE07VPPvlEHh4eOnLkiLy9veXm5iZJunjxorp27arAwEDFxMRIkqZMmaIWLVpo7ty5pvaNGjW6pffbunWrdu3apZMnT8ra2lqSNHXqVK1cuVLLli3T4MGDJUlFRUVauHChHBwcJEl9+/bVpk2b9Pbbb8vJyUlWVlays7Mz1XkjcXFxio2NvaXaAAAAAAAAAAD3lwdqBoMkBQUFKT4+XsXFxdqyZYu6desmX19fbd26VQkJCapVq5a8vLxUWFio8ePHy9/fXy4uLrK3t9f69euVmZlp1l/z5s3NzpOTk/X999/L3t7edDRs2FDSlZkDf/fiiy/q7Nmz+vzzz1Wp0pV/iqszGEojOTlZeXl5qlatmtn4x44dMxvb09PTFC5Ikru7u06ePFni8aKiopSTk2M6srKySlU3AAAAAAAAAKDieaBmMEhX9k345JNPlJycLEtLSzVs2FBGo1Hx8fE6c+aMgoKCJEnvvPOOZs2apZkzZ8rf319VqlRRRESELl26ZNZflSpVzM7z8vIUEhKiyZMnXzO2u7u76e8JEyZo/fr12rVrl9mP/ba2tqV+t7y8PLm7u5st+XSVs7Oz6W9LS0uzewaDQUVFRSUez9ra2jRTAgAAAAAAAADwYHngAoar+zDMmDHDFCYYjUZNmjRJZ86c0ciRIyVd2Wg5NDRUL7zwgqQrywodOXJEfn5+/9h/s2bNtHz5cnl6esrC4vqfd/ny5Ro3bpzWrl2r+vXrm90LCAjQpk2bSrX0ULNmzfTHH3/IwsJCnp6eJW5/lZWV1S3v+QAAAAAAAAAAeDA9cEskVa1aVQEBAVq8eLGMRqMkqV27dtqzZ4+OHDliCh28vLy0ceNGbdu2TSkpKXrppZd04sSJm/b/6quv6vTp0+rdu7d2796t9PR0rV+/Xv3791dhYaEOHDigsLAwjRkzRo0aNdIff/yhP/74w7QJc1RUlHbv3q0hQ4bop59+0uHDh/X+++/rr7/+uunYHTp0UGBgoLp27aoNGzYoIyND27Zt0xtvvKGkpKRb/kaenp7auXOnMjIy9Ndff5VqdgMAAAAAAAAA4P72wAUM0pV9GAoLC00Bg4uLi/z8/OTm5iYfHx9J0ptvvqlmzZopODhYRqNRbm5u6tq16037rlWrlhITE1VYWKinnnpK/v7+ioiIkLOzsypVqqSkpCSdP39eEyZMkLu7u+no1q2bJMnb21sbNmxQcnKyWrVqpcDAQH3zzTc3nA3xdwaDQWvWrFG7du3Uv39/eXt7q1evXvrll19Us2bNW/4+o0aNUuXKleXn5ydXV9dr9p0AAAAAAAAAAMBQXFxcXN5F4P6Qm5srJycnRUZGysbGptT9REdHl2FVAAAAAAAAAIC/u/pbbk5OjhwdHUvdzwM5gwEAAAAAAAAAANweZjCgzJRV6gUAAAAAAAAAuHOYwQAAAAAAAAAAAMoNAQMAAAAAAAAAACgxAgYAAAAAAAAAAFBiFuVdAO4/cXFxsrGxkSRFR0eXczUAAAAAAAAAgDuBGQwAAAAAAAAAAKDECBgAAAAAAAAAAECJETDguhYuXChnZ+fyLgMAAAAAAAAAcI8iYAAAAAAAAAAAACVGwAAAAAAAAAAAAEqMgOE+YDQaNXToUA0dOlROTk6qXr26xo4dq+LiYknSmTNnFBYWpqpVq8rOzk6dOnVSWlqaWR8LFy5U3bp1ZWdnp2eeeUanTp0qj1cBAAAAAAAAAFQQBAz3iUWLFsnCwkK7du3SrFmzNH36dM2fP1+SFB4erqSkJK1atUrbt29XcXGxOnfurIKCAknSzp07NWDAAA0dOlT79u3Tv/71L02YMOGmY+bn5ys3N9fsAAAAAAAAAAA8GCzKuwCUDQ8PD82YMUMGg0E+Pj7av3+/ZsyYIaPRqFWrVikxMVGPPfaYJGnx4sXy8PDQypUr1b17d82aNUsdO3bU66+/Lkny9vbWtm3btG7dun8cMy4uTrGxsXf83QAAAAAAAAAA9x5mMNwnWrduLYPBYDoPDAxUWlqaDh06JAsLCz366KOme9WqVZOPj49SUlIkSSkpKWb3r7a/maioKOXk5JiOrKysMnobAAAAAAAAAMC9jhkMKDVra2tZW1uXdxkAAAAAAAAAgHJQJjMYCgsLtW/fPp05c6YsukMp7Ny50+x8x44d8vLykp+fny5fvmx2/9SpU0pNTZWfn58kydfX97rtAQAAAAAAAAC4kVIFDBEREfr4448lXQkXgoKC1KxZM3l4eCg+Pr4s68MtyszM1IgRI5SamqolS5Zo9uzZGj58uLy8vBQaGqpBgwZp69atSk5O1gsvvKDatWsrNDRUkjRs2DCtW7dOU6dOVVpamubMmXPT/RcAAAAAAAAAAA+2UgUMy5YtU+PGjSVJ//3vf3Xs2DEdPnxY//73v/XGG2+UaYG4NWFhYbpw4YJatWqlV199VcOHD9fgwYMlSQsWLFDz5s3VpUsXBQYGqri4WGvWrJGlpaWkK/s3fPTRR5o1a5YaN26sDRs26M033yzP1wEAAAAAAAAA3OMMxcXFxSVtZGNjo6NHj6pOnToaPHiw7OzsNHPmTB07dkyNGzdWbm7unagVN2A0GtWkSRPNnDmzXOvIzc2Vk5OTIiMjZWNjI0mKjo4u15oAAAAAAAAAAOau/pabk5MjR0fHUvdTqhkMNWvW1KFDh1RYWKh169bpySeflCSdP39elStXLnUxAAAAAAAAAACgYrAoTaP+/furR48ecnd3l8FgUIcOHSRd2Wi4YcOGZVogKp6oqKjbSr0AAAAAAAAAAPe+UgUMMTExeuSRR5SVlaXu3bvL2tpaklS5cmVFRkaWaYG4OTbWBgAAAAAAAADcbaXagwG4nrJatwsAAAAAAAAAcOeU1W+5tzyD4d13373lTocNG1aqYgAAAAAAAAAAQMVwyzMYHnrooVvr0GDQzz//fFtFoWJiBgMAAAAAAAAA3Pvu+gyGY8eOlXoQAAAAAAAAAABwf6l0O40vXbqk1NRUXb58uazqAQAAAAAAAAAAFUCpAobz589rwIABsrOzU6NGjZSZmSlJeu211zRp0qQyLRDlJz4+XgaDQdnZ2eVdCgAAAAAAAADgHlOqgCEqKkrJycmKj4+XjY2N6XqHDh20dOnSMisOAAAAAAAAAADcm255D4a/W7lypZYuXarWrVvLYDCYrjdq1Ejp6ellVhwAAAAAAAAAALg3lWoGw59//qkaNWpcc/3cuXNmgUNZOXv2rPr06aMqVarI3d1dM2bMkNFoVEREhCTJYDBo5cqVZm2cnZ21cOFC03lWVpZ69OghZ2dnubi4KDQ0VBkZGab78fHxatWqlapUqSJnZ2e1adNGv/zyiyQpOTlZ//rXv+Tg4CBHR0c1b95cSUlJN6174cKFcnZ21sqVK+Xl5SUbGxsFBwcrKyvL9Ex6erpCQ0NVs2ZN2dvbq2XLlvruu+/M+pk7d66pfc2aNfXcc8+Z7i1btkz+/v6ytbVVtWrV1KFDB507d04HDhxQpUqV9Oeff0qSTp8+rUqVKqlXr16mthMmTNDjjz9uOl+zZo28vb1la2urf/3rX2bfBwAAAAAAAACAvytVwNCiRQutXr3adH41VJg/f74CAwPLprK/GTFihBITE7Vq1Spt3LhRW7Zs0Z49e265fUFBgYKDg+Xg4KAtW7YoMTFR9vb26tixoy5duqTLly+ra9euCgoK0k8//aTt27dr8ODBpvfq06eP6tSpo927d+vHH39UZGSkLC0tb2ns8+fP6+2339ann36qxMREZWdnm/3In5eXp86dO2vTpk3au3evOnbsqJCQENO+FklJSRo2bJjGjRun1NRUrVu3Tu3atZMkHT9+XL1799aLL76olJQUxcfHq1u3biouLlajRo1UrVo1JSQkSJK2bNlidi5JCQkJMhqNkq4EMN26dVNISIj27dungQMHKjIy8h/fLT8/X7m5uWYHAAAAAAAAAODBUKolkiZOnKhOnTrp0KFDunz5smbNmqVDhw5p27ZtZj9gl4WzZ89q0aJF+vzzz9W+fXtJ0oIFC1SrVq1b7mPp0qUqKirS/PnzTaHBggUL5OzsrPj4eLVo0UI5OTnq0qWL6tevL0ny9fU1tc/MzNTo0aPVsGFDSZKXl9ctj11QUKA5c+bo0UcflSQtWrRIvr6+2rVrl1q1aqXGjRurcePGpufHjx+vFStWaNWqVRo6dKgyMzNVpUoVdenSRQ4ODqpXr56aNm0q6UrAcPnyZXXr1k316tWTJPn7+5v6ateuneLj4/Xcc88pPj5e/fv31/z583X48GHVr19f27Zt0+uvvy5Jev/991W/fn1NmzZNkuTj46P9+/dr8uTJN3y3uLg4xcbG3vK3AAAAAAAAAADcP0o1g+Hxxx/Xvn37dPnyZfn7+2vDhg2qUaOGtm/frubNm5dpgT///LMKCgrUqlUr0zUnJyf5+Pjcch/Jyck6evSoHBwcZG9vL3t7e7m4uOjixYtKT0+Xi4uLwsPDFRwcrJCQEM2aNUvHjx83tR8xYoQGDhyoDh06aNKkSSXaZ8LCwkItW7Y0nTds2FDOzs5KSUmRdGUGw6hRo+Tr6ytnZ2fZ29srJSXFNIPhySefVL169fTwww+rb9++Wrx4sc6fPy9Jaty4sdq3by9/f391795dH330kc6cOWMaKygoSPHx8ZKuzFZ44oknTKHD7t27VVBQoDZt2kiSUlJSTCHIVTebjRIVFaWcnBzT8felnwAAAAAAAAAA97dSBQySVL9+fX300UfatWuXDh06pP/85z9m//f83WQwGFRcXGx2raCgwPR3Xl6emjdvrn379pkdR44c0fPPPy/pyoyG7du367HHHtPSpUvl7e2tHTt2SJJiYmJ08OBBPf3009q8ebP8/Py0YsWKMql91KhRWrFihSZOnKgtW7Zo37598vf316VLlyRJDg4O2rNnj5YsWSJ3d3e99dZbaty4sbKzs1W5cmVt3LhRa9eulZ+fn2bPni0fHx8dO3ZMkmQ0GnXo0CGlpaXp0KFDevzxx2U0GhUfH6+EhAS1aNFCdnZ2pa7d2tpajo6OZgcAAAAAAAAA4MFQ6oChsLBQy5Yt0/jx4zV+/HgtX75cly9fLsvaJEkPP/ywLC0ttXv3btO1nJwcHTlyxHTu6upqNuMgLS3N9H/5S1KzZs2UlpamGjVqqEGDBmaHk5OT6bmmTZsqKipK27Zt0yOPPKLPP//cdM/b21v//ve/tWHDBnXr1k0LFiy4pfovX75stiF0amqqsrOzTUswJSYmKjw8XM8884z8/f3l5uZ2zebKFhYW6tChg6ZMmaKffvpJGRkZ2rx5s6Qr4UqbNm0UGxurvXv3ysrKyhR++Pv7q2rVqpowYYKaNGkie3t7GY1GJSQkKD4+3rT/giTTsk1/dzVgAQAAAAAAAADgf5UqYDh48KC8vb3Vr18/rVixQitWrFC/fv3k5eWlAwcOlGmBDg4O6tevn0aPHq3vv/9eBw8e1IABA1SpUiXTfgpPPPGE5syZo7179yopKUkvv/yy2SbMffr0UfXq1RUaGqotW7bo2LFjio+P17Bhw/Trr7/q2LFjioqK0vbt2/XLL79ow4YNSktLk6+vry5cuKChQ4cqPj5ev/zyixITE7V7926zPRr+iaWlpV577TXt3LlTP/74o8LDw9W6dWvTkk9eXl76+uuvtW/fPiUnJ+v5559XUVGRqf23336rd999V/v27dMvv/yiTz/9VEVFRfLx8dHOnTs1ceJEJSUlKTMzU19//bX+/PNPU20Gg0Ht2rXT4sWLTWFCQECA8vPztWnTJgUFBZnGefnll5WWlqbRo0crNTVVn3/+uRYuXHg7/3QAAAAAAAAAgPtYqQKGgQMHqlGjRvr111+1Z88e7dmzR1lZWQoICNDgwYPLukZNnz5dgYGB6tKlizp06KA2bdrI19dXNjY2kqRp06bJw8NDbdu21fPPP69Ro0aZLf1jZ2enH374QXXr1lW3bt3k6+urAQMG6OLFi3J0dJSdnZ0OHz6sZ599Vt7e3ho8eLBeffVVvfTSS6pcubJOnTqlsLAweXt7q0ePHurUqdMtb25sZ2enMWPG6Pnnn1ebNm1kb2+vpUuXmr1b1apV9dhjjykkJETBwcFq1qyZ6b6zs7O+/vprPfHEE/L19dUHH3ygJUuWqFGjRnJ0dNQPP/ygzp07y9vbW2+++aamTZumTp06mdoHBQWpsLDQFDBUqlRJ7dq1M818uKpu3bpavny5Vq5cqcaNG+uDDz7QxIkTS/XvBQAAAAAAAAC4/xmK/3fzgltga2urpKQkNWrUyOz6gQMH1LJlS124cKHMCryec+fOqXbt2po2bZoGDBhwR8e6HQsXLlRERISys7PLu5S7Ijc3V05OTsrJyWE/BgAAAAAAAAC4R5XVb7mlmsHg7e2tEydOXHP95MmTatCgQamLuZG9e/dqyZIlSk9P1549e9SnTx9JUmhoaJmPBQAAAAAAAAAAbs7iVh/Mzc01/R0XF6dhw4YpJiZGrVu3lnRlQ+Bx48Zp8uTJZV+lpKlTpyo1NVVWVlZq3ry5tmzZourVq9+RsW5Vp06dtGXLluve+7//+z/VqlXrLlcEAAAAAAAAAMDdcctLJP19U2VJutrs6rW/nxcWFpZ1nfek33777YbLQbm4uMjFxeUuV1S+WCIJAAAAAAAAAO59ZfVb7i3PYPj+++9LPcj9qnbt2uVdAgAAAAAAAAAA5eKWA4agoKA7WQcAAAAAAAAAAKhAbjlguJ7z588rMzNTly5dMrseEBBwW0UBAAAAAAAAAIB7W6kChj///FP9+/fX2rVrr3v/QdmDAQAAAAAAAACAB1Wl0jSKiIhQdna2du7cKVtbW61bt06LFi2Sl5eXVq1aVdY1AgAAAAAAAACAe0ypAobNmzdr+vTpatGihSpVqqR69erphRde0JQpUxQXF3fL/RiNRkVERJSmBJPDhw+rdevWsrGxUZMmTW547X5z/vx5Pfvss3J0dJTBYFB2drY8PT01c+bM8i4NAAAAAAAAAPAAKNUSSefOnVONGjUkSVWrVtWff/4pb29v+fv7a8+ePWVa4M1ER0erSpUqSk1Nlb29/Q2v3W8WLVqkLVu2aNu2bapevbqcnJzKuyQAAAAAAAAAwAOkVDMYfHx8lJqaKklq3Lix5s2bp99++00ffPCB3N3dy7TAm0lPT9fjjz+uevXqqVq1aje8VlL/u3H1veJqXenp6fL19dUjjzwiNzc3GQyGcq4MAAAAAAAAAPAgKVXAMHz4cB0/flzSldkCa9eulYeHh2bNmqWJEyeWqK/Lly9r6NChcnJyUvXq1TV27FgVFxdLkgwGg1auXGn2vLOzsxYuXGi6/+OPP2rcuHEyGAyKiYm57jVJysrKUo8ePeTs7CwXFxeFhoYqIyPD1G94eLi6du2qt99+W7Vq1ZKPj89Naz9z5ozCwsJUtWpV2dnZqVOnTkpLS5Mk5ebmytbW9pqNsFesWCEHBwedP3++1HUZjUZNmzZNP/zwgwwGg4xG43Xry8zMVGhoqOzt7eXo6KgePXroxIkTkqScnBxVrlxZSUlJkqSioiK5uLiodevWpvb/+c9/5OHhcdPvAAAAAAAAAAB48JQqYHjhhRcUHh4uSWrevLl++eUXJSUl6ddff1XPnj1L1NeiRYtkYWGhXbt2adasWZo+fbrmz59/S22PHz+uRo0aaeTIkTp+/LhGjRp13WsFBQUKDg6Wg4ODtmzZosTERNnb26tjx45mMxU2bdqk1NRUbdy4Ud9+++1Nxw8PD1dSUpJWrVql7du3q7i4WJ07d1ZBQYEcHR3VpUsXff7552ZtFi9erK5du8rOzq7UdX399dcaNGiQAgMDdfz4cX399dfX1FZUVKTQ0FCdPn1aCQkJ2rhxo37++WfTv4+Tk5OaNGmi+Ph4SdL+/ftlMBi0d+9e5eXlSZISEhIUFBR0w/fPz89Xbm6u2QEAAAAAAAAAeDDc8h4MI0aMuOVOp0+ffsvPenh4aMaMGTIYDPLx8dH+/fs1Y8YMDRo06KZt3dzcZGFhIXt7e7m5uUmS7O3tr7n2n//8R0VFRZo/f75pKaEFCxbI2dlZ8fHxeuqppyRJVapU0fz582VlZXXTsdPS0rRq1SolJibqsccek3QlPPDw8NDKlSvVvXt39enTR3379tX58+dlZ2en3NxcrV69WitWrJAkLV26tNR12dnZycrKyvSO/2vTpk3av3+/jh07ZpqF8Omnn6pRo0bavXu3WrZsKaPRqPj4eI0aNUrx8fF68skndfjwYW3dulUdO3ZUfHy8Xn/99Rt+g7i4OMXGxt70WwEAAAAAAAAA7j+3HDDs3bv3lp4r6V4ArVu3NmsTGBioadOmqbCwsET9/JPk5GQdPXpUDg4OZtcvXryo9PR007m/v/8thQuSlJKSIgsLCz366KOma9WqVZOPj49SUlIkSZ07d5alpaVWrVqlXr16afny5XJ0dFSHDh3uWF1/r8/Dw8NsiSM/Pz85OzsrJSVFLVu2VFBQkD7++GMVFhYqISFBTz31lNzc3BQfH6+AgAAdPXr0hssvSVJUVJRZ8JSbm8uSSgAAAAAAAADwgLjlgOH777+/k3Vcl8FgMO3HcFVBQUGJ+8nLy1Pz5s21ePHia+65urqa/q5SpUrJi/wHVlZWeu655/T555+rV69e+vzzz9WzZ09ZWFiUa11XtWvXTmfPntWePXv0ww8/aOLEiXJzc9OkSZPUuHFj1apVS15eXjdsb21tLWtr6ztSGwAAAAAAAADg3nbLAcOdsnPnTrPzHTt2yMvLS5UrV5arq6tpM2npyrJEVzdHLolmzZpp6dKlqlGjhhwdHW+7Zkny9fXV5cuXtXPnTtMSSadOnVJqaqr8/PxMz/Xp00dPPvmkDh48qM2bN2vChAl3tK6/15eVlaWsrCzTrIJDhw4pOzvbVJ+zs7MCAgI0Z84cWVpaqmHDhqpRo4Z69uypb7/99h/3XwAAAAAAAAAAPNhKtclzWcrMzNSIESOUmpqqJUuWaPbs2Ro+fLgk6YknntCcOXO0d+9eJSUl6eWXX5alpWWJx+jTp4+qV6+u0NBQbdmyRceOHVN8fLyGDRumX3/9tVR1e3l5KTQ0VIMGDdLWrVuVnJysF154QbVr11ZoaKjpuXbt2snNzU19+vTRQw89ZLak0p2o66oOHTrI399fffr00Z49e7Rr1y6FhYUpKChILVq0MD1nNBq1ePFiU5jg4uIiX19fLV26lIABAAAAAAAAAHBD5R4whIWF6cKFC2rVqpVeffVVDR8+XIMHD5YkTZs2TR4eHmrbtq2ef/55jRo1SnZ2diUew87OTj/88IPq1q2rbt26ydfXVwMGDNDFixdva+bAggUL1Lx5c3Xp0kWBgYEqLi7WmjVrzEIQg8Gg3r17Kzk5WX369LkrdV0d95tvvlHVqlXVrl07dejQQQ8//LCWLl1q9lxQUJAKCwvN9lowGo3XXAMAAAAAAAAA4O8Mxf+7yQFQSrm5uXJyclJOTk6ZL/kEAAAAAAAAACgbZfVbbrnPYAAAAAAAAAAAABUPAcMNbNmyRfb29jc8AAAAAAAAAAB4kFmUdwH3qhYtWmjfvn3lXQYAAAAAAAAAAPckAoYbsLW1VYMGDcq7DAAAAAAAAAAA7kkskQQAAAAAAAAAAEqMgAEAAAAAAAAAAJQYAQMAAAAAAAAAACgxAgYAAAAAAAAAAFBiBAwAAAAAAAAAAKDECBjuUxkZGTIYDNq3b195lwIAAAAAAAAAuA8RMNzEpUuXyruEcldQUFDeJQAAAAAAAAAA7jEVPmD49ttv5ezsrMLCQknSvn37ZDAYFBkZaXpm4MCBeuGFF3Tq1Cn17t1btWvXlp2dnfz9/bVkyRKz/oxGo4YOHaqIiAhVr15dwcHBkqQDBw6oU6dOsre3V82aNdW3b1/99ddfkv7fbIH/PYxGoyRp4cKFcnZ21rfffisfHx/Z2dnpueee0/nz57Vo0SJ5enqqatWqGjZsmOk9JOmzzz5TixYt5ODgIDc3Nz3//PM6efKk6f6ZM2fUp08fubq6ytbWVl5eXlqwYIEk6aGHHpIkNW3a1KwWSZo/f758fX1lY2Ojhg0bau7cuaZ7V99l6dKlCgoKko2NjRYvXny7/0wAAAAAAAAAgPuMRXkXcLvatm2rs2fPau/evWrRooUSEhJUvXp1xcfHm55JSEjQmDFjdPHiRTVv3lxjxoyRo6OjVq9erb59+6p+/fpq1aqV6flFixbplVdeUWJioiQpOztbTzzxhAYOHKgZM2bowoULGjNmjHr06KHNmzfLw8NDx48fN7X/448/1KFDB7Vr18507fz583r33Xf1xRdf6OzZs+rWrZueeeYZOTs7a82aNfr555/17LPPqk2bNurZs6ekKzMHxo8fLx8fH508eVIjRoxQeHi41qxZI0kaO3asDh06pLVr16p69eo6evSoLly4IEnatWuXWrVqpe+++06NGjWSlZWVJGnx4sV66623NGfOHDVt2lR79+7VoEGDVKVKFfXr189Ub2RkpKZNm6amTZvKxsbmut8+Pz9f+fn5pvPc3NxS/RsCAAAAAAAAACoeQ3FxcXF5F3G7mjdvrt69e2vUqFF65pln1LJlS8XGxurUqVPKyclRnTp1dOTIEXl5eV3TtkuXLmrYsKGmTp0q6coMhtzcXO3Zs8f0zIQJE7RlyxatX7/edO3XX3+Vh4eHUlNT5e3tbbp+8eJFGY1Gubq66ptvvlGlSpW0cOFC9e/fX0ePHlX9+vUlSS+//LI+++wznThxQvb29pKkjh07ytPTUx988MF13zMpKUktW7bU2bNnZW9vr//v//v/VL16dX3yySfXPJuRkaGHHnpIe/fuVZMmTUzXGzRooPHjx6t3795m77dmzRpt27bN1G7mzJkaPnz4P373mJgYxcbGXnM9JydHjo6O/9gWAAAAAAAAAFA+cnNz5eTkdNu/5Vb4JZIkKSgoSPHx8SouLtaWLVvUrVs3+fr6auvWrUpISFCtWrXk5eWlwsJCjR8/Xv7+/nJxcZG9vb3Wr1+vzMxMs/6aN29udp6cnKzvv/9e9vb2pqNhw4aSpPT0dLNnX3zxRZ09e1aff/65KlX6f5/Xzs7OFC5IUs2aNeXp6WkKF65e+/sSSD/++KNCQkJUt25dOTg4KCgoSJJM9b7yyiv64osv1KRJE73++uvatm3bP36nc+fOKT09XQMGDDB7lwkTJlzzHi1atPjHviQpKipKOTk5piMrK+umbQAAAAAAAAAA94cKv0SSdGXWwSeffKLk5GRZWlqqYcOGMhqNio+P15kzZ0w/zL/zzjuaNWuWZs6cKX9/f1WpUkURERHXbORcpUoVs/O8vDyFhIRo8uTJ14zt7u5u+nvChAlav369du3aJQcHB7PnLC0tzc4NBsN1rxUVFUm6EgYEBwcrODhYixcvlqurqzIzMxUcHGyqt1OnTvrll1+0Zs0abdy4Ue3bt9err75qmo3xv/Ly8iRJH330kR599FGze5UrV/7Hb3A91tbWsra2vulzAAAAAAAAAID7z30RMFzdh2HGjBmmMMFoNGrSpEk6c+aMRo4cKUlKTExUaGioXnjhBUlSUVGRjhw5Ij8/v3/sv1mzZlq+fLk8PT1lYXH9T7Z8+XKNGzdOa9euNZupUFqHDx/WqVOnNGnSJHl4eEi6skTS/3J1dVW/fv3Ur18/tW3bVqNHj9bUqVNNey78fdPomjVrqlatWvr555/Vp0+f264RAAAAAAAAAPDgui+WSKpataoCAgK0ePFiGY1GSVK7du20Z88eHTlyxBQ6eHl5aePGjdq2bZtSUlL00ksv6cSJEzft/9VXX9Xp06fVu3dv7d69W+np6Vq/fr369++vwsJCHThwQGFhYRozZowaNWqkP/74Q3/88YdOnz5d6neqW7eurKysNHv2bP38889atWqVxo8fb/bMW2+9pW+++UZHjx7VwYMH9e2338rX11eSVKNGDdna2mrdunU6ceKEcnJyJEmxsbGKi4vTu+++qyNHjmj//v1asGCBpk+fXupaAQAAAAAAAAAPnvsiYJCu7MNQWFhoChhcXFzk5+cnNzc3+fj4SJLefPNNNWvWTMHBwTIajXJzc1PXrl1v2netWrWUmJiowsJCPfXUU/L391dERIScnZ1VqVIlJSUl6fz585owYYLc3d1NR7du3Ur9Pq6urlq4cKG++uor+fn5adKkSdcsfWRlZaWoqCgFBASoXbt2qly5sr744gtJkoWFhd59913NmzdPtWrVUmhoqCRp4MCBmj9/vhYsWCB/f38FBQVp4cKFeuihh0pdKwAAAAAAAADgwWMoLi4uLu8icH8oq53HAQAAAAAAAAB3Tln9lnvfzGAAAAAAAAAAAAB3DwEDAAAAAAAAAAAoMQIGAAAAAAAAAABQYgQMAAAAAAAAAACgxAgYAAAAAAAAAABAiREwAAAAAAAAAACAEiNgAAAAAAAAAAAAJUbAAAAAAAAAAAAASoyAoQIyGo2KiIi4o2PExMSoSZMmd3QMAAAAAAAAAEDFRcAAAAAAAAAAAABKjIABAAAAAAAAAACUGAFDBffZZ5+pRYsWcnBwkJubm55//nmdPHnSdD8+Pl4Gg0GbNm1SixYtZGdnp8cee0ypqalm/UyaNEk1a9aUg4ODBgwYoIsXL97tVwEAAAAAAAAAVCAEDBVcQUGBxo8fr+TkZK1cuVIZGRkKDw+/5rk33nhD06ZNU1JSkiwsLPTiiy+a7n355ZeKiYnRxIkTlZSUJHd3d82dO/cuvgUAAAAAAAAAoKKxKO8CcHv+HhQ8/PDDevfdd9WyZUvl5eXJ3t7edO/tt99WUFCQJCkyMlJPP/20Ll68KBsbG82cOVMDBgzQgAEDJEkTJkzQd999d9NZDPn5+crPzzed5+bmluWrAQAAAAAAAADuYcxgqOB+/PFHhYSEqG7dunJwcDCFCJmZmWbPBQQEmP52d3eXJNNSSikpKXr00UfNng8MDLzp2HFxcXJycjIdHh4et/UuAAAAAAAAAICKg4ChAjt37pyCg4Pl6OioxYsXa/fu3VqxYoUk6dKlS2bPWlpamv42GAySpKKiotsaPyoqSjk5OaYjKyvrtvoDAAAAAAAAAFQcBAwV2OHDh3Xq1ClNmjRJbdu2VcOGDc02eL5Vvr6+2rlzp9m1HTt23LSdtbW1HB0dzQ4AAAAAAAAAwIOBgKECq1u3rqysrDR79mz9/PPPWrVqlcaPH1/ifoYPH65PPvlECxYs0JEjRxQdHa2DBw/egYoBAAAAAAAAAPcLAoYKzNXVVQsXLtRXX30lPz8/TZo0SVOnTi1xPz179tTYsWP1+uuvq3nz5vrll1/0yiuv3IGKAQAAAAAAAAD3C0NxcXFxeReB+0Nubq6cnJyUk5PDckkAAAAAAAAAcI8qq99ymcEAAAAAAAAAAABKjIABAAAAAAAAAACUGAEDAAAAAAAAAAAoMQIGAAAAAAAAAABQYgQMAAAAAAAAAACgxAgYAAAAAAAAAABAiREwAAAAAAAAAACAEiNgAAAAAAAAAAAAJUbAUAEYjUZFRESUdxkAAAAAAAAAAJhYlHcBuLmvv/5alpaW5V0GAAAAAAAAAAAmBAwVgIuLS3mXAAAAAAAAAACAGZZIqgD+vkSSp6enJkyYoLCwMNnb26tevXpatWqV/vzzT4WGhsre3l4BAQFKSkoytT916pR69+6t2rVry87OTv7+/lqyZMk1YwwdOlRDhw6Vk5OTqlevrrFjx6q4uPhuvioAAAAAAAAAoIIgYKiAZsyYoTZt2mjv3r16+umn1bdvX4WFhemFF17Qnj17VL9+fYWFhZnCgYsXL6p58+ZavXq1Dhw4oMGDB6tv377atWuXWb+LFi2ShYWFdu3apVmzZmn69OmaP39+ebwiAAAAAAAAAOAeZyjmf1G/5xmNRjVp0kQzZ86Up6en2rZtq88++0yS9Mcff8jd3V1jx47VuHHjJEk7duxQYGCgjh8/Ljc3t+v22aVLFzVs2FBTp041jXHy5EkdPHhQBoNBkhQZGalVq1bp0KFD1+0jPz9f+fn5pvPc3Fx5eHgoJydHjo6OZfb+AAAAAAAAAICyk5ubKycnp9v+LZcZDBVQQECA6e+aNWtKkvz9/a+5dvLkSUlSYWGhxo8fL39/f7m4uMje3l7r169XZmamWb+tW7c2hQuSFBgYqLS0NBUWFl63jri4ODk5OZkODw+PsnlBAAAAAAAAAMA9j4ChArK0tDT9fTUQuN61oqIiSdI777yjWbNmacyYMfr++++1b98+BQcH69KlS7dVR1RUlHJyckxHVlbWbfUHAAAAAAAAAKg4LMq7ANx5iYmJCg0N1QsvvCDpSvBw5MgR+fn5mT23c+dOs/MdO3bIy8tLlStXvm6/1tbWsra2vjNFAwAAAAAAAADuacxgeAB4eXlp48aN2rZtm1JSUvTSSy/pxIkT1zyXmZmpESNGKDU1VUuWLNHs2bM1fPjwcqgYAAAAAAAAAHCvYwbDA+DNN9/Uzz//rODgYNnZ2Wnw4MHq2rWrcnJyzJ4LCwvThQsX1KpVK1WuXFnDhw/X4MGDy6lqAAAAAAAAAMC9zFBcXFxc3kWg/BmNRjVp0kQzZ84sdR9ltfM4AAAAAAAAAODOKavfclkiCQAAAAAAAAAAlBgBAwAAAAAAAAAAKDH2YIAkKT4+vrxLAAAAAAAAAABUIMxgAAAAAAAAAAAAJUbAAAAAAAAAAAAASoyAAQAAAAAAAAAAlBgBAwAAAAAAAAAAKDECBgAAAAAAAAAAUGIEDA8Ao9GoiIiIG94PDw9X165d71o9AAAAAAAAAICKj4DhPhIfHy+DwaDs7OwStZs1a5YWLlxoOr9ZIAEAAAAAAAAAgEV5F4ArLl26JCsrq3IZ28nJqVzGBQAAAAAAAABUXMxgKCdGo1FDhw5VRESEqlevruDgYCUkJKhVq1aytraWu7u7IiMjdfnyZVOb/Px8DRs2TDVq1JCNjY0ef/xx7d69W5KUkZGhf/3rX5KkqlWrymAwKDw8/Lpjr169Wk5OTlq8eLEk8yWSwsPDlZCQoFmzZslgMMhgMCgjI+OOfQcAAAAAAAAAQMVEwFCOFi1aJCsrKyUmJiomJkadO3dWy5YtlZycrPfff18ff/yxJkyYYHr+9ddf1/Lly7Vo0SLt2bNHDRo0UHBwsE6fPi0PDw8tX75ckpSamqrjx49r1qxZ14z5+eefq3fv3lq8eLH69Olzzf1Zs2YpMDBQgwYN0vHjx3X8+HF5eHjcuY8AAAAAAAAAAKiQWCKpHHl5eWnKlCmSpE8//VQeHh6aM2eODAaDGjZsqN9//11jxozRW2+9pQsXLuj999/XwoUL1alTJ0nSRx99pI0bN+rjjz/W6NGj5eLiIkmqUaOGnJ2drxnvvffe0xtvvKH//ve/CgoKum5NTk5OsrKykp2dndzc3P6x/vz8fOXn55vOc3NzS/MZAAAAAAAAAAAVEAFDOWrevLnp75SUFAUGBspgMJiutWnTRnl5efr111+VnZ2tgoICtWnTxnTf0tJSrVq1UkpKyk3HWrZsmU6ePKnExES1bNmyTOqPi4tTbGxsmfQFAAAAAAAAAKhYWCKpHFWpUuWujdW0aVO5urrqk08+UXFxcZn0GRUVpZycHNORlZVVJv0CAAAAAAAAAO59BAz3CF9fX23fvt3sx//ExEQ5ODioTp06ql+/vmm/hqsKCgq0e/du+fn5SZKsrKwkSYWFhdf0X79+fX3//ff65ptv9Nprr/1jLVZWVtft439ZW1vL0dHR7AAAAAAAAAAAPBgIGO4RQ4YMUVZWll577TUdPnxY33zzjaKjozVixAhVqlRJVapU0SuvvKLRo0dr3bp1OnTokAYNGqTz589rwIABkqR69erJYDDo22+/1Z9//qm8vDyzMby9vfX9999r+fLlioiIuGEtnp6e2rlzpzIyMvTXX3+pqKjoTr46AAAAAAAAAKACImC4R9SuXVtr1qzRrl271LhxY7388ssaMGCA3nzzTdMzkyZN0rPPPqu+ffuqWbNmOnr0qNavX6+qVaua+oiNjVVkZKRq1qypoUOHXjOOj4+PNm/erCVLlmjkyJHXrWXUqFGqXLmy/Pz85OrqqszMzDvz0gAAAAAAAACACstQXFYL8uOBl5ubKycnJ+Xk5LBcEgAAAAAAAADco8rqt1xmMAAAAAAAAAAAgBIjYAAAAAAAAAAAACVGwAAAAAAAAAAAAEqMgAEAAAAAAAAAAJQYAQMAAAAAAAAAACgxAgYAAAAAAAAAAFBiBAwAAAAAAAAAAKDECBgAAAAAAAAAAECJPTABg9FoVERERIUf40Y8PT01c+bMW34+Pj5eBoNB2dnZd6wmAAAAAAAAAMD964EJGAAAAAAAAAAAQNkhYAAAAAAAAAAAACX2QAYMZ86cUVhYmKpWrSo7Ozt16tRJaWlppvunTp1S7969Vbt2bdnZ2cnf319Lliwx6+PcuXMKCwuTvb293N3dNW3atGvG8fT01IQJE0zP1atXT6tWrdKff/6p0NBQ2dvbKyAgQElJSWbtli9frkaNGsna2lqenp7X9H3y5EmFhITI1tZWDz30kBYvXmx2PyMjQwaDQfv27TNdy87OlsFgUHx8/A2/y9atW9W2bVvZ2trKw8NDw4YN07lz5272OQEAAAAAAAAAD6AHMmAIDw9XUlKSVq1ape3bt6u4uFidO3dWQUGBJOnixYtq3ry5Vq9erQMHDmjw4MHq27evdu3aZepj9OjRSkhI0DfffKMNGzYoPj5ee/bsuWasGTNmqE2bNtq7d6+efvpp9e3bV2FhYXrhhRe0Z88e1a9fX2FhYSouLpYk/fjjj+rRo4d69eql/fv3KyYmRmPHjtXChQvN6s/KytL333+vZcuWae7cuTp58uRtfZP09HR17NhRzz77rH766SctXbpUW7du1dChQ2+rXwAAAAAAAADA/cmivAu429LS0rRq1SolJibqsccekyQtXrxYHh4eWrlypbp3767atWtr1KhRpjavvfaa1q9fry+//FKtWrVSXl6ePv74Y/3nP/9R+/btJUmLFi1SnTp1rhmvc+fOeumllyRJb731lt5//321bNlS3bt3lySNGTNGgYGBOnHihNzc3DR9+nS1b99eY8eOlSR5e3vr0KFDeueddxQeHq4jR45o7dq12rVrl1q2bClJ+vjjj+Xr63tb3yUuLk59+vQxbVLt5eWld999V0FBQXr//fdlY2NzTZv8/Hzl5+ebznNzc2+rBgAAAAAAAABAxfHAzWBISUmRhYWFHn30UdO1atWqycfHRykpKZKkwsJCjR8/Xv7+/nL5/7V391FV1fkexz+Hh3OEjhxEFMQBrUR8AkW5KeID68pNzZnRsaVNQw9kqaUkLrVrzpii04RNTzreydvkBHZr6VRLrSYfxjEho8RkfCIJ0WxwvJhNCWgpIvzuH7PctxNaHSEPcN6vtfZa7P377t/ve1j71+7w9bd3WJicTqe2bt2qiooKSf/61/4XLlxw6yMsLExxcXGNxktISLB+joiIkCTFx8c3OnZpBUJpaalSUlLc+khJSVF5ebnq6+ut/AcNGmS19+rVS6GhoVf1+7hk//79ysvLk9PptLbRo0eroaFBx44du+w5OTk5crlc1hYdHd2kHAAAAAAAAAAArYfPrWD4Pp544gmtWLFCy5cvV3x8vK677jrNnj1bFy5c8LivwMBA62ebzXbFYw0NDU3M+v/5+f2rbnTpsUuSrMc/XcnZs2c1ffp0zZo1q1FbTEzMZc9ZsGCB5syZY+3X1NRQZAAAAAAAAAAAH+FzKxh69+6tixcvqqioyDr2+eefq6ysTH369JEkFRYWavz48brjjjvUv39/3XDDDTp8+LAVf+ONNyowMNCtj9OnT7vFNCW/wsJCt2OFhYXq2bOn/P391atXL128eFHFxcVWe1lZmaqqqqz9Tp06SZIqKyutY19/4fPlDBw4UIcOHVKPHj0abXa7/bLnOBwOhYSEuG0AAAAAAAAAAN/gcwWG2NhYjR8/XlOnTtW7776r/fv364477lDXrl01fvx4K2bbtm167733VFpaqunTp+vTTz+1+nA6nbr33nv10EMP6e2331ZJSYkyMjKslQNNMXfuXG3fvl2//vWvdfjwYa1Zs0b/9V//Zb0TIi4uTmPGjNH06dNVVFSk4uJi3XfffQoKCrL6CAoK0pAhQ7Rs2TKVlpaqoKBACxcu/NZx58+fr/fee0+ZmZnat2+fysvL9frrr/OSZwAAAAAAAADAZflcgUGScnNzNWjQIP34xz9WcnKyjDHatGmT9eiihQsXauDAgRo9erRSU1MVGRmpCRMmuPXxxBNPaPjw4frJT36itLQ0DRs2zO29CFdr4MCBeuWVV7Ru3Tr169dPixYt0tKlS5WRkeGWf1RUlEaOHKmJEydq2rRp6ty5s1s/L7zwgi5evKhBgwZp9uzZevTRR7913ISEBBUUFOjw4cMaPny4EhMTtWjRIkVFRTX5MwEAAAAAAAAA2h6b+fqD+oEmqKmpkcvlUnV1NY9LAgAAAAAAAIAWqrn+luuTKxgAAAAAAAAAAEDTUGAAAAAAAAAAAAAeo8AAAAAAAAAAAAA8RoEBAAAAAAAAAAB4jAIDAAAAAAAAAADwGAUGAAAAAAAAAADgMQoMAAAAAAAAAADAYxQYAAAAAAAAAACAxygwAAAAAAAAAAAAj1FguErGGE2bNk1hYWGy2Wzat2+ft1O6rOzsbA0YMMDbaQAAAAAAAAAA2hgKDFdpy5YtysvL05///GdVVlYqMTFRGzdu9HZajcybN0/bt2+39jMyMjRhwgTvJQQAAAAAAAAAaBMCvJ1Aa3X06FF16dJFQ4cO9XYql2WMUX19vZxOp5xOp7fTAQAAAAAAAAC0MaxguAoZGRl68MEHVVFRIZvNpu7du0uSfvazn7ntX3o80XPPPafo6GgFBwdr8uTJqq6u/s4xSkpK5Ofnp88++0yS9MUXX8jPz08///nPrZhHH31Uw4YNkyTl5+fLZrNp8+bNGjRokBwOh9599123RyRlZ2drzZo1ev3112Wz2WSz2ZSfny9JOn78uCZPnqzQ0FCFhYVp/Pjx+uSTT5rl9wUAAAAAAAAAaHsoMFyFFStWaOnSpfrRj36kyspKffDBB5Kk3Nxct31JOnLkiF555RW9+eab2rJli/bu3asZM2Z85xh9+/ZVx44dVVBQIEnauXOn274kFRQUKDU11e28hx9+WMuWLVNpaakSEhLc2ubNm6fJkydrzJgxqqysVGVlpYYOHaq6ujqNHj1a7du3186dO1VYWCin06kxY8bowoULV8yxtrZWNTU1bhsAAAAAAAAAwDdQYLgKLpdL7du3l7+/vyIjI9WpUydJUmhoqNu+JJ0/f14vvviiBgwYoBEjRmjlypVat26dTp48+a1j2Gw2jRgxwlphkJ+fr3vuuUe1tbX66KOPVFdXp/fee08jR450O2/p0qX6j//4D914440KCwtza3M6nQoKCpLD4VBkZKQiIyNlt9v1pz/9SQ0NDVq9erXi4+PVu3dv5ebmqqKiwhr/cnJycuRyuawtOjrag98iAAAAAAAAAKA1o8DwA4uJiVHXrl2t/eTkZDU0NKisrOw7zx05cqT1B/6CggL9+7//u1V0+OCDD1RXV6eUlBS3c5KSkjzOcf/+/Tpy5Ijat29vvbMhLCxM58+f19GjR6943oIFC1RdXW1tx48f93hsAAAAAAAAAEDrxEueW7DU1FTNnj1b5eXlOnTokIYNG6aPPvpI+fn5On36tJKSkhQcHOx2znXXXefxOGfPntWgQYP08ssvN2r7+mqMb3I4HHI4HB6PBwAAAAAAAABo/SgwNJPAwEDV19c3Ol5RUaH//d//VVRUlCRp165d8vPzU1xc3Hf2GR8frw4dOujRRx/VgAED5HQ6lZqaqscff1ynT59u9P6F78NutzfKc+DAgfrTn/6kzp07KyQkxOM+AQAAAAAAAAC+h0ckNZPu3btr+/btOnnypE6fPm0db9eune6++27t379fO3fu1KxZszR58mRFRkZ+Z5+X3sPw8ssvW8WEhIQE1dbWavv27Y3ev/B98zxw4IDKysr0z3/+U3V1dUpPT1d4eLjGjx+vnTt36tixY8rPz9esWbP0j3/8w+MxAAAAAAAAAABtHwWGZvLUU09p27Ztio6OVmJionW8R48emjhxom655RbdfPPNSkhI0LPPPvu9+x05cqTq6+utAoOfn59GjBghm83W6P0L38fUqVMVFxenpKQkderUSYWFhQoODtY777yjmJgYTZw4Ub1799a9996r8+fPs6IBAAAAAAAAAHBZNmOM8XYSbVV2drY2btyoffv2eTuVa6KmpkYul0vV1dUUJgAAAAAAAACghWquv+WyggEAAAAAAAAAAHiMAoMXOZ3OK247d+70dnoAAAAAAAAAAFwRj0jyoiNHjlyxrWvXrgoKCrqG2TQdj0gCAAAAAAAAgJavuf6WG9CMOcFDPXr08HYKAAAAAAAAAABcFR6RBAAAAAAAAAAAPEaBAQAAAAAAAAAAeIwCAwAAAAAAAAAA8BgFBgAAAAAAAAAA4DEKDC1Idna2BgwY8K0xn3zyiWw2m/bt2ydJys/Pl81mU1VV1Q+eHwAAAAAAAAAAlwR4OwFcWUZGhqqqqrRx40brWHR0tCorKxUeHu69xAAAAAAAAAAAPo8CQyvj7++vyMhIb6cBAAAAAAAAAPBxPCLpKqWmpurBBx/U7Nmz1aFDB0VEROj555/Xl19+qXvuuUft27dXjx49tHnzZklSXl6eQkND3frYuHGjbDbbZfvPzs7WmjVr9Prrr8tms8lmsyk/P7/RI5IuKS4uVlJSkoKDgzV06FCVlZW5ta9atUo33nij7Ha74uLi9D//8z9u7TabTatWrdLYsWMVFBSkG264Qa+99lrTfkkAAAAAAAAAgDaLAkMTrFmzRuHh4dq9e7cefPBBPfDAA5o0aZKGDh2qv/3tb7r55pt155136quvvvK473nz5mny5MkaM2aMKisrVVlZqaFDh14x/le/+pWeeuop7dmzRwEBAZoyZYrVtmHDBmVlZWnu3LkqKSnR9OnTdc8992jHjh1ufTzyyCO69dZbtX//fqWnp+vnP/+5SktLrzhmbW2tampq3DYAAAAAAAAAgG+gwNAE/fv318KFCxUbG6sFCxaoXbt2Cg8P19SpUxUbG6tFixbp888/14EDBzzu2+l0KigoSA6HQ5GRkYqMjJTdbr9i/G9+8xuNHDlSffr00cMPP6z33ntP58+flyQ9+eSTysjI0IwZM9SzZ0/NmTNHEydO1JNPPunWx6RJk3TfffepZ8+e+vWvf62kpCStXLnyimPm5OTI5XJZW3R0tMefEwAAAAAAAADQOlFgaIKEhATrZ39/f3Xs2FHx8fHWsYiICEnSqVOnrmkuXbp0cRu3tLRUKSkpbvEpKSmNVickJyc32v+2FQwLFixQdXW1tR0/frxJnwEAAAAAAAAA0HrwkucmCAwMdNu32Wxuxy69X6GhoUF+fn4yxrjF19XV/SC5fH3cH5LD4ZDD4fhBxwAAAAAAAAAAtEysYLhGOnXqpDNnzujLL7+0jn3zRc3fZLfbVV9f3+Sxe/furcLCQrdjhYWF6tOnj9uxXbt2Ndrv3bt3k8cHAAAAAAAAALQ9rGC4RgYPHqzg4GD98pe/1KxZs1RUVKS8vLxvPad79+7aunWrysrK1LFjR7lcrqsa+6GHHtLkyZOVmJiotLQ0vfnmm1q/fr3++te/usW9+uqrSkpK0rBhw/Tyyy9r9+7d+uMf/3hVYwIAAAAAAAAA2jZWMFwjYWFheumll7Rp0ybFx8dr7dq1ys7O/tZzpk6dqri4OCUlJalTp06NViF8XxMmTNCKFSv05JNPqm/fvnruueeUm5ur1NRUt7glS5Zo3bp1SkhI0Isvvqi1a9c2WuUAAAAAAAAAAIAk2cw3XwwAn2Sz2bRhwwZNmDDhqvuoqamRy+VSdXW1QkJCmi85AAAAAAAAAECzaa6/5bKCAQAAAAAAAAAAeIwCAwAAAAAAAAAA8BgveYYkiSdlAQAAAAAAAAA8wQoGAAAAAAAAAADgMQoMAAAAAAAAAADAYxQYAAAAAAAAAACAxygwAAAAAAAAAAAAj1FgAAAAAAAAAAAAHqPA4IO6d++u5cuXf2vMRx99pCFDhqhdu3YaMGDANckLAAAAAAAAANB6BHg7AbRMixcv1nXXXaeysjI5nU5vpwMAAAAAAAAAaGEoMOCyjh49qnHjxqlbt27eTgUAAAAAAAAA0ALxiKQ2KDU1VZmZmcrMzJTL5VJ4eLgeeeQRGWOsmK+++kpTpkxR+/btFRMToz/84Q9Wm81mU3FxsZYuXSqbzabs7GwvfAoAAAAAAAAAQEtGgaGNWrNmjQICArR7926tWLFCTz/9tFavXm21P/XUU0pKStLevXs1Y8YMPfDAAyorK5MkVVZWqm/fvpo7d64qKys1b968y45RW1urmpoatw0AAAAAAAAA4BsoMLRR0dHReuaZZxQXF6f09HQ9+OCDeuaZZ6z2W265RTNmzFCPHj00f/58hYeHa8eOHZKkyMhIBQQEyOl0KjIy8orvYMjJyZHL5bK26Ojoa/LZAAAAAAAAAADeR4GhjRoyZIhsNpu1n5ycrPLyctXX10uSEhISrDabzabIyEidOnXKozEWLFig6upqazt+/HjzJA8AAAAAAAAAaPF4ybOPCgwMdNu32WxqaGjwqA+HwyGHw9GcaQEAAAAAAAAAWglWMLRRRUVFbvu7du1SbGys/P39vZQRAAAAAAAAAKAtocDQRlVUVGjOnDkqKyvT2rVrtXLlSmVlZXk7LQAAAAAAAABAG8Ejktqou+66S+fOndNNN90kf39/ZWVladq0ad5OCwAAAAAAAADQRtiMMcbbSaB5paamasCAAVq+fPk1HbempkYul0vV1dUKCQm5pmMDAAAAAAAAAL6f5vpbLo9IAgAAAAAAAAAAHqPAAAAAAAAAAAAAPMY7GNqg/Px8b6cAAAAAAAAAAGjjWMEAAAAAAAAAAAA8RoEBAAAAAAAAAAB4jAIDAAAAAAAAAADwGAUGAAAAAAAAAADgMQoMAAAAAAAAAADAYxQYcFkZGRmaMGGCt9MAAAAAAAAAALRQFBgAAAAAAAAAAIDHArydAFqW+vp62Ww2b6cBAAAAAAAAAGjhWMHQyqWmpiozM1OZmZlyuVwKDw/XI488ImOMJKm2tlbz5s1T165ddd1112nw4MHKz8+3zs/Ly1NoaKjeeOMN9enTRw6HQxUVFV76NAAAAAAAAACA1oICQxuwZs0aBQQEaPfu3VqxYoWefvpprV69WpKUmZmp999/X+vWrdOBAwc0adIkjRkzRuXl5db5X331lR5//HGtXr1aH374oTp37vy9xq2trVVNTY3bBgAAAAAAAADwDTwiqQ2Ijo7WM888I5vNpri4OB08eFDPPPOMRo8erdzcXFVUVCgqKkqSNG/ePG3ZskW5ubl67LHHJEl1dXV69tln1b9/f4/GzcnJ0ZIlS5r98wAAAAAAAAAAWj5WMLQBQ4YMcXtvQnJyssrLy3Xw4EHV19erZ8+ecjqd1lZQUKCjR49a8Xa7XQkJCR6Pu2DBAlVXV1vb8ePHm+XzAAAAAAAAAABaPlYwtGFnz56Vv7+/iouL5e/v79bmdDqtn4OCgq7qxc4Oh0MOh6PJeQIAAAAAAAAAWh8KDG1AUVGR2/6uXbsUGxurxMRE1dfX69SpUxo+fLiXsgMAAAAAAAAAtEU8IqkNqKio0Jw5c1RWVqa1a9dq5cqVysrKUs+ePZWenq677rpL69ev17Fjx7R7927l5OTorbfe8nbaAAAAAAAAAIBWjBUMbcBdd92lc+fO6aabbpK/v7+ysrI0bdo0SVJubq4effRRzZ07VydOnFB4eLiGDBmiH//4x17OGgAAAAAAAADQmtmMMcbbSeDqpaamasCAAVq+fLm3U1FNTY1cLpeqq6sVEhLi7XQAAAAAAAAAAJfRXH/L5RFJAAAAAAAAAADAYxQYAAAAAAAAAACAx3gHQyuXn5/v7RQAAAAAAAAAAD6IFQwAAAAAAAAAAMBjFBgAAAAAAAAAAIDHKDAAAAAAAAAAAACPUWAAAAAAAAAAAAAeo8AAAAAAAAAAAAA8RoEBAAAAAAAAAAB4jAIDAAAAAAAAAADwGAUGAAAAAAAAAADgMQoMbcxrr72m+Ph4BQUFqWPHjkpLS9OXX36pjIwMTZgwQUuWLFGnTp0UEhKi+++/XxcuXJAkvfjii+rYsaNqa2vd+pswYYLuvPNOb3wUAAAAAAAAAEALRoGhDamsrNTtt9+uKVOmqLS0VPn5+Zo4caKMMZKk7du3W8fXrl2r9evXa8mSJZKkSZMmqb6+Xm+88YbV36lTp/TWW29pypQplx2vtrZWNTU1bhsAAAAAAAAAwDdQYGhDKisrdfHiRU2cOFHdu3dXfHy8ZsyYIafTKUmy2+164YUX1LdvX40bN05Lly7V7373OzU0NCgoKEi/+MUvlJuba/X30ksvKSYmRqmpqZcdLycnRy6Xy9qio6OvxccEAAAAAAAAALQAFBjakP79+2vUqFGKj4/XpEmT9Pzzz+v06dNu7cHBwdZ+cnKyzp49q+PHj0uSpk6dqr/85S86ceKEJCkvL08ZGRmy2WyXHW/BggWqrq62tkv9AAAAAAAAAADaPgoMbYi/v7+2bdumzZs3q0+fPlq5cqXi4uJ07Nix73V+YmKi+vfvrxdffFHFxcX68MMPlZGRccV4h8OhkJAQtw0AAAAAAAAA4BsCvJ0AmpfNZlNKSopSUlK0aNEidevWTRs2bJAk7d+/X+fOnVNQUJAkadeuXXI6nW6PNrrvvvu0fPlynThxQmlpaTz2CAAAAAAAAABwWaxgaEOKior02GOPac+ePaqoqND69ev12WefqXfv3pKkCxcu6N5779WhQ4e0adMmLV68WJmZmfLz+//L4Be/+IX+8Y9/6Pnnn7/iy50BAAAAAAAAAKDA0IaEhITonXfe0S233KKePXtq4cKFeuqppzR27FhJ0qhRoxQbG6sRI0botttu009/+lNlZ2e79eFyuXTrrbfK6XRqwoQJ1/5DAAAAAAAAAABaBR6R1Ib07t1bW7Zs+daYJUuWaMmSJd8ac+LECaWnp8vhcDRnegAAAAAAAACANoQCAyynT59Wfn6+8vPz9eyzz3o7HQAAAAAAAABAC0aBAZbExESdPn1ajz/+uOLi4rydDgAAAAAAAACgBbMZY4y3k0DbUF1drdDQUB0/flwhISHeTgcAAAAAAAAAcBk1NTWKjo5WVVWVXC7XVffDCgY0m88//1ySFB0d7eVMAAAAAAAAAADf5cyZMxQY0DKEhYVJkioqKpp0UQJtxaVKMKt6gH9hTgCNMS8Ad8wJwB1zAmiMeQG4u9o5YYzRmTNnFBUV1aTxKTCg2fj5+UmSXC4X/4EHviYkJIQ5AXwNcwJojHkBuGNOAO6YE0BjzAvA3dXMieb4R+J+Te4BAAAAAAAAAAD4HAoMAAAAAAAAAADAYxQY0GwcDocWL14sh8Ph7VSAFoE5AbhjTgCNMS8Ad8wJwB1zAmiMeQG48/acsBljjFdGBgAAAAAAAAAArRYrGAAAAAAAAAAAgMcoMAAAAAAAAAAAAI9RYAAAAAAAAAAAAB6jwAAAAAAAAAAAADxGgQHN4ve//726d++udu3aafDgwdq9e7e3UwKuyjvvvKOf/OQnioqKks1m08aNG93ajTFatGiRunTpoqCgIKWlpam8vNwt5osvvlB6erpCQkIUGhqqe++9V2fPnnWLOXDggIYPH6527dopOjpav/3tbxvl8uqrr6pXr15q166d4uPjtWnTpmb/vMB3ycnJ0b/927+pffv26ty5syZMmKCysjK3mPPnz2vmzJnq2LGjnE6nbr31Vn366aduMRUVFRo3bpyCg4PVuXNnPfTQQ7p48aJbTH5+vgYOHCiHw6EePXooLy+vUT7cb+Btq1atUkJCgkJCQhQSEqLk5GRt3rzZamc+wNctW7ZMNptNs2fPto4xL+BrsrOzZbPZ3LZevXpZ7cwJ+KITJ07ojjvuUMeOHRUUFKT4+Hjt2bPHaue7NnxJ9+7dG90nbDabZs6cKakV3icM0ETr1q0zdrvdvPDCC+bDDz80U6dONaGhoebTTz/1dmqAxzZt2mR+9atfmfXr1xtJZsOGDW7ty5YtMy6Xy2zcuNHs37/f/PSnPzXXX3+9OXfunBUzZswY079/f7Nr1y6zc+dO06NHD3P77bdb7dXV1SYiIsKkp6ebkpISs3btWhMUFGSee+45K6awsND4+/ub3/72t+bQoUNm4cKFJjAw0Bw8ePAH/x0AXzd69GiTm5trSkpKzL59+8wtt9xiYmJizNmzZ62Y+++/30RHR5vt27ebPXv2mCFDhpihQ4da7RcvXjT9+vUzaWlpZu/evWbTpk0mPDzcLFiwwIr5+OOPTXBwsJkzZ445dOiQWblypfH39zdbtmyxYrjfoCV44403zFtvvWUOHz5sysrKzC9/+UsTGBhoSkpKjDHMB/i23bt3m+7du5uEhASTlZVlHWdewNcsXrzY9O3b11RWVlrbZ599ZrUzJ+BrvvjiC9OtWzeTkZFhioqKzMcff2y2bt1qjhw5YsXwXRu+5NSpU273iG3bthlJZseOHcaY1nefoMCAJrvpppvMzJkzrf36+noTFRVlcnJyvJgV0HTfLDA0NDSYyMhI88QTT1jHqqqqjMPhMGvXrjXGGHPo0CEjyXzwwQdWzObNm43NZjMnTpwwxhjz7LPPmg4dOpja2lorZv78+SYuLs7anzx5shk3bpxbPoMHDzbTp09v1s8IeOrUqVNGkikoKDDG/GsOBAYGmldffdWKKS0tNZLM+++/b4z5V+HOz8/PnDx50opZtWqVCQkJsebBf/7nf5q+ffu6jXXbbbeZ0aNHW/vcb9BSdejQwaxevZr5AJ925swZExsba7Zt22ZGjhxpFRiYF/BFixcvNv37979sG3MCvmj+/Plm2LBhV2znuzZ8XVZWlrnxxhtNQ0NDq7xP8IgkNMmFCxdUXFystLQ065ifn5/S0tL0/vvvezEzoPkdO3ZMJ0+edLveXS6XBg8ebF3v77//vkJDQ5WUlGTFpKWlyc/PT0VFRVbMiBEjZLfbrZjRo0errKxMp0+ftmK+Ps6lGOYVvK26ulqSFBYWJkkqLi5WXV2d2/Xaq1cvxcTEuM2L+Ph4RUREWDGjR49WTU2NPvzwQyvm26557jdoierr67Vu3Tp9+eWXSk5OZj7Ap82cOVPjxo1rdO0yL+CrysvLFRUVpRtuuEHp6emqqKiQxJyAb3rjjTeUlJSkSZMmqXPnzkpMTNTzzz9vtfNdG77swoULeumllzRlyhTZbLZWeZ+gwIAm+ec//6n6+nq3C1qSIiIidPLkSS9lBfwwLl3T33a9nzx5Up07d3ZrDwgIUFhYmFvM5fr4+hhXimFewZsaGho0e/ZspaSkqF+/fpL+da3a7XaFhoa6xX5zXlztNV9TU6Nz585xv0GLcvDgQTmdTjkcDt1///3asGGD+vTpw3yAz1q3bp3+9re/KScnp1Eb8wK+aPDgwcrLy9OWLVu0atUqHTt2TMOHD9eZM2eYE/BJH3/8sVatWqXY2Fht3bpVDzzwgGbNmqU1a9ZI4rs2fNvGjRtVVVWljIwMSa3z/50CPIoGAAA+a+bMmSopKdG7777r7VQAr4qLi9O+fftUXV2t1157TXfffbcKCgq8nRbgFcePH1dWVpa2bdumdu3aeTsdoEUYO3as9XNCQoIGDx6sbt266ZVXXlFQUJAXMwO8o6GhQUlJSXrsscckSYmJiSopKdF///d/6+677/ZydoB3/fGPf9TYsWMVFRXl7VSuGisY0CTh4eHy9/dv9CbzTz/9VJGRkV7KCvhhXLqmv+16j4yM1KlTp9zaL168qC+++MIt5nJ9fH2MK8Uwr+AtmZmZ+vOf/6wdO3boRz/6kXU8MjJSFy5cUFVVlVv8N+fF1V7zISEhCgoK4n6DFsVut6tHjx4aNGiQcnJy1L9/f61YsYL5AJ9UXFysU6dOaeDAgQoICFBAQIAKCgr0u9/9TgEBAYqIiGBewOeFhoaqZ8+eOnLkCPcK+KQuXbqoT58+bsd69+5tPTqM79rwVX//+9/117/+Vffdd591rDXeJygwoEnsdrsGDRqk7du3W8caGhq0fft2JScnezEzoPldf/31ioyMdLvea2pqVFRUZF3vycnJqqqqUnFxsRXz9ttvq6GhQYMHD7Zi3nnnHdXV1Vkx27ZtU1xcnDp06GDFfH2cSzHMK1xrxhhlZmZqw4YNevvtt3X99de7tQ8aNEiBgYFu12tZWZkqKirc5sXBgwfdvhBs27ZNISEh1heN77rmud+gJWtoaFBtbS3zAT5p1KhROnjwoPbt22dtSUlJSk9Pt35mXsDXnT17VkePHlWXLl24V8AnpaSkqKyszO3Y4cOH1a1bN0l814bvys3NVefOnTVu3DjrWKu8T3j0SmjgMtatW2ccDofJy8szhw4dMtOmTTOhoaFubzIHWoszZ86YvXv3mr179xpJ5umnnzZ79+41f//7340xxixbtsyEhoaa119/3Rw4cMCMHz/eXH/99ebcuXNWH2PGjDGJiYmmqKjIvPvuuyY2NtbcfvvtVntVVZWJiIgwd955pykpKTHr1q0zwcHB5rnnnrNiCgsLTUBAgHnyySdNaWmpWbx4sQkMDDQHDx68dr8MwBjzwAMPGJfLZfLz801lZaW1ffXVV1bM/fffb2JiYszbb79t9uzZY5KTk01ycrLVfvHiRdOvXz9z8803m3379pktW7aYTp06mQULFlgxH3/8sQkODjYPPfSQKS0tNb///e+Nv7+/2bJlixXD/QYtwcMPP2wKCgrMsWPHzIEDB8zDDz9sbDab+ctf/mKMYT4AxhgzcuRIk5WVZe0zL+Br5s6da/Lz882xY8dMYWGhSUtLM+Hh4ebUqVPGGOYEfM/u3btNQECA+c1vfmPKy8vNyy+/bIKDg81LL71kxfBdG76mvr7exMTEmPnz5zdqa233CQoMaBYrV640MTExxm63m5tuusns2rXL2ykBV2XHjh1GUqPt7rvvNsYY09DQYB555BETERFhHA6HGTVqlCkrK3Pr4/PPPze33367cTqdJiQkxNxzzz3mzJkzbjH79+83w4YNMw6Hw3Tt2tUsW7asUS6vvPKK6dmzp7Hb7aZv377mrbfe+sE+N3All5sPkkxubq4Vc+7cOTNjxgzToUMHExwcbH72s5+ZyspKt34++eQTM3bsWBMUFGTCw8PN3LlzTV1dnVvMjh07zIABA4zdbjc33HCD2xiXcL+Bt02ZMsV069bN2O1206lTJzNq1CiruGAM8wEwpnGBgXkBX3PbbbeZLl26GLvdbrp27Wpuu+02c+TIEaudOQFf9Oabb5p+/foZh8NhevXqZf7whz+4tfNdG75m69atRlKj69yY1nefsBljjGdrHgAAAAAAAAAAgK/jHQwAAAAAAAAAAMBjFBgAAAAAAAAAAIDHKDAAAAAAAAAAAACPUWAAAAAAAAAAAAAeo8AAAAAAAAAAAAA8RoEBAAAAAAAAAAB4jAIDAAAAAAAAAADwGAUGAAAAAAAAAADgMQoMAAAAAAAAAADAYxQYAAAAAAAAAACAxygwAAAAAAAAAAAAj1FgAAAAAAAAAAAAHvs//5bpQqXJh+MAAAAASUVORK5CYII=\n",
372
- "text/plain": [
373
- "<Figure size 1800x600 with 1 Axes>"
374
- ]
375
- },
376
- "metadata": {},
377
- "output_type": "display_data"
378
- },
379
- {
380
- "data": {
381
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZkAAAGFCAYAAAAvsY4uAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA7dklEQVR4nO3dd3hUVcIG8Hdaeu8BAiQESAKELhA6Ik1piuCiIugifqiAgAK764ro7iJKEWFZC2tbC0hRRKQKKF1KIECANEgCgZDey8zc74/RQCRAhsydM3Pn/T1PHsidyeQlQN6ce+49RyVJkgQiIiIZqEUHICIi5WLJEBGRbFgyREQkG5YMERHJhiVDRESyYckQEZFsWDJERCQblgwREcmGJUNERLJhyRARkWxYMkREJBuWDBERyYYlQ0REsmHJEBGRbFgyREQkG5YMERHJhiVDRESyYckQEZFsWDJERCQblgwREcmGJUNERLJhyRARkWxYMkREJBuWDBERyYYlQ0REsmHJkMNr3rw5li1bJjoGkSKxZIiISDYsGbJ5VVVVoiMQ0T1iyZDF9evXD9OmTcMrr7wCPz8/hISEYP78+TWPp6enY+TIkfDw8ICXlxfGjh2La9eu1Tw+f/58dOjQAR999BHCw8Ph4uICAFCpVHj//ffx0EMPwc3NDdHR0Th48CCSk5PRr18/uLu7Iy4uDikpKTWvlZKSgpEjRyI4OBgeHh7o2rUrdu7cabWvBZGjY8mQLD799FO4u7vj8OHDWLRoERYsWIAdO3bAaDRi5MiRyMvLw969e7Fjxw6kpqZi3LhxtT4+OTkZ69evx4YNGxAfH19z/I033sCECRMQHx+PqKgojB8/HlOmTMG8efNw9OhRSJKEF154oeb5JSUlGDZsGHbt2oUTJ05gyJAhGD58ONLT0631pSBybBKRhfXt21fq1atXrWNdu3aV5syZI23fvl3SaDRSenp6zWNnzpyRAEhHjhyRJEmSXnvtNUmn00nZ2dm1XgOA9Le//a3m/YMHD0oApNWrV9cc++qrryQXF5c75mvTpo303nvv1bzfrFkzaenSpWb/OYno7jiSIVnExsbWej80NBTZ2dlITExEWFgYwsLCah6LiYmBj48PEhMTa441a9YMgYGBd3zd4OBgAEC7du1qHauoqEBRUREA00hm9uzZiI6Oho+PDzw8PJCYmMiRDJGVaEUHIGXS6XS13lepVDAajfX+eHd397u+rkqluu2x3z/X7NmzsWPHDrzzzjuIjIyEq6srxowZw4sJiKyEJUNWFR0djYyMDGRkZNSMZs6ePYuCggLExMRY/PPt378fEydOxOjRowGYRjYXL160+OchorrxdBlZ1cCBA9GuXTs8/vjjOH78OI4cOYIJEyagb9++6NKli8U/X8uWLWsuHjh58iTGjx9v1oiKiBqGJUNWpVKp8N1338HX1xd9+vTBwIEDERERgTVr1sjy+ZYsWQJfX1/ExcVh+PDhGDx4MDp16iTL5yKiW6kkSZJEhyAiImXiSIaIiGTDkiEiItmwZIiISDYsGSIikg1LhoiIZMOSISIi2bBkiIhINiwZIiKSDdcuI7oDSZKQW1qF3JIqFFdUo7hSj+IKPUoq9CiprDb9vlKPSr3xt+cDgARJMv1eguleZxedBm5OWng4//6rFm7OGrg7a+HlokWghwuCvJzhotOI+8MSyYAlQw5NbzDiYm4ZUq6XIDO/HFcKfnsrrEB2UQVySipRbbDeohjerjoEezkj2MsFQZ4uCPZyRmNfV0QEeKBFkDuCPF2sloXIErisDDmESr0BKdmlSL5eguRrxUjKLkFydgku5pZatUQaytNFi4hAD7QIdEeLQA+0CPRAm0ZeCPNzEx2NqE4sGVKk9NwynMjIx4n0ApxIz0diVjGqDMpdfdnf3QmxTbwR28QHHcJ8ENvEG/4ezqJjEbFkyP4ZjBLiM/JxKDUPxy/lIz6jALml3JSsia8rOjb1RVwLf/SKDOBoh4RgyZBdSs8tw96k69iXdB0HUnJRXKEXHcnmhfm5oldkAHpGBiCuRQD83J1ERyIHwJIhu1CpN+CXCznYfT4bvyTlID2vTHQku6ZSATGhXujfOgiD2gQjtomP6EikUCwZslkV1QbsOX8dWxKy8NO5bJRUcrQil1BvFwyKCcaQtqHoFu4HtVolOhIpBEuGbEp5lQG7z2djS0IWdp/LRmmVQXQkhxPg4YwhbYMxPLYRukX4i45Ddo4lQzbh2KU8rPk1Az+cymKx2JBm/m4Y06kJxnRpglBvV9FxyA6xZEiY3JJKbDh+GWuOZiA5u0R0HLoDtQroGRmAR7uEYXCbYDhruTIB1Q9LhqxKkiT8nJSDNb+mY+fZbEXfu6JU3q46jOrQCE/FNUdEoIfoOGTjWDJkFRXVBmw4fhkf7UtF6vVS0XHIAlQqoH/rIPy5VzjiIgNExyEbxZIhWeWWVOKzg5fwv0OXeIOkgkWHeuHpns0xskNjOGm5uDvdwJIhWaRcL8FHv6Rhw/HMmhWKSfkCPJwxoUczTOzZHF4uOtFxyAawZMiikrNLsHTnBWxJyAL/ZTkuLxctnukVgad7NYcny8ahsWTIIjLyyrB05wV8F38FBiP/SZGJj5sOk3tHYGJcc7g7c2cRR8SSoQbJKizH8l3JWHcsw66WzCfr8nN3wuTeEXgqrhncnFg2joQlQ/ckv7QKy39KwheH01HFOReqpwAPZ8we1Apju4Rx6RoHwZIhs1QbjPjs4CW8u/MCirjyMd2jNo288NrwNrgv3E90FJIZS4bqbff5bLyx+SzvcyGLGdYuBPOGRnOvGwVjydBdZeSV4fXvz2Jn4jXRUUiBnLVq/Ll3OKb2i+TFAQrEkqHbqjYYsWpPClbuTua9LiS7xj6ueHN0W/RvHSQ6ClkQS4bqlJBZiJfXncS5q8Wio5CDGdWhEV4b3ga+3LlTEVgyVEul3oClO5Lw4S+pvN+FhPF3d8Lfh8dgZIfGoqNQA7FkqMaxS/l4Zd1JpHBin2zE/VFBeHN0W+5lY8dYMoSKagMWbT2PTw6kgYMXsjWezlq8ObotRzV2iiXj4C5cK8YLXx7HhWvcNIxs28OdGuONkW15BZqdYck4sC8Pp2PB5jOoqOaVY2Qfmvu7YfmfOiK2iY/oKFRPLBkHVFRRjXkbEvDDqSzRUYjMptOoMGtQa0zpEwGVikvT2DqWjIOJzyjAi18dR0ZeuegoRA3SKzIAS8d1QKCns+godAcsGQeyel8aFv6YyNWSSTFCvV3w/pOdefrMhrFkHECl3oC/bjyNdccyRUchsjhnrRr/HN0Oj3RuIjoK1YElo3DZxRV47vNjOJ5eIDoKkawmxjXH3x6MhlajFh2FbsKSUbBTmQWY8vkxZBVWiI5CZBVxLfyxYnwn+HFJGpvBklGo7+IvY876U7w8mRxOE19XfPRUF0SFeImOQmDJKNLSHRfw7q4k0TGIhPF00eL9JzojLjJAdBSHx5JREKNRwt++O40vD6eLjkIknE6jwqIxsRjdkRcEiMSSUYhKvQHTv4rH1jNXRUchshkqFTB3SBSm9G0hOorDYskoQHFFNSZ/dhSHUvNERyGySZN7h+Mvw6K5QoAALBk7l11cgYn//RVns4pERyGyaQ93aoy3x7SHRs2isSaWjB3LzC/D+A8PIz2vTHQUIrvwYGwo3h3XgffSWBHXzLZTlwvK8dgHh5CZzzXIiOrrh1NZgAS8+xiLxlr4VbZDVwrK8ScWDNE9+SEhC9O/jofewHvIrIElY2eyCsvxpw8P8RQZUQP8kJCFaV+fYNFYAUvGjlwrqsCfPjiES7ksGKKG2pJwlUVjBSwZO5H9W8FcZMEQWcyWhKuYsSYeRiOvf5ILS8YOFJZX48nVR5CaUyo6CpHibD6VhQWbz4qOoVgsGRtXqTfg2c+O4vy1YtFRiBTrkwMXsXJ3sugYisSSsWGSJGHmmpM4nMY7+Ynk9va281h7NEN0DMVhydiwBZvP4oeELNExiBzGXzYk4Kdz10THUBSWjI364OcUfLz/ougYRA5Fb5Tw/BcncOxSvugoisGSsUGbTl7Bv348JzoGkUMqrzZg8mdHkZnPKzktgSVjY05lFuDlb06CK8oRiZNXWoXJnx1DeZVBdBS7x5KxITkllXju82Oo1PPmMCLRErOKMHvdSdEx7B4XyLQReoMRz39xHFcKK0RHsVsF+75A4f6vah3T+jVB48n/AQDkbl2BikvxMJTkQaVzgXPjaPj2mwidf1i9Xj932wqUxG+F74DJ8Oo6stZjZSm/onD/V6i+fhEqjQ7OTdsh6OG/AQAM5cXI/WEJKtIToPVthIBh0+EUfGMTrdztq6DzCYbXfQ835I9PMvjhVBZiQpPxfP9I0VHsFkvGRrz5QyIvVbYAXUBTBI/7x40D6huDdaeQSLi36QetVyAM5cUo3P8lrq35Oxo/9xFUas0dX7fswgFUXjkPjYffLY+Vnt+PvK3vwafPBLg0aw/JaED19Us1jxceXANjVTlCJ76L4hNbkLv1PYQ+tQwAUHn5HKqyzsNv4LMN+4OTbBZvP4+oEE/cHx0sOopd4ukyG7DuWCY+OXBRdAxlUGug8fC98ebmXfOQZ4chcAlrC613MJxDIuHT+0kYiq9DX5h9x5fUF+cgb8f7CHhoNqCu/XOZZDQgf+cH8On3NDw7DoPOrzGcAprCPbp3zXOqczPgHt0HOr/G8Gw/BNW5pnsxJIMeudtXwm/Q83ctORLHKAEzvo5HcnaJ6Ch2iSMZwRIyC/HXjQmiYyiGPv8KMldOgEqjg1PjKPj2fQpar6BbnmesqkBJwk5ovYOh9Qq47etJkhE5m5fAq9vDcApsdsvjVVeTYSjJhUqlwpWPp8FYmg9dUAR8+0+CU2BzAIBTUDgqLp2CR/vBKE87Dt1vx4sOr4dLWDs4h7a0yJ+d5FNcqcdz/zuG71/oBVcn/kBgDo5kBCqqqMbULznRbynOoa3hP+wlBD36OvwGTYWh4BqufjEHxsobl6IWH/8B6UvGIGPpGJSnHkPQuDeh0uhu+5pFh9ZBpdbAs/OIOh/XF1wFABTs/xLeceMQOOY1qF08cO2rv8BQbloKyLv7o4Bag8vv/xllSQfhP3Q6qvMuo+T0Lnj3fAy521bg8n+ewfVvF8JYyfXpbFVydgkWbD4jOobdYckI9JcNCcjI48ZjluLaogvco3rBKSgcrhGdEfTofBgrSlF6bl/Nc9zb9EPoxHcRPH4hdH6NkPPdQkj6qjpfr/JqMoqObYL/sBlQqW63L7zpWnPvHuPg3ronnEMiETBsBgCg7Lzp86qd3RE44mU0+b+PETJ+IZwCmiJ320r49n8apWf2QF9wDY0mvw+VzhkFf7hwgWzLV0cyTLtrUr2xZARZ82s6NvMfq6zULh7Q+TWGvuDKjWPO7tD5NYZLWFsEjpqH6rxMlF04WOfHV2acgbG0EJdXTcKlRSNwadEIGIqykb97NTJXPQ0A0LibLgTQBdy4Qk2l1UHrEwJ90fU6X7fk1A6oXdzh1rI7KjIS4NayO1QaLdyieqEynadObd28Dad4o6YZOCcjQOr1Erz+PZcWl5uxqhz6gixo3PvX/QTJ9CYZqut82L1tf7g0b1/rWPbav8O9zQB4tBsIwHTFGjQ6VOdehkuTNqaXNeihL8yucy7IUFaIggNfI+Txt34LaYRk1P/2oB6SxFOntq6oQo9pX53A2ik9oNXw5/S7YclYmd5gxEtr4lHGO4ktLv+n1XCNvA9a7yDoi/NQuO8LQKWGe0xfVBdcRVniz3AJ7wSNmxf0RbkoOvwNVFonuEZ0qXmNyx8+B9++E+DWKg4aVy9oXL1qfxK1Fhp3X+j8m5jedXaDZ4ehKNz3BbReAdB6BaHoyAYAgFtUr1sy5u36AF5dR0HrabrYwLlJNErP7IZr804oPrkVzo1jZPrqkCUdTy/Asp1JmD24tegoNo8lY2XLdibhZGah6BiKpC/OQc73b8NQXgSNqzecm8Qg5MnF0Lh5QzLoUZF5BkVHN8FYUQKNuw+cw9og5Im3oXH3ufEaeZm1LhSoD9/+T0Ol1iBn8xJI+ko4h7ZG8GP/gMbFo9bzylOPQZ+fhYCHZtUc8+z0EKqykpH1+Uw4h7aCT88/NehrQNbz7z3J6Ns6EF2b33rvFN2gkiSukmUtJzMK8PCqAzBwq1ciRYgIcMeW6b3houNlzbfDE4pWUm0wYs76UywYIgVJzSnFsp1JomPYNJaMlby/NwXnrnILZSKl+fCXVCTwFPhtsWSsIOV6CZb/xP3DiZTIYJTw8rqTqDbwysC6sGRkJkkS5q1PQBXv6idSrHNXi7FqT4roGDaJJSOzLw6n48hFrq5MpHQrfkpG0jWeEv8jloyMsosq8NZWbqNM5AiqDEa8tolrm/0RS0ZGC7eeQ3GFXnQMIrKSAym52Hqay0XdjCUjk1OZBdh44rLoGERkZf/YkohKPVf0+B1LRiYLvj8L3uZK5Hgy8srx0S9pomPYDJaMDDafuoKjl/JFxyAiQf69OxnXiipEx7AJLBkLq6g2YOGPnOwncmSlVfw+8DuWjIWt3peGzHxuREbk6L6Nv4z4jALRMYRjyVhQbkkl/r2bd/YTESBJwOLt50XHEI4lY0Hv/5yKUu4TQ0S/+SUpB786+M3YLBkLySmpxOcHL4mOQUQ2xtFHMywZC3l/bwrKqzmKIaLaDqXm4UBKjugYwrBkLOB6cSX+dyhddAwislFLtl8QHUEYlowFcBRDRHdy9FI+9l64LjqGECyZBrpeXIkvDnMUQ0R3tmynY45mWDIN9NEvqRzFENFdnUgvwJE0x7vSjCXTAKWVenx1hKMYIqqfD352vI3NWDINsO5YJoq4lD8R1dOuc9lIznasjc3MLpmtW7di3759Ne+vXLkSHTp0wPjx45Gf7ziLQkqShE8OXBQdg4jsiCQBq/ddFB3DqswumZdffhlFRUUAgISEBMyaNQvDhg1DWloaZs6cafGAtuqnc9lIyykVHYOI7MzGE5koKKsSHcNqzC6ZtLQ0xMTEAADWr1+Phx56CP/85z+xcuVK/PjjjxYPaKv+u5/7RRCR+SqqjfjSgeZyzS4ZJycnlJWVAQB27tyJQYMGAQD8/PxqRjhKd/5qMfYn54qOQUR26vODl2AwOsauhlpzP6BXr16YOXMmevbsiSNHjmDNmjUAgAsXLqBJkyYWD2iLOBdDRA2RVViBny9cR/+oINFRZGf2SGbFihXQarVYt24dVq1ahcaNGwMAfvzxRwwZMsTiAW1NeZUB35+8IjoGEdm5Nb9miI5gFSpJ4k705thwPBMz154UHYOI7JxOo8KheffD38NZdBRZmX26DACMRiOSk5ORnZ0No9FY67E+ffpYJJitWncsU3QEIlKAaoOEjScu48+9I0RHkZXZJXPo0CGMHz8ely5dwh8HQSqVCgaDcpdYycwvw8FUTvgTkWWsPZqh+JIxe07mueeeQ5cuXXD69Gnk5eUhPz+/5i0vT9nr8qw/dhk8uUhElnLhWglOpCv7JnazRzJJSUlYt24dIiMj5chjsyRJwvrjPFVGRJa19mgmOjb1FR1DNmaPZLp164bk5GQ5sti0I2l5SM8rEx2DiBRm6+ks6A3Guz/RTpk9knnxxRcxa9YsXL16Fe3atYNOp6v1eGxsrMXC2ZIfErJERyAiBcovq8ah1Dz0ahkgOooszL6EWa2+dfCjUqkgSZJiJ/4lSUKPf/2Eq0UVoqMQkQI93q0p/jG6negYsjB7JJOW5nhrdp3MLGTBEJFstp25hjdGtoVarRIdxeLMLplmzZrJkcOmbT19VXQEIlKwnJJK/HoxD90i/EVHsbh7uhkzJSUFy5YtQ2JiIgAgJiYG06dPR4sWLSwazlZsP8OSISJ5/Xj6qiJLxuyry7Zt24aYmBgcOXIEsbGxiI2NxeHDh9GmTRvs2LFDjoxCJV0rRir3jSEimW07c/WWG9yVwOyJ/44dO2Lw4MFYuHBhreNz587F9u3bcfz4cYsGFO29XUlYvOOC6BhE5AA2v9gLbRt7i45hUWaPZBITE/HMM8/ccvzpp5/G2bNnLRLKlvx0Plt0BCJyEL8k5YiOYHFml0xgYCDi4+NvOR4fH4+gIGXtjVBcUY1TmYWiYxCRg9iXfF10BIsze+J/8uTJePbZZ5Gamoq4uDgAwP79+/HWW29h5syZFg8o0uHUPIfZvY6IxPv1Yj4qqg1w0WlER7EYs0vm1VdfhaenJxYvXox58+YBABo1aoT58+dj2rRpFg8o0v4U5Q1dich2VemN+PViHnq3DBQdxWIatGlZcXExAMDT09NigWzJ4KU/4/y1YtExiMiBTOkTgXnDokXHsBiz52Ru5unpqdiCySmpxIVsFgwRWZfSJv/rdbqsU6dO2LVrF3x9fdGxY0eoVLdf+kAplzAfSMnl3jFEZHWJV4uQV1oFP3cn0VEsol4lM3LkSDg7O9f8/k4loxQHOR9DRAJIEnAiPR/3RweLjmIRDZqTUbJBS/fiwrUS0TGIyAFNGxCJmYNai45hEWbPyURERCA399Z97gsKChARoYy9qksq9UjOZsEQkRgnMgpER7AYs0vm4sWLde4ZU1lZicxMZWxPfCqzALw9hohEOZVZqJh1zOp9n8ymTZtqfr9t2zZ4e99YX8dgMGDXrl0IDw+3bDpBTmbwLn8iEqewvBppOaWICPQQHaXB6l0yo0aNqvn9U089VesxnU6H5s2bY/HixRYLJlLC5QLREYjIwZ3MLHCskjEajQCA8PBwHD16FP7+ytv34HenLxeJjkBEDi4+vQCjOzYRHaPBzJqTqa6uRkREBPLy8uTKI1xheTXS88pExyAiB3f6ijJ+2DWrZHQ6HU6dOiVXFptwLksZf7FEZN9SrivjClezry574oknsHr1ajmy2ATugklEtqCgrBo5JZWiYzSY2asw6/V6/Pe//8XOnTvRuXNnuLu713p8yZIlFgsnQqpCfnogIvuXnF2CAA9n0TEaxOySOX36NDp16gQAuHCh9rbESlhuJvU6RzJEZBuSs0vQPcK+L7Iyu2R2794tRw6bkcbTZURkI5QwL9Ogpf4zMzMVc5c/AFQbjLyyjIhshhKWtzK7ZIxGIxYsWABvb280a9YMzZo1g4+PD954442ae2nsVXpeGfRcT4aIbESKAkrG7NNlf/3rX7F69WosXLgQPXv2BADs27cP8+fPR0VFBf7xj39YPKS1pHE+hohsyNWiCugNRmg1DTrpJJTZJfPpp5/io48+wogRI2qOxcbGonHjxpg6dapdl0xmPk+VEZHtMErA9ZJKhHq7io5yz8yux7y8PERFRd1yPCoqyu5XAsgutv9r0olIWa4WVoiO0CBml0z79u2xYsWKW46vWLEC7du3t0goUVgyRGRrrhXZd8mYfbps0aJFePDBB7Fz50706NEDAHDw4EFkZGRgy5YtFg9oTSwZIrI1DjeS6du3Ly5cuIDRo0ejoKAABQUFePjhh3H+/Hn07t1bjoxWk23nPzEQkfJcLbLvH37NHskAQKNGjex6gv92rnMkQ0Q25mphuegIDXJPJZOfn4/Vq1cjMTERABATE4NJkybBz8/PouGsqdpgRF5ZlegYRES1XLPzkYzZp8t+/vlnNG/eHMuXL0d+fj7y8/OxfPlyhIeH4+eff5Yjo1XkllRBIVtqE5GCFFdWi47QIGaPZJ5//nmMGzcOq1atgkajAQAYDAZMnToVzz//PBISEiwe0hqKK+z7L5KIlKm00iA6QoOYPZJJTk7GrFmzagoGADQaDWbOnInk5GSLhrOm0ir7/oskImUqrtCLjtAgZpdMp06dauZibpaYmGjX98mUVdn3XyQRKVNppX1/bzL7dNm0adMwffp0JCcno3v37gCAQ4cOYeXKlVi4cGGt7ZljY2Mtl1RmZXY+JCUiZSqvNsBglKBR2+d+XSpJMm+6W62+8+BHpVJBkiSoVCoYDPbzjXvTySuY9tUJ0TGIiG5x8rVB8HbViY5xT8weyaSlpcmRQ7gyOx+SEpFylVbqHadkmjVrJkcO4TjxT0S2qsyOvz/d082YKSkpWLZsWa2bMadPn44WLVpYNJw1Vert9y+RiJTNaMc38Zl9ddm2bdsQExODI0eOIDY2FrGxsTh8+DDatGmDHTt2yJGRiMih2XPJmD2SmTt3Ll566SUsXLjwluNz5szBAw88YLFw1qRW2eeVG0SkfAY73hbe7JJJTEzE2rVrbzn+9NNPY9myZZbIJISdXh1INkKjMuJ+/3wM9s5AR1USgivToDbyYhKyDLX6vwC8Rce4J2aXTGBgIOLj49GyZctax+Pj4xEUFGSxYNamAluG6q+pawVGBV5BT+eLaFWdCJ/8U1CVFAMlopORIqnsd87Y7JKZPHkynn32WaSmpiIuLg4AsH//frz11luYOXOmxQNaC8+W0e3o1BIe8M/FIK90dFAloVFJAnQFaVBl2+8pDLIz6nu6RssmmJ381VdfhaenJxYvXox58+YBMO0vM3/+fEybNs3iAa2FczL0uxZu5RgVeAVxTqmIrEqEV34CVMWlQLHoZOSw1Jq7P8dGmVUyer0eX375JcaPH4+XXnoJxcWm/3Wenp6yhLMmzsk4Jme1EUMCc/CAZzpicQGhxaehK7wIXBOdjOgmjjKS0Wq1eO6552ruj1FCufzOSWu/PylQ/UV5lGGE/2X0cE5Fi4qz8Mw/A1VhGVAoOhnRHThKyQDAfffdhxMnTijuzn9PF/v9S6S6uWoMeDAwB/d7XEQ7JCGk8BS0xZkcpZD9cZTTZQAwdepUzJo1C5mZmejcuTPc3d1rPW5PKy/fzMtO1wWiG9p5lmK4fya661IRUXkW7nlnoCqoAApEJyNqIGf7PWtkkVWY7XXl5ZsdT8/Hw/8+IDoG1ZO71oDhgdkY4H4JbaULCC48BU3JFdGxiCzPyQP4y2XRKe4ZV2H+jRdPl9m0Tt7FeMgvE/dpUxBecRZueWehyq8C8kUnI5KZe6DoBA3CVZh/4+nC02W2wlunx4jAa+jvfgkxhvMILDwFTek1IEt0MiIBPIJFJ2iQe/rx/fz583jvvfdqrjKLjo7Giy++iNatW1s0nDV5sWSE6eZThAd9M9BVm4Jm5WfgmncOqrxqIE90MiIb4GG/K6kA91Ay69evx2OPPYYuXbqgR48eAEzbL7dt2xZff/01HnnkEYuHtAZXJw10GhWqDbyLW07+TtUYGXgVfd0uItpwAQEFJ6Euy+Eoheh27LxkzJ74b9GiBR5//HEsWLCg1vHXXnsN//vf/5CSkmLRgNbU/Z+7cLWoQnQMRentV4ChPhnorElG07KzcMk7B5VknxeHEAnR/69A31dEp7hnZo9ksrKyMGHChFuOP/HEE3j77bctEkqUUB8XlkwDBDlXY1RgFvq4piHKcB5++aegLssDykQnI7Jjjjbx369fP/zyyy+IjIysdXzfvn3o3bu3xYKJ0MjbFSd4U0W9qFQS+vnmY4hPJjprktCk9Ayc8y9AlWMUHY1IWRxt4n/EiBGYM2cOjh07hu7duwMwzcl88803eP3117Fp06Zaz7Unod4uoiPYrMYulRgZkIXerhfRujoRPgUJUJcVcJRCJDc7LxmL3IxZ5wvb4Y2Zq/el4Y3NZ0XHEM60AVcBBntfQkdVMhqXnoZTfjJU4EURRFY3IwHwaSo6xT0zeyRjNCr3dEgjBx3JNHWtwOjAK+jpnIaW1ee4AReRLbHzkQxvc79JqI+r6Aiy4wZcRHbExRvQOotO0SAsmZs08lHeSIYbcBHZMc9Q0QkajCVzkyBPF3i6aFFcoRcd5Z5wAy4ihQmKFp2gwVgyf9Aq2BPHLtnHqovcgItI4ULaiU7QYCyZP2gZ5GGTJcMNuIgcULADlsyWLVug0WgwePDgWse3bdsGo9GIoUOHWiycCC2DbWNzoHaepRjhn4luuhREVCZyAy4iR+SII5m5c+di4cKFtxyXJAlz5861/5IJ8rD653TXGjAi8BoGuKejrXQeQYUJpg24rlo9ChHZCrcAwMsBJ/6TkpIQExNzy/GoqCgkJydbJJRIrawwkvl9A65u2hQ0Lz8Dt/xEbsBFRLWFtBWdwCLMLhlvb2+kpqaiefPmtY4nJyfD3d3dUrmECfG27BVm3ICLiO6JAk6VAfdQMiNHjsSMGTOwceNGtGjRAoCpYGbNmmV3a5XdTlSIJ369eG/DCm7ARUQWoYBJf+AeSmbRokUYMmQIoqKi0KRJEwBAZmYmevfujXfeecfiAUWIbeJTr5LhBlxEJBtHHcl4e3vjwIED2LFjB06ePAlXV1fExsaiT58+cuQTokOYT53H69yAK9cA5Fo3HxEpnMYZCGglOoVFmL0KsyPIyCvDI+9ux6jAK+jjehFR+nPwK0iAupznvIjICkLbA1N+Fp3CIuo1klm+fDmeffZZuLi4YPny5Xd87rRp0ywSTKQwPzcc9poLVQ7PexGRAAo5VQbUcyQTHh6Oo0ePwt/fH+Hh4bd/MZUKqampFg0ozNoJwNnvRKcgIkc0dBHQbYroFBZRr5FMfHw8vL29AQBpaWmyBrIZTXuwZIhIjOa9RCewmHptc+nn54fs7GwAwIABA1BQUCBnJtvQtIfoBETkiDwbAcFtRKewmHqVjIeHB3JzTZdQ7dmzB9XV1bKGsgkh7QAn21jHjIgcSOQA0Qksql6nywYOHIj+/fsjOtq0t8Ho0aPh5ORU53N/+ukny6UTSa0Bwu4DUnaJTkJEjiTyAdEJLKpeJfO///0Pn376KVJSUrB37160adMGbm5ucmcTr1kcS4aIrEetBVr0F53Coup1dVlRURG8vLwAAP3798fGjRvh4+MjdzbxriYA/1HOBBwR2biw7sAz20SnsKh6zcn4+vrWTPyrVCpZA9mUkHaA7+0v2SYisqjIgaITWJzZE/979+51jIn/30U/JDoBETmKyPtFJ7A4syf+JUlyjIn/30WPAA68JzoFESmdWwDQqKPoFBbHif+7adIV8AgBSrhNJRHJqMUAQIHTEWYvkOlQE/+/2zwTOLpadAoiUrLRHwDtx4lOYXFchbk+UnYDn48SnYKIFEsFvJwMuAeIDmJxZu8nA5g2Kdu0aRPS09NRVVVV67ElS5ZYJJhNad4bcPUFyu9tt0wiojtq1FGRBQPcQ8ns2rULI0aMQEREBM6dO4e2bdvi4sWLkCQJnTp1kiOjeBot0GoIcPIr0UmISIlix4pOIJt6XcJ8s3nz5mH27NlISEiAi4sL1q9fj4yMDPTt2xePPvqoHBltQ/Rw0QmISIk0TkA7lkyNxMRETJgwAQCg1WpRXl4ODw8PLFiwAG+99ZbFA9qMFvcDOnfRKYhIaVoNAdz9RaeQjdkl4+7uXjMPExoaipSUlJrHcnJyLJfM1uhcgJbKuxuXiATr+KToBLIye06me/fu2LdvH6KjozFs2DDMmjULCQkJ2LBhA7p37y5HRtsRM5IbmRGR5Xg2UuRd/jczu2SWLFmCkpISAMDrr7+OkpISrFmzBi1btlTmlWU3ixoOuAcCpddFJyEiJWj/mGlbEQUz6z4Zg8GA/fv3IzY21rFuxrzZrjeAX94RnYKIlODF44B/C9EpZGXWnIxGo8GgQYOQn+/A94t0fca05wMRUUM0jVN8wQD3MPHftm1bpKamypHFPng1AqIeFJ2CiOxdxydEJ7AKs0vmzTffxOzZs7F582ZkZWWhqKio1ptDuG+K6AREZM+cPIE2o0SnsAqz1y5Tq2/00s0bmEmSBJVKBYPBYLl0tmxVT+DaadEpiMgedXwSGLlCdAqrMHtyYffu3XLksD/3TQa+ny46BRHZI4XfG3Mzs0smPDwcYWFht2zDLEkSMjIyLBbM5rUbC+x4DagoEJ2EiOxJcFugaTfRKazG7DmZ8PBwXL9+630ieXl5CA8Pt0gou+Dk5jATd0RkQX1mi05gVWaXzO9zL39UUlICFxcXi4SyG13/DKjM/hISkaMKjAZiRolOYVX1Pl02c+ZMAKbJ/ldffbXW9ssGgwGHDx9Ghw4dLB7QpvmFAy0HARe2ik5CRPagz2xFbrF8J/UumRMnTgAwjWQSEhLg5ORU85iTkxPat2+P2bMdaxgIwHQBAEuGiO7GvyXQ5mHRKazO7EuYJ02ahHfffRdeXl5yZbIvkgR82B+4ckJ0EiKyZaP+A3T4k+gUVmd2yVAdUvcAn40UnYKIbJVvOPDiMcUvhlkXzlpbQkQ/IKK/6BREZKt6z3LIggFYMpYzcD4Ax5rQI6J68GlqWtLfQbFkLKVRB6DNaNEpiMjW9HoJ0OhEpxCGJWNJA/4GqB33HxMR/YFXE6CDY9+0zZKxJP8WQKcJolMQka3oNQPQOt31aUrGkrG0fnMBnbvoFEQkmk9Th1oI83ZYMpbmEQT0mCo6BRGJNnQRoHOwpbbqwJKRQ9w0wM1fdAoiEqX1MKD1UNEpbAJLRg4uXqbr4onI8ejcgKFviU5hM1gycuk62XROlogcS5/Z/L9/E5aMXLROwLB3RKcgImsKaG06XU41WDJyajUYiB0nOgURWcuD7zj0jZd1YcnIbchCwCNYdAoiklu7R4HwPqJT2ByWjNzc/IAHF4tOQURycvYGBv1DdAqbxJKxhujhDrlZEZHDGPBXwJNnLOrCkrGWYW/z3hkiJQptD3T9s+gUNoslYy3uAaaiISLlUKmBB5c47F4x9cGSsaa2jwBRD4lOQfdg4b5KqF4vwoytFbWOH8zQY8CnpXD/ZxG8/lWEPh+Xorz69pvNzt9TAdXrRbXeolaU1PlcSZIw9ItSqF4vwrfnqmuO55VLGP5VGTz+WYSO75fgRJah1sc9/0M5Fh+obMCfluqt9yygSRfRKWyaVnQAh/PQUuDSfqA8X3QSqqdfLxvw/rEqxAbX/pnsYIYeQ74ow7xeznhvqAu0auDkNSPUd9m7rk2gGjsnuNW8r73Nj3rLDlVBVcdGeP/4uRLFlRKOT3HHql+rMfn7chx91gMAcChTj8OXDVg+lGtmya5ZT6DfPNEpbB5HMtbmEWS6rJnsQkmVhMc3lOPD4a7wdan9Df+lbZWYdp8T5vZyRpsgDVoHaDC2jQ7O2ju3jFYNhHioa94C3G79bxh/1YDFB6vw35G3lkVijhGPtdWhlb8Gz3bWITHHCACoNkh4bnMF/vOQKzR3azpqGDd/4JGPeJqsHlgyIrR/DGg5WHQKqofnt1TgwZZaDIyoPejPLjXi8GUDgtzViFtdiuB3itH3k1LsS9ff9TWT8oxotLgYEe8W4/ENZUgvNNZ6vKxawvj15Vg5zAUhHrf+F20frMZPaXrojRK2pegRG2z6RrdofxX6NdeiSyN+45OXChj1H8CrkeggdoElI8qI9wDPUNEp6A6+Pl2N41kG/Gug8y2PpeabimH+3kpM7qTD1sfd0ClEg/s/K0NSruGW5/+uW2MNPhnpiq1PuGHVg65Iy5fQ++NSFFfemMd5aWsF4sI0GBlV953jc3s5Q6sGWiwvwcZzeqwe4YKkXAM+PVmNV/s44bnN5Yh4txhjvylDYcXt54foHsW9CLQaJDqF3WDJiOIZDIz9HNA49q55tiqj0IjpWyvwxcOucKnj9Jfxt+/dUzrrMKmjEzqGarB0iAta+6vx3xPVtzz/d0Nb6vBoGx1igzUYHKnFlsfdUFAhYe0Z08dsOl+Nny4asGzI7edUvF1U+PIRN1ya4Ym9E90RE6jBlM0VePsBZ3yRUI3UfCPOv+ABN50KC/byAgCLanIfcP9rolPYFU78ixTW1bSI5vdcUM/WHMsyILtUQqf3S2uOGSTg50sGrDhShfMvmCbaYwJr/5wWHahGelHt01934uOiQit/NZLzTB/zU5oBKXlG+CwsrvW8R9aWo3fTKuyZeOuuqx+fqIKPiwojo3R4eE0ZRkXpoNOo8GiMFn/fw5KxGBcfYMxqQMNvm+bgV0u0zk8BV44Dxz4RnYRucn+4Fgn/V/sb+qTvyhEVoMGcnk6I8FWhkacK53NqF8qFXCOGRtb/v1VJlYSUPCOejDWNlub2csKfO9U+TdZuVSmWDnbG8Fa3nj67XmrEgp8rsW+SKatBMl0AAADVRsBQ/76juxm5kkv43wOWjC0Y+jaQnQhkHBadhH7j6axC26DaE+juOhX8XW8cfznOCa/tqUT7EA06hGjwaXwVzuUYse7RG6dA7/+sFKOjdHjhPtOx2dsrMLyVFs181LhSbMRreyqhUavwp7amAjFdcXZrnqbeaoT73np2e8a2Cszq4YzGXqbHeoZp8PmpagxqocUHx6rRM4wXAVjEfVOAaN7jdi9YMrZA6wSM/Qx4vy9QclV0GqqnGd2dUaEHXtpWgbxyCe2DNdjxpBta+N0og5Q8I3LKbgwnMouM+NP6cuSWSwh0U6FXUw0OPeOOQHfzp0e3JeuRnGfE56NvjHBeuM8JR68Y0O2jUtzXWIPX+vF+mQYL7QAMelN0CrulkiSJl5/YiowjwCcPAoYq0UmICDCtrjxlD+AXITqJ3eLVZbYk7D7uDU5kK9Q6YOynLJgGYsnYmi5PA52eEp2CiIYvA1r0F53C7rFkbNGwd4AmXUWnIHJcfV4BOj4hOoUisGRskdbJdKOmJ5etILK62MdMm5CRRbBkbJVXKPDUJsA9UHQSIsfRvLdpySeyGJaMLQtoCTz5LeDqKzoJkfKFtAMe+8J0JoEshiVj60LaAk9sAJy9RCchUi6/FsATGwEXb9FJFIclYw8adwIe/wbQ3bpuFRE1kGcjYMK3gAdPTcuBJWMvmnYH/vQloOUd3EQW4+oHPLmRa5LJiCVjTyL6mZafUde9zwgRmcHJA3h8HRAUJTqJorFk7E2rwablxlVc+JDonrn4mC6qadJZdBLFY8nYo5iRwOj/ACr+9RGZzSMEmPSjaT8nkh2/S9mr2LHAQ0tFpyCyL77hwDPbgOAY0UkcBpf6t2edJwKSEfhhNiDdfl95IgIQ1MY0ye8ZLDqJQ+FS/0pwfiuw7mmguvTuzyVyRGHdgPFrAVcf0UkcDktGKa7EA1+O46ZnRH8UOdC0FqCTm+gkDokloyQFGcAXjwLXE0UnIbINbR8BRr8PaHjZvygsGaWpKATWPAmk7RWdhEisLk8DwxYDal7fJBK/+krj4g08sR7o8LjoJETi9J5luvqSBSMcRzJKtuctYM8/Racgsh6tCzB0EdCZu8vaCpaM0p38Gtj0ImCoEp2ESF4+zUzLLjXqIDoJ3YQl4wjSfgHWPG6aryFSolZDTKtgcO8lm8OScRQ5ScDap4DsM6KTEFmOSmPaKrnXTEClEp2G6sCScSTV5cDWucCxT0QnIWo490BgzH+B8D6ik9AdsGQc0en1wPczgMoi0UmI7k3THsCYjwGvUNFJ6C5YMo4qLxX4ZhKQFS86CZF5erwADHwd0HDpRXvAknFk+ipg1+vAwZUA+M+AbJyzFzByhWmrC7IbLBkyXX327f8BhRmikxDVLaw7MOrfgH8L0UnITCwZMqkoBLa8Apz6WnQSohucvYGBr5mWiOHVY3aJJUO1nfkW2PwSUJ4nOgk5uujhwNC3Oblv51gydKvia8COV4FTa8G5GrI6r8bAsLeBqAdFJyELYMnQ7aUfBn58hVegkXWo1ECXZ0ynx5w9RachC2HJ0J0ZjcCJz4BdbwBlOaLTkFIFxQDD3wXC7hOdhCyMJUP1U14A7PkX8OtHgFEvOg0phdYF6DMb6DmDG4spFEuGzJOdaDqFlvaz6CRk7yIfAIa+xcuSFY4lQ/fm7HfAtr8Bhemik5C9Ce8D9P8b0LSb6CRkBSwZunfV5cC+ZcD+dwF9ueg0ZOvCuptWTOaClg6FJUMNV5QFHFxhWt25qkR0GrI1jToB/f8KtBwoOgkJwJIhyynPB458CBz+D1CWKzoNiRbcDuj/FyBqmOgkJBBLhiyvqgw48Tlw4D2uh+aIAloD/ecBMaO4FAyxZEhGBj2Q8I1pzuZ6oug0JLfAKNMOle0eBdRq0WnIRrBkSH6SBJz/Edi3FMg8IjoNWZLG2bT0fpdJQLM40WnIBrFkyLou7gf2LwOSdwKSUXQaulf+kUDnSUCH8YCbn+g0ZMNYMiRG0RXTqbRTa4Frp0WnofrQOAFRD5lGLbwMmeqJJUPiXT1t2scmYR1QnCU6Df2Rb3Og80SgwxOAR6DoNGRnWDJkO4xGIG0vcGoNkPg977kRSecGtHzAVC4R/XmVGN0zlgzZpqoy4NxmU+Gk7AYkg+hEyufZCGg9BGg11HQ6TOciOhEpAEuGbF/xNSBxk6lsLu4DKgtFJ1IIFdCog6lUWg8BQtuLDkQKxJIh+2I0AFfigbQ9QOpeIOMwoK8Qncp+aF2BiH6mUmk5mFsbk+xYMmTfqiuAjEOmwknbayognlq7Qa0FgqKBJl1NpRLRF9C5ik5FDoQlQ8pSXmA6pZa2F7h0AMi5ABiqRKeyDpUGCGgFNOp44y2kHedWSCiWDCmbQQ/kpZqWtck+d+PX3GTAWC06XQOoTDdE3lwoobGAk7voYES1sGTIMRmqgdyUm8rnt7fcZBvaXloFeAQBPk1rv/m3NE3Su3iJDkh0VywZopsZDUBZHlCeV/vXstybjuXf9Fiu6f3fi0mlMc2DqLWARnvj92otoNYAat1Nj+sAN3/AI9hUJjf/6hkKeDfhqS6yeywZIksw6E2lQkS1sGSIiEg23PSBiIhkw5IhIiLZsGSIiEg2LBkiIpINS4aIiGTDkiFyQBMnTsSoUaNq3u/Xrx9mzJhRr4/ds2cPVCoVCgoKZMlGysIL+4kIGzZsgE6nq9dz4+LikJWVBW9vb5lTkRKwZIgIfn5+9X6uk5MTQkJCZExDSsLTZUQ2rl+/fnjxxRcxY8YM+Pr6Ijg4GB9++CFKS0sxadIkeHp6IjIyEj/++CMAwGAw4JlnnkF4eDhcXV3RunVrvPvuu3f9HDefLqusrMScOXMQFhYGZ2dnREZGYvXq1QDqPl22fv16tGnTBs7OzmjevDkWL15c6/VVKhW+/fbbWsd8fHzwySefAACqqqrwwgsvIDQ0FC4uLmjWrBn+9a9/3dsXjGwKRzJEduDTTz/FK6+8giNHjmDNmjX4v//7P2zcuBGjR4/GX/7yFyxduhRPPvkk0tPTodPp0KRJE3zzzTfw9/fHgQMH8OyzzyI0NBRjx46t1+ebMGECDh48iOXLl6N9+/ZIS0tDTk5Onc89duwYxo4di/nz52PcuHE4cOAApk6dCn9/f0ycOLFen2/58uXYtGkT1q5di6ZNmyIjIwMZGRn1/fKQLZOIyKb17dtX6tWrV837er1ecnd3l5588smaY1lZWRIA6eDBg3W+xvPPPy898sgjNe8/9dRT0siRI2t9junTp0uSJEnnz5+XAEg7duyo87V2794tAZDy8/MlSZKk8ePHSw888ECt57z88stSTExMzfsApI0bN9Z6jre3t/Txxx9LkiRJL774ojRgwADJaDTW+TnJfvF0GZEdiI2Nrfm9RqOBv78/2rVrV3MsODgYAJCdnQ0AWLlyJTp37ozAwEB4eHjggw8+QHp6er0+V3x8PDQaDfr27Vuv5ycmJqJnz561jvXs2RNJSUkwGOq3S+nEiRMRHx+P1q1bY9q0adi+fXu9Po5sH0uGyA788covlUpV65hKpQIAGI1GfP3115g9ezaeeeYZbN++HfHx8Zg0aRKqquq3Q6irq+W3Z1apVJD+sBZvdfWNTeM6deqEtLQ0vPHGGygvL8fYsWMxZswYi+cg6+OcDJHC7N+/H3FxcZg6dWrNsZSUlHp/fLt27WA0GrF3714MHDjwrs+Pjo7G/v37b8nQqlUraDQaAEBgYCCysrJqHk9KSkJZWVmtj/Hy8sK4ceMwbtw4jBkzBkOGDEFeXp5ZV76R7WHJEClMy5Yt8dlnn2Hbtm0IDw/H559/jl9//RXh4eH1+vjmzZvjqaeewtNPP10z8X/p0iVkZ2fXeeHArFmz0LVrV7zxxhsYN24cDh48iBUrVuDf//53zXMGDBiAFStWoEePHjAYDJgzZ06tkdiSJUsQGhqKjh07Qq1W45tvvkFISAh8fHwa/PUgsXi6jEhhpkyZgocffhjjxo1Dt27dkJubW2tUUx+rVq3CmDFjMHXqVERFRWHy5MkoLS2t87mdOnXC2rVr8fXXX6Nt27b4+9//jgULFtS6smzx4sUICwtD7969MX78eMyePRtubm41j3t6emLRokXo0qULunbtiosXL2LLli1Qq/ktyt5x0zIiIpINf0wgIiLZsGSIiEg2LBkiIpINS4aIiGTDkiEiItmwZIiISDYsGSIikg1LhoiIZMOSISIi2bBkiIhINiwZIiKSDUuGiIhkw5IhIiLZsGSIiEg2LBkiIpINS4aIiGTDkiEiItmwZIiISDYsGSIikg1LhoiIZMOSISIi2bBkiIhINiwZIiKSDUuGiIhkw5IhIiLZsGSIiEg2LBkiIpINS4aIiGTz/73k42U4MqcWAAAAAElFTkSuQmCC\n",
382
- "text/plain": [
383
- "<Figure size 640x480 with 1 Axes>"
384
- ]
385
- },
386
- "metadata": {},
387
- "output_type": "display_data"
388
- }
389
- ],
390
  "source": [
391
  "print('number of classes:', df['labels'].nunique())\n",
392
  "print('')\n",
@@ -516,7 +454,7 @@
516
  },
517
  {
518
  "cell_type": "code",
519
- "execution_count": 4,
520
  "metadata": {
521
  "execution": {
522
  "iopub.execute_input": "2023-05-22T10:21:20.505401Z",
@@ -609,7 +547,7 @@
609
  },
610
  {
611
  "cell_type": "code",
612
- "execution_count": 6,
613
  "metadata": {
614
  "execution": {
615
  "iopub.execute_input": "2023-05-22T10:24:08.098032Z",
@@ -627,7 +565,7 @@
627
  "traceback": [
628
  "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
629
  "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)",
630
- "\u001b[0;32m<ipython-input-6-4356dc8164e0>\u001b[0m in \u001b[0;36m<cell line: 2>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m#column 'num_outbound_cmds' is zero everywhere, we will delete it\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mdf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdrop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'num_outbound_cmds'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minplace\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;31m#remove from list of numeric columns\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mnumeric_columns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mremove\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'num_outbound_cmds'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
631
  "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36mdrop\u001b[0;34m(self, labels, axis, index, columns, level, inplace, errors)\u001b[0m\n\u001b[1;32m 5342\u001b[0m \u001b[0mweight\u001b[0m \u001b[0;36m1.0\u001b[0m \u001b[0;36m0.8\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5343\u001b[0m \"\"\"\n\u001b[0;32m-> 5344\u001b[0;31m return super().drop(\n\u001b[0m\u001b[1;32m 5345\u001b[0m \u001b[0mlabels\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlabels\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5346\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
632
  "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36mdrop\u001b[0;34m(self, labels, axis, index, columns, level, inplace, errors)\u001b[0m\n\u001b[1;32m 4709\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlabels\u001b[0m \u001b[0;32min\u001b[0m \u001b[0maxes\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4710\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlabels\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 4711\u001b[0;31m \u001b[0mobj\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_drop_axis\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlabels\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlevel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlevel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0merrors\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0merrors\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4712\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4713\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0minplace\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
633
  "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36m_drop_axis\u001b[0;34m(self, labels, axis, level, errors, only_slice)\u001b[0m\n\u001b[1;32m 4751\u001b[0m \u001b[0mnew_axis\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdrop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlabels\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlevel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlevel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0merrors\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0merrors\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4752\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 4753\u001b[0;31m \u001b[0mnew_axis\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdrop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlabels\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0merrors\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0merrors\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4754\u001b[0m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_indexer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnew_axis\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4755\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
 
314
  },
315
  {
316
  "cell_type": "code",
317
+ "execution_count": null,
318
  "metadata": {
319
  "execution": {
320
  "iopub.execute_input": "2023-05-22T10:20:41.384744Z",
 
324
  "shell.execute_reply.started": "2023-05-22T10:20:41.384638Z"
325
  }
326
  },
327
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
328
  "source": [
329
  "print('number of classes:', df['labels'].nunique())\n",
330
  "print('')\n",
 
454
  },
455
  {
456
  "cell_type": "code",
457
+ "execution_count": 3,
458
  "metadata": {
459
  "execution": {
460
  "iopub.execute_input": "2023-05-22T10:21:20.505401Z",
 
547
  },
548
  {
549
  "cell_type": "code",
550
+ "execution_count": 5,
551
  "metadata": {
552
  "execution": {
553
  "iopub.execute_input": "2023-05-22T10:24:08.098032Z",
 
565
  "traceback": [
566
  "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
567
  "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)",
568
+ "\u001b[0;32m<ipython-input-5-91a4d8dd6ff7>\u001b[0m in \u001b[0;36m<cell line: 3>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# [reexecute] - this crash is because this cell was executed more than once\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;31m#column 'num_outbound_cmds' is zero everywhere, we will delete it\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mdf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdrop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'num_outbound_cmds'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minplace\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;31m#remove from list of numeric columns\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
569
  "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36mdrop\u001b[0;34m(self, labels, axis, index, columns, level, inplace, errors)\u001b[0m\n\u001b[1;32m 5342\u001b[0m \u001b[0mweight\u001b[0m \u001b[0;36m1.0\u001b[0m \u001b[0;36m0.8\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5343\u001b[0m \"\"\"\n\u001b[0;32m-> 5344\u001b[0;31m return super().drop(\n\u001b[0m\u001b[1;32m 5345\u001b[0m \u001b[0mlabels\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlabels\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5346\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
570
  "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36mdrop\u001b[0;34m(self, labels, axis, index, columns, level, inplace, errors)\u001b[0m\n\u001b[1;32m 4709\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlabels\u001b[0m \u001b[0;32min\u001b[0m \u001b[0maxes\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4710\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlabels\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 4711\u001b[0;31m \u001b[0mobj\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_drop_axis\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlabels\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlevel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlevel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0merrors\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0merrors\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4712\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4713\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0minplace\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
571
  "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36m_drop_axis\u001b[0;34m(self, labels, axis, level, errors, only_slice)\u001b[0m\n\u001b[1;32m 4751\u001b[0m \u001b[0mnew_axis\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdrop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlabels\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlevel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlevel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0merrors\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0merrors\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4752\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 4753\u001b[0;31m \u001b[0mnew_axis\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdrop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlabels\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0merrors\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0merrors\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4754\u001b[0m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_indexer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnew_axis\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4755\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
benchmark/NBspecific_6/NBspecific_6_fixed.ipynb CHANGED
The diff for this file is too large to render. See raw diff
 
benchmark/NBspecific_6/NBspecific_6_reproduced.ipynb CHANGED
@@ -128,123 +128,123 @@
128
  " <tbody>\n",
129
  " <tr>\n",
130
  " <th>0</th>\n",
131
- " <td>1673789190429</td>\n",
132
- " <td>2023-01-15 13:26:30</td>\n",
133
- " <td>20743.7</td>\n",
134
- " <td>22.673</td>\n",
135
- " <td>20743.6</td>\n",
136
- " <td>0.176</td>\n",
137
- " <td>20743.5</td>\n",
138
- " <td>3.514</td>\n",
139
- " <td>20743.1</td>\n",
140
- " <td>0.022</td>\n",
141
  " <td>...</td>\n",
142
- " <td>20744.6</td>\n",
143
- " <td>0.743</td>\n",
144
- " <td>20744.7</td>\n",
145
- " <td>0.043</td>\n",
146
- " <td>20744.8</td>\n",
147
- " <td>0.412</td>\n",
148
- " <td>20744.9</td>\n",
149
- " <td>0.138</td>\n",
150
- " <td>20745.0</td>\n",
151
- " <td>1.180</td>\n",
152
  " </tr>\n",
153
  " <tr>\n",
154
  " <th>1</th>\n",
155
- " <td>1673594303865</td>\n",
156
- " <td>2023-01-13 07:18:23</td>\n",
157
- " <td>18815.0</td>\n",
158
- " <td>20.859</td>\n",
159
- " <td>18814.8</td>\n",
160
- " <td>0.001</td>\n",
161
- " <td>18814.7</td>\n",
162
- " <td>2.228</td>\n",
163
- " <td>18814.5</td>\n",
164
- " <td>8.037</td>\n",
165
  " <td>...</td>\n",
166
- " <td>18816.0</td>\n",
167
- " <td>1.502</td>\n",
168
- " <td>18816.1</td>\n",
169
- " <td>4.033</td>\n",
170
- " <td>18816.2</td>\n",
171
- " <td>0.001</td>\n",
172
- " <td>18816.3</td>\n",
173
- " <td>0.997</td>\n",
174
- " <td>18816.4</td>\n",
175
- " <td>1.135</td>\n",
176
  " </tr>\n",
177
  " <tr>\n",
178
  " <th>2</th>\n",
179
- " <td>1674072140715</td>\n",
180
- " <td>2023-01-18 20:02:20</td>\n",
181
- " <td>20864.2</td>\n",
182
- " <td>15.643</td>\n",
183
- " <td>20864.1</td>\n",
184
- " <td>1.001</td>\n",
185
- " <td>20863.7</td>\n",
186
- " <td>0.001</td>\n",
187
- " <td>20863.6</td>\n",
188
- " <td>0.479</td>\n",
189
  " <td>...</td>\n",
190
- " <td>20865.0</td>\n",
191
- " <td>0.003</td>\n",
192
- " <td>20865.2</td>\n",
193
- " <td>1.877</td>\n",
194
- " <td>20865.3</td>\n",
195
- " <td>0.001</td>\n",
196
- " <td>20865.4</td>\n",
197
- " <td>6.300</td>\n",
198
- " <td>20865.6</td>\n",
199
  " <td>0.001</td>\n",
 
 
 
 
 
 
 
 
200
  " </tr>\n",
201
  " <tr>\n",
202
  " <th>3</th>\n",
203
- " <td>1673582254964</td>\n",
204
- " <td>2023-01-13 03:57:34</td>\n",
205
- " <td>18863.5</td>\n",
206
- " <td>64.301</td>\n",
207
- " <td>18863.4</td>\n",
208
- " <td>21.509</td>\n",
209
- " <td>18863.3</td>\n",
210
- " <td>4.832</td>\n",
211
- " <td>18863.2</td>\n",
212
- " <td>2.838</td>\n",
213
  " <td>...</td>\n",
214
- " <td>18864.6</td>\n",
215
- " <td>0.010</td>\n",
216
- " <td>18864.7</td>\n",
217
- " <td>0.021</td>\n",
218
- " <td>18864.8</td>\n",
219
- " <td>0.013</td>\n",
220
- " <td>18865.0</td>\n",
221
- " <td>0.378</td>\n",
222
- " <td>18865.4</td>\n",
223
- " <td>0.904</td>\n",
224
  " </tr>\n",
225
  " <tr>\n",
226
  " <th>4</th>\n",
227
- " <td>1673961482776</td>\n",
228
- " <td>2023-01-17 13:18:02</td>\n",
229
- " <td>21229.2</td>\n",
230
- " <td>30.123</td>\n",
231
- " <td>21229.1</td>\n",
232
- " <td>5.268</td>\n",
233
- " <td>21229.0</td>\n",
234
- " <td>2.208</td>\n",
235
- " <td>21228.8</td>\n",
236
- " <td>2.040</td>\n",
237
  " <td>...</td>\n",
238
- " <td>21230.7</td>\n",
239
- " <td>0.235</td>\n",
240
- " <td>21230.8</td>\n",
241
- " <td>0.836</td>\n",
242
- " <td>21231.5</td>\n",
243
- " <td>0.001</td>\n",
244
- " <td>21231.6</td>\n",
245
- " <td>0.380</td>\n",
246
- " <td>21231.7</td>\n",
247
- " <td>0.017</td>\n",
248
  " </tr>\n",
249
  " <tr>\n",
250
  " <th>...</th>\n",
@@ -272,123 +272,123 @@
272
  " </tr>\n",
273
  " <tr>\n",
274
  " <th>99995</th>\n",
275
- " <td>1673845021673</td>\n",
276
- " <td>2023-01-16 04:57:01</td>\n",
277
- " <td>21145.1</td>\n",
278
- " <td>0.078</td>\n",
279
- " <td>21145.0</td>\n",
280
- " <td>0.365</td>\n",
281
- " <td>21144.7</td>\n",
282
- " <td>0.001</td>\n",
283
- " <td>21144.6</td>\n",
284
- " <td>0.008</td>\n",
285
  " <td>...</td>\n",
286
- " <td>21145.8</td>\n",
287
- " <td>0.208</td>\n",
288
- " <td>21145.9</td>\n",
289
- " <td>2.325</td>\n",
290
- " <td>21146.0</td>\n",
291
- " <td>0.165</td>\n",
292
- " <td>21146.1</td>\n",
293
- " <td>0.292</td>\n",
294
- " <td>21146.4</td>\n",
295
- " <td>0.081</td>\n",
296
  " </tr>\n",
297
  " <tr>\n",
298
  " <th>99996</th>\n",
299
- " <td>1673352913221</td>\n",
300
- " <td>2023-01-10 12:15:13</td>\n",
301
- " <td>17244.9</td>\n",
302
- " <td>9.442</td>\n",
303
- " <td>17244.8</td>\n",
 
 
 
 
304
  " <td>0.013</td>\n",
305
- " <td>17244.7</td>\n",
306
- " <td>0.032</td>\n",
307
- " <td>17244.6</td>\n",
308
- " <td>0.025</td>\n",
309
  " <td>...</td>\n",
310
- " <td>17245.5</td>\n",
311
- " <td>0.106</td>\n",
312
- " <td>17245.6</td>\n",
313
- " <td>0.394</td>\n",
314
- " <td>17245.7</td>\n",
315
- " <td>2.735</td>\n",
316
- " <td>17245.8</td>\n",
317
- " <td>2.281</td>\n",
318
- " <td>17245.9</td>\n",
319
- " <td>18.193</td>\n",
320
  " </tr>\n",
321
  " <tr>\n",
322
  " <th>99997</th>\n",
323
- " <td>1673630358323</td>\n",
324
- " <td>2023-01-13 17:19:18</td>\n",
325
- " <td>19239.9</td>\n",
326
- " <td>3.884</td>\n",
327
- " <td>19239.8</td>\n",
328
- " <td>2.802</td>\n",
329
- " <td>19239.7</td>\n",
330
- " <td>4.690</td>\n",
331
- " <td>19239.5</td>\n",
332
- " <td>0.005</td>\n",
333
  " <td>...</td>\n",
334
- " <td>19240.5</td>\n",
335
- " <td>4.575</td>\n",
336
- " <td>19240.6</td>\n",
337
- " <td>1.533</td>\n",
338
- " <td>19240.7</td>\n",
339
- " <td>4.550</td>\n",
340
- " <td>19240.8</td>\n",
341
- " <td>1.774</td>\n",
342
- " <td>19240.9</td>\n",
343
- " <td>1.610</td>\n",
344
  " </tr>\n",
345
  " <tr>\n",
346
  " <th>99998</th>\n",
347
- " <td>1673794625739</td>\n",
348
- " <td>2023-01-15 14:57:05</td>\n",
349
- " <td>20800.2</td>\n",
350
- " <td>8.381</td>\n",
351
- " <td>20800.1</td>\n",
352
- " <td>3.240</td>\n",
353
- " <td>20800.0</td>\n",
354
- " <td>0.885</td>\n",
355
- " <td>20799.4</td>\n",
356
- " <td>0.026</td>\n",
357
  " <td>...</td>\n",
358
- " <td>20800.8</td>\n",
359
- " <td>0.001</td>\n",
360
- " <td>20800.9</td>\n",
361
- " <td>0.028</td>\n",
362
- " <td>20801.0</td>\n",
363
- " <td>0.092</td>\n",
364
- " <td>20801.1</td>\n",
365
- " <td>0.347</td>\n",
366
- " <td>20801.2</td>\n",
367
- " <td>0.070</td>\n",
368
  " </tr>\n",
369
  " <tr>\n",
370
  " <th>99999</th>\n",
371
- " <td>1674193298659</td>\n",
372
- " <td>2023-01-20 05:41:38</td>\n",
373
- " <td>20952.1</td>\n",
 
 
 
 
 
 
374
  " <td>0.001</td>\n",
375
- " <td>20952.0</td>\n",
376
- " <td>0.994</td>\n",
377
- " <td>20951.9</td>\n",
378
- " <td>0.070</td>\n",
379
- " <td>20951.8</td>\n",
380
- " <td>0.100</td>\n",
381
  " <td>...</td>\n",
382
- " <td>20952.9</td>\n",
383
- " <td>4.707</td>\n",
384
- " <td>20953.0</td>\n",
385
- " <td>9.031</td>\n",
386
- " <td>20953.1</td>\n",
387
- " <td>5.548</td>\n",
388
- " <td>20953.2</td>\n",
389
- " <td>2.938</td>\n",
390
- " <td>20953.3</td>\n",
391
- " <td>0.064</td>\n",
392
  " </tr>\n",
393
  " </tbody>\n",
394
  "</table>\n",
@@ -396,44 +396,44 @@
396
  "</div>"
397
  ],
398
  "text/plain": [
399
- " 0 1 2 3 4 5 \\\n",
400
- "0 1673789190429 2023-01-15 13:26:30 20743.7 22.673 20743.6 0.176 \n",
401
- "1 1673594303865 2023-01-13 07:18:23 18815.0 20.859 18814.8 0.001 \n",
402
- "2 1674072140715 2023-01-18 20:02:20 20864.2 15.643 20864.1 1.001 \n",
403
- "3 1673582254964 2023-01-13 03:57:34 18863.5 64.301 18863.4 21.509 \n",
404
- "4 1673961482776 2023-01-17 13:18:02 21229.2 30.123 21229.1 5.268 \n",
405
- "... ... ... ... ... ... ... \n",
406
- "99995 1673845021673 2023-01-16 04:57:01 21145.1 0.078 21145.0 0.365 \n",
407
- "99996 1673352913221 2023-01-10 12:15:13 17244.9 9.442 17244.8 0.013 \n",
408
- "99997 1673630358323 2023-01-13 17:19:18 19239.9 3.884 19239.8 2.802 \n",
409
- "99998 1673794625739 2023-01-15 14:57:05 20800.2 8.381 20800.1 3.240 \n",
410
- "99999 1674193298659 2023-01-20 05:41:38 20952.1 0.001 20952.0 0.994 \n",
411
  "\n",
412
  " 6 7 8 9 ... 32 33 34 35 \\\n",
413
- "0 20743.5 3.514 20743.1 0.022 ... 20744.6 0.743 20744.7 0.043 \n",
414
- "1 18814.7 2.228 18814.5 8.037 ... 18816.0 1.502 18816.1 4.033 \n",
415
- "2 20863.7 0.001 20863.6 0.479 ... 20865.0 0.003 20865.2 1.877 \n",
416
- "3 18863.3 4.832 18863.2 2.838 ... 18864.6 0.010 18864.7 0.021 \n",
417
- "4 21229.0 2.208 21228.8 2.040 ... 21230.7 0.235 21230.8 0.836 \n",
418
  "... ... ... ... ... ... ... ... ... ... \n",
419
- "99995 21144.7 0.001 21144.6 0.008 ... 21145.8 0.208 21145.9 2.325 \n",
420
- "99996 17244.7 0.032 17244.6 0.025 ... 17245.5 0.106 17245.6 0.394 \n",
421
- "99997 19239.7 4.690 19239.5 0.005 ... 19240.5 4.575 19240.6 1.533 \n",
422
- "99998 20800.0 0.885 20799.4 0.026 ... 20800.8 0.001 20800.9 0.028 \n",
423
- "99999 20951.9 0.070 20951.8 0.100 ... 20952.9 4.707 20953.0 9.031 \n",
424
  "\n",
425
- " 36 37 38 39 40 41 \n",
426
- "0 20744.8 0.412 20744.9 0.138 20745.0 1.180 \n",
427
- "1 18816.2 0.001 18816.3 0.997 18816.4 1.135 \n",
428
- "2 20865.3 0.001 20865.4 6.300 20865.6 0.001 \n",
429
- "3 18864.8 0.013 18865.0 0.378 18865.4 0.904 \n",
430
- "4 21231.5 0.001 21231.6 0.380 21231.7 0.017 \n",
431
- "... ... ... ... ... ... ... \n",
432
- "99995 21146.0 0.165 21146.1 0.292 21146.4 0.081 \n",
433
- "99996 17245.7 2.735 17245.8 2.281 17245.9 18.193 \n",
434
- "99997 19240.7 4.550 19240.8 1.774 19240.9 1.610 \n",
435
- "99998 20801.0 0.092 20801.1 0.347 20801.2 0.070 \n",
436
- "99999 20953.1 5.548 20953.2 2.938 20953.3 0.064 \n",
437
  "\n",
438
  "[100000 rows x 42 columns]"
439
  ]
@@ -474,7 +474,7 @@
474
  },
475
  {
476
  "cell_type": "code",
477
- "execution_count": 4,
478
  "metadata": {
479
  "execution": {
480
  "iopub.execute_input": "2023-09-05T09:39:29.463834Z",
@@ -486,417 +486,14 @@
486
  "id": "Cuoj1Qlmi3KE",
487
  "outputId": "5b6214b3-5747-428d-d523-5303bbb74f36"
488
  },
489
- "outputs": [
490
- {
491
- "data": {
492
- "text/html": [
493
- "<div>\n",
494
- "<style scoped>\n",
495
- " .dataframe tbody tr th:only-of-type {\n",
496
- " vertical-align: middle;\n",
497
- " }\n",
498
- "\n",
499
- " .dataframe tbody tr th {\n",
500
- " vertical-align: top;\n",
501
- " }\n",
502
- "\n",
503
- " .dataframe thead th {\n",
504
- " text-align: right;\n",
505
- " }\n",
506
- "</style>\n",
507
- "<table border=\"1\" class=\"dataframe\">\n",
508
- " <thead>\n",
509
- " <tr style=\"text-align: right;\">\n",
510
- " <th></th>\n",
511
- " <th>2</th>\n",
512
- " <th>3</th>\n",
513
- " <th>22</th>\n",
514
- " <th>23</th>\n",
515
- " <th>4</th>\n",
516
- " <th>5</th>\n",
517
- " <th>24</th>\n",
518
- " <th>25</th>\n",
519
- " <th>6</th>\n",
520
- " <th>7</th>\n",
521
- " <th>...</th>\n",
522
- " <th>36</th>\n",
523
- " <th>37</th>\n",
524
- " <th>18</th>\n",
525
- " <th>19</th>\n",
526
- " <th>38</th>\n",
527
- " <th>39</th>\n",
528
- " <th>20</th>\n",
529
- " <th>21</th>\n",
530
- " <th>40</th>\n",
531
- " <th>41</th>\n",
532
- " </tr>\n",
533
- " <tr>\n",
534
- " <th>1</th>\n",
535
- " <th></th>\n",
536
- " <th></th>\n",
537
- " <th></th>\n",
538
- " <th></th>\n",
539
- " <th></th>\n",
540
- " <th></th>\n",
541
- " <th></th>\n",
542
- " <th></th>\n",
543
- " <th></th>\n",
544
- " <th></th>\n",
545
- " <th></th>\n",
546
- " <th></th>\n",
547
- " <th></th>\n",
548
- " <th></th>\n",
549
- " <th></th>\n",
550
- " <th></th>\n",
551
- " <th></th>\n",
552
- " <th></th>\n",
553
- " <th></th>\n",
554
- " <th></th>\n",
555
- " <th></th>\n",
556
- " </tr>\n",
557
- " </thead>\n",
558
- " <tbody>\n",
559
- " <tr>\n",
560
- " <th>2023-01-15 13:26:30</th>\n",
561
- " <td>20743.7</td>\n",
562
- " <td>22.673</td>\n",
563
- " <td>20743.8</td>\n",
564
- " <td>8.897</td>\n",
565
- " <td>20743.6</td>\n",
566
- " <td>0.176</td>\n",
567
- " <td>20743.9</td>\n",
568
- " <td>0.085</td>\n",
569
- " <td>20743.5</td>\n",
570
- " <td>3.514</td>\n",
571
- " <td>...</td>\n",
572
- " <td>20744.8</td>\n",
573
- " <td>0.412</td>\n",
574
- " <td>20742.6</td>\n",
575
- " <td>0.001</td>\n",
576
- " <td>20744.9</td>\n",
577
- " <td>0.138</td>\n",
578
- " <td>20742.5</td>\n",
579
- " <td>0.014</td>\n",
580
- " <td>20745.0</td>\n",
581
- " <td>1.180</td>\n",
582
- " </tr>\n",
583
- " <tr>\n",
584
- " <th>2023-01-13 07:18:23</th>\n",
585
- " <td>18815.0</td>\n",
586
- " <td>20.859</td>\n",
587
- " <td>18815.1</td>\n",
588
- " <td>5.267</td>\n",
589
- " <td>18814.8</td>\n",
590
- " <td>0.001</td>\n",
591
- " <td>18815.4</td>\n",
592
- " <td>0.002</td>\n",
593
- " <td>18814.7</td>\n",
594
- " <td>2.228</td>\n",
595
- " <td>...</td>\n",
596
- " <td>18816.2</td>\n",
597
- " <td>0.001</td>\n",
598
- " <td>18814.0</td>\n",
599
- " <td>0.126</td>\n",
600
- " <td>18816.3</td>\n",
601
- " <td>0.997</td>\n",
602
- " <td>18813.9</td>\n",
603
- " <td>0.007</td>\n",
604
- " <td>18816.4</td>\n",
605
- " <td>1.135</td>\n",
606
- " </tr>\n",
607
- " <tr>\n",
608
- " <th>2023-01-18 20:02:20</th>\n",
609
- " <td>20864.2</td>\n",
610
- " <td>15.643</td>\n",
611
- " <td>20864.3</td>\n",
612
- " <td>2.263</td>\n",
613
- " <td>20864.1</td>\n",
614
- " <td>1.001</td>\n",
615
- " <td>20864.4</td>\n",
616
- " <td>0.008</td>\n",
617
- " <td>20863.7</td>\n",
618
- " <td>0.001</td>\n",
619
- " <td>...</td>\n",
620
- " <td>20865.3</td>\n",
621
- " <td>0.001</td>\n",
622
- " <td>20862.9</td>\n",
623
- " <td>0.001</td>\n",
624
- " <td>20865.4</td>\n",
625
- " <td>6.300</td>\n",
626
- " <td>20862.8</td>\n",
627
- " <td>0.480</td>\n",
628
- " <td>20865.6</td>\n",
629
- " <td>0.001</td>\n",
630
- " </tr>\n",
631
- " <tr>\n",
632
- " <th>2023-01-13 03:57:34</th>\n",
633
- " <td>18863.5</td>\n",
634
- " <td>64.301</td>\n",
635
- " <td>18863.6</td>\n",
636
- " <td>0.440</td>\n",
637
- " <td>18863.4</td>\n",
638
- " <td>21.509</td>\n",
639
- " <td>18863.8</td>\n",
640
- " <td>0.001</td>\n",
641
- " <td>18863.3</td>\n",
642
- " <td>4.832</td>\n",
643
- " <td>...</td>\n",
644
- " <td>18864.8</td>\n",
645
- " <td>0.013</td>\n",
646
- " <td>18862.7</td>\n",
647
- " <td>7.274</td>\n",
648
- " <td>18865.0</td>\n",
649
- " <td>0.378</td>\n",
650
- " <td>18862.6</td>\n",
651
- " <td>4.579</td>\n",
652
- " <td>18865.4</td>\n",
653
- " <td>0.904</td>\n",
654
- " </tr>\n",
655
- " <tr>\n",
656
- " <th>2023-01-17 13:18:02</th>\n",
657
- " <td>21229.2</td>\n",
658
- " <td>30.123</td>\n",
659
- " <td>21229.3</td>\n",
660
- " <td>0.137</td>\n",
661
- " <td>21229.1</td>\n",
662
- " <td>5.268</td>\n",
663
- " <td>21229.5</td>\n",
664
- " <td>0.013</td>\n",
665
- " <td>21229.0</td>\n",
666
- " <td>2.208</td>\n",
667
- " <td>...</td>\n",
668
- " <td>21231.5</td>\n",
669
- " <td>0.001</td>\n",
670
- " <td>21228.0</td>\n",
671
- " <td>1.410</td>\n",
672
- " <td>21231.6</td>\n",
673
- " <td>0.380</td>\n",
674
- " <td>21227.9</td>\n",
675
- " <td>0.059</td>\n",
676
- " <td>21231.7</td>\n",
677
- " <td>0.017</td>\n",
678
- " </tr>\n",
679
- " <tr>\n",
680
- " <th>...</th>\n",
681
- " <td>...</td>\n",
682
- " <td>...</td>\n",
683
- " <td>...</td>\n",
684
- " <td>...</td>\n",
685
- " <td>...</td>\n",
686
- " <td>...</td>\n",
687
- " <td>...</td>\n",
688
- " <td>...</td>\n",
689
- " <td>...</td>\n",
690
- " <td>...</td>\n",
691
- " <td>...</td>\n",
692
- " <td>...</td>\n",
693
- " <td>...</td>\n",
694
- " <td>...</td>\n",
695
- " <td>...</td>\n",
696
- " <td>...</td>\n",
697
- " <td>...</td>\n",
698
- " <td>...</td>\n",
699
- " <td>...</td>\n",
700
- " <td>...</td>\n",
701
- " <td>...</td>\n",
702
- " </tr>\n",
703
- " <tr>\n",
704
- " <th>2023-01-16 04:57:01</th>\n",
705
- " <td>21145.1</td>\n",
706
- " <td>0.078</td>\n",
707
- " <td>21145.2</td>\n",
708
- " <td>26.444</td>\n",
709
- " <td>21145.0</td>\n",
710
- " <td>0.365</td>\n",
711
- " <td>21145.4</td>\n",
712
- " <td>0.048</td>\n",
713
- " <td>21144.7</td>\n",
714
- " <td>0.001</td>\n",
715
- " <td>...</td>\n",
716
- " <td>21146.0</td>\n",
717
- " <td>0.165</td>\n",
718
- " <td>21144.1</td>\n",
719
- " <td>0.486</td>\n",
720
- " <td>21146.1</td>\n",
721
- " <td>0.292</td>\n",
722
- " <td>21144.0</td>\n",
723
- " <td>0.117</td>\n",
724
- " <td>21146.4</td>\n",
725
- " <td>0.081</td>\n",
726
- " </tr>\n",
727
- " <tr>\n",
728
- " <th>2023-01-10 12:15:13</th>\n",
729
- " <td>17244.9</td>\n",
730
- " <td>9.442</td>\n",
731
- " <td>17245.0</td>\n",
732
- " <td>52.056</td>\n",
733
- " <td>17244.8</td>\n",
734
- " <td>0.013</td>\n",
735
- " <td>17245.1</td>\n",
736
- " <td>3.704</td>\n",
737
- " <td>17244.7</td>\n",
738
- " <td>0.032</td>\n",
739
- " <td>...</td>\n",
740
- " <td>17245.7</td>\n",
741
- " <td>2.735</td>\n",
742
- " <td>17244.1</td>\n",
743
- " <td>1.249</td>\n",
744
- " <td>17245.8</td>\n",
745
- " <td>2.281</td>\n",
746
- " <td>17244.0</td>\n",
747
- " <td>0.112</td>\n",
748
- " <td>17245.9</td>\n",
749
- " <td>18.193</td>\n",
750
- " </tr>\n",
751
- " <tr>\n",
752
- " <th>2023-01-13 17:19:18</th>\n",
753
- " <td>19239.9</td>\n",
754
- " <td>3.884</td>\n",
755
- " <td>19240.0</td>\n",
756
- " <td>1.702</td>\n",
757
- " <td>19239.8</td>\n",
758
- " <td>2.802</td>\n",
759
- " <td>19240.1</td>\n",
760
- " <td>1.335</td>\n",
761
- " <td>19239.7</td>\n",
762
- " <td>4.690</td>\n",
763
- " <td>...</td>\n",
764
- " <td>19240.7</td>\n",
765
- " <td>4.550</td>\n",
766
- " <td>19238.4</td>\n",
767
- " <td>0.228</td>\n",
768
- " <td>19240.8</td>\n",
769
- " <td>1.774</td>\n",
770
- " <td>19238.3</td>\n",
771
- " <td>0.257</td>\n",
772
- " <td>19240.9</td>\n",
773
- " <td>1.610</td>\n",
774
- " </tr>\n",
775
- " <tr>\n",
776
- " <th>2023-01-15 14:57:05</th>\n",
777
- " <td>20800.2</td>\n",
778
- " <td>8.381</td>\n",
779
- " <td>20800.3</td>\n",
780
- " <td>12.047</td>\n",
781
- " <td>20800.1</td>\n",
782
- " <td>3.240</td>\n",
783
- " <td>20800.4</td>\n",
784
- " <td>0.022</td>\n",
785
- " <td>20800.0</td>\n",
786
- " <td>0.885</td>\n",
787
- " <td>...</td>\n",
788
- " <td>20801.0</td>\n",
789
- " <td>0.092</td>\n",
790
- " <td>20798.8</td>\n",
791
- " <td>0.013</td>\n",
792
- " <td>20801.1</td>\n",
793
- " <td>0.347</td>\n",
794
- " <td>20798.6</td>\n",
795
- " <td>0.001</td>\n",
796
- " <td>20801.2</td>\n",
797
- " <td>0.070</td>\n",
798
- " </tr>\n",
799
- " <tr>\n",
800
- " <th>2023-01-20 05:41:38</th>\n",
801
- " <td>20952.1</td>\n",
802
- " <td>0.001</td>\n",
803
- " <td>20952.2</td>\n",
804
- " <td>37.148</td>\n",
805
- " <td>20952.0</td>\n",
806
- " <td>0.994</td>\n",
807
- " <td>20952.3</td>\n",
808
- " <td>6.122</td>\n",
809
- " <td>20951.9</td>\n",
810
- " <td>0.070</td>\n",
811
- " <td>...</td>\n",
812
- " <td>20953.1</td>\n",
813
- " <td>5.548</td>\n",
814
- " <td>20950.8</td>\n",
815
- " <td>0.001</td>\n",
816
- " <td>20953.2</td>\n",
817
- " <td>2.938</td>\n",
818
- " <td>20950.6</td>\n",
819
- " <td>0.005</td>\n",
820
- " <td>20953.3</td>\n",
821
- " <td>0.064</td>\n",
822
- " </tr>\n",
823
- " </tbody>\n",
824
- "</table>\n",
825
- "<p>96139 rows × 40 columns</p>\n",
826
- "</div>"
827
- ],
828
- "text/plain": [
829
- " 2 3 22 23 4 5 \\\n",
830
- "1 \n",
831
- "2023-01-15 13:26:30 20743.7 22.673 20743.8 8.897 20743.6 0.176 \n",
832
- "2023-01-13 07:18:23 18815.0 20.859 18815.1 5.267 18814.8 0.001 \n",
833
- "2023-01-18 20:02:20 20864.2 15.643 20864.3 2.263 20864.1 1.001 \n",
834
- "2023-01-13 03:57:34 18863.5 64.301 18863.6 0.440 18863.4 21.509 \n",
835
- "2023-01-17 13:18:02 21229.2 30.123 21229.3 0.137 21229.1 5.268 \n",
836
- "... ... ... ... ... ... ... \n",
837
- "2023-01-16 04:57:01 21145.1 0.078 21145.2 26.444 21145.0 0.365 \n",
838
- "2023-01-10 12:15:13 17244.9 9.442 17245.0 52.056 17244.8 0.013 \n",
839
- "2023-01-13 17:19:18 19239.9 3.884 19240.0 1.702 19239.8 2.802 \n",
840
- "2023-01-15 14:57:05 20800.2 8.381 20800.3 12.047 20800.1 3.240 \n",
841
- "2023-01-20 05:41:38 20952.1 0.001 20952.2 37.148 20952.0 0.994 \n",
842
- "\n",
843
- " 24 25 6 7 ... 36 37 \\\n",
844
- "1 ... \n",
845
- "2023-01-15 13:26:30 20743.9 0.085 20743.5 3.514 ... 20744.8 0.412 \n",
846
- "2023-01-13 07:18:23 18815.4 0.002 18814.7 2.228 ... 18816.2 0.001 \n",
847
- "2023-01-18 20:02:20 20864.4 0.008 20863.7 0.001 ... 20865.3 0.001 \n",
848
- "2023-01-13 03:57:34 18863.8 0.001 18863.3 4.832 ... 18864.8 0.013 \n",
849
- "2023-01-17 13:18:02 21229.5 0.013 21229.0 2.208 ... 21231.5 0.001 \n",
850
- "... ... ... ... ... ... ... ... \n",
851
- "2023-01-16 04:57:01 21145.4 0.048 21144.7 0.001 ... 21146.0 0.165 \n",
852
- "2023-01-10 12:15:13 17245.1 3.704 17244.7 0.032 ... 17245.7 2.735 \n",
853
- "2023-01-13 17:19:18 19240.1 1.335 19239.7 4.690 ... 19240.7 4.550 \n",
854
- "2023-01-15 14:57:05 20800.4 0.022 20800.0 0.885 ... 20801.0 0.092 \n",
855
- "2023-01-20 05:41:38 20952.3 6.122 20951.9 0.070 ... 20953.1 5.548 \n",
856
- "\n",
857
- " 18 19 38 39 20 21 40 \\\n",
858
- "1 \n",
859
- "2023-01-15 13:26:30 20742.6 0.001 20744.9 0.138 20742.5 0.014 20745.0 \n",
860
- "2023-01-13 07:18:23 18814.0 0.126 18816.3 0.997 18813.9 0.007 18816.4 \n",
861
- "2023-01-18 20:02:20 20862.9 0.001 20865.4 6.300 20862.8 0.480 20865.6 \n",
862
- "2023-01-13 03:57:34 18862.7 7.274 18865.0 0.378 18862.6 4.579 18865.4 \n",
863
- "2023-01-17 13:18:02 21228.0 1.410 21231.6 0.380 21227.9 0.059 21231.7 \n",
864
- "... ... ... ... ... ... ... ... \n",
865
- "2023-01-16 04:57:01 21144.1 0.486 21146.1 0.292 21144.0 0.117 21146.4 \n",
866
- "2023-01-10 12:15:13 17244.1 1.249 17245.8 2.281 17244.0 0.112 17245.9 \n",
867
- "2023-01-13 17:19:18 19238.4 0.228 19240.8 1.774 19238.3 0.257 19240.9 \n",
868
- "2023-01-15 14:57:05 20798.8 0.013 20801.1 0.347 20798.6 0.001 20801.2 \n",
869
- "2023-01-20 05:41:38 20950.8 0.001 20953.2 2.938 20950.6 0.005 20953.3 \n",
870
- "\n",
871
- " 41 \n",
872
- "1 \n",
873
- "2023-01-15 13:26:30 1.180 \n",
874
- "2023-01-13 07:18:23 1.135 \n",
875
- "2023-01-18 20:02:20 0.001 \n",
876
- "2023-01-13 03:57:34 0.904 \n",
877
- "2023-01-17 13:18:02 0.017 \n",
878
- "... ... \n",
879
- "2023-01-16 04:57:01 0.081 \n",
880
- "2023-01-10 12:15:13 18.193 \n",
881
- "2023-01-13 17:19:18 1.610 \n",
882
- "2023-01-15 14:57:05 0.070 \n",
883
- "2023-01-20 05:41:38 0.064 \n",
884
- "\n",
885
- "[96139 rows x 40 columns]"
886
- ]
887
- },
888
- "execution_count": 4,
889
- "metadata": {},
890
- "output_type": "execute_result"
891
- }
892
- ],
893
  "source": [
894
  "data"
895
  ]
896
  },
897
  {
898
  "cell_type": "code",
899
- "execution_count": 5,
900
  "metadata": {
901
  "execution": {
902
  "iopub.execute_input": "2023-09-05T09:39:29.600307Z",
@@ -917,7 +514,7 @@
917
  },
918
  {
919
  "cell_type": "code",
920
- "execution_count": 6,
921
  "metadata": {
922
  "execution": {
923
  "iopub.execute_input": "2023-09-05T09:39:30.064297Z",
@@ -929,115 +526,14 @@
929
  "id": "uGIijxh4nyaE",
930
  "outputId": "0361db7f-7048-40e4-f657-e4b190abce04"
931
  },
932
- "outputs": [
933
- {
934
- "data": {
935
- "text/html": [
936
- "<div>\n",
937
- "<style scoped>\n",
938
- " .dataframe tbody tr th:only-of-type {\n",
939
- " vertical-align: middle;\n",
940
- " }\n",
941
- "\n",
942
- " .dataframe tbody tr th {\n",
943
- " vertical-align: top;\n",
944
- " }\n",
945
- "\n",
946
- " .dataframe thead th {\n",
947
- " text-align: right;\n",
948
- " }\n",
949
- "</style>\n",
950
- "<table border=\"1\" class=\"dataframe\">\n",
951
- " <thead>\n",
952
- " <tr style=\"text-align: right;\">\n",
953
- " <th></th>\n",
954
- " <th>Price</th>\n",
955
- " </tr>\n",
956
- " <tr>\n",
957
- " <th>Time</th>\n",
958
- " <th></th>\n",
959
- " </tr>\n",
960
- " </thead>\n",
961
- " <tbody>\n",
962
- " <tr>\n",
963
- " <th>2023-01-15 13:26:30</th>\n",
964
- " <td>20743.75</td>\n",
965
- " </tr>\n",
966
- " <tr>\n",
967
- " <th>2023-01-13 07:18:23</th>\n",
968
- " <td>18815.05</td>\n",
969
- " </tr>\n",
970
- " <tr>\n",
971
- " <th>2023-01-18 20:02:20</th>\n",
972
- " <td>20864.25</td>\n",
973
- " </tr>\n",
974
- " <tr>\n",
975
- " <th>2023-01-13 03:57:34</th>\n",
976
- " <td>18863.55</td>\n",
977
- " </tr>\n",
978
- " <tr>\n",
979
- " <th>2023-01-17 13:18:02</th>\n",
980
- " <td>21229.25</td>\n",
981
- " </tr>\n",
982
- " <tr>\n",
983
- " <th>...</th>\n",
984
- " <td>...</td>\n",
985
- " </tr>\n",
986
- " <tr>\n",
987
- " <th>2023-01-16 04:57:01</th>\n",
988
- " <td>21145.15</td>\n",
989
- " </tr>\n",
990
- " <tr>\n",
991
- " <th>2023-01-10 12:15:13</th>\n",
992
- " <td>17244.95</td>\n",
993
- " </tr>\n",
994
- " <tr>\n",
995
- " <th>2023-01-13 17:19:18</th>\n",
996
- " <td>19239.95</td>\n",
997
- " </tr>\n",
998
- " <tr>\n",
999
- " <th>2023-01-15 14:57:05</th>\n",
1000
- " <td>20800.25</td>\n",
1001
- " </tr>\n",
1002
- " <tr>\n",
1003
- " <th>2023-01-20 05:41:38</th>\n",
1004
- " <td>20952.15</td>\n",
1005
- " </tr>\n",
1006
- " </tbody>\n",
1007
- "</table>\n",
1008
- "<p>96139 rows × 1 columns</p>\n",
1009
- "</div>"
1010
- ],
1011
- "text/plain": [
1012
- " Price\n",
1013
- "Time \n",
1014
- "2023-01-15 13:26:30 20743.75\n",
1015
- "2023-01-13 07:18:23 18815.05\n",
1016
- "2023-01-18 20:02:20 20864.25\n",
1017
- "2023-01-13 03:57:34 18863.55\n",
1018
- "2023-01-17 13:18:02 21229.25\n",
1019
- "... ...\n",
1020
- "2023-01-16 04:57:01 21145.15\n",
1021
- "2023-01-10 12:15:13 17244.95\n",
1022
- "2023-01-13 17:19:18 19239.95\n",
1023
- "2023-01-15 14:57:05 20800.25\n",
1024
- "2023-01-20 05:41:38 20952.15\n",
1025
- "\n",
1026
- "[96139 rows x 1 columns]"
1027
- ]
1028
- },
1029
- "execution_count": 6,
1030
- "metadata": {},
1031
- "output_type": "execute_result"
1032
- }
1033
- ],
1034
  "source": [
1035
  "midprice"
1036
  ]
1037
  },
1038
  {
1039
  "cell_type": "code",
1040
- "execution_count": 7,
1041
  "metadata": {
1042
  "execution": {
1043
  "iopub.execute_input": "2023-09-05T09:39:30.088816Z",
@@ -1068,7 +564,7 @@
1068
  },
1069
  {
1070
  "cell_type": "code",
1071
- "execution_count": 8,
1072
  "metadata": {
1073
  "execution": {
1074
  "iopub.execute_input": "2023-09-05T09:39:30.101491Z",
@@ -1089,7 +585,7 @@
1089
  },
1090
  {
1091
  "cell_type": "code",
1092
- "execution_count": 9,
1093
  "metadata": {
1094
  "execution": {
1095
  "iopub.execute_input": "2023-09-05T09:39:31.142370Z",
@@ -1113,7 +609,7 @@
1113
  },
1114
  {
1115
  "cell_type": "code",
1116
- "execution_count": 10,
1117
  "metadata": {
1118
  "execution": {
1119
  "iopub.execute_input": "2023-09-05T09:39:34.504304Z",
@@ -1133,7 +629,7 @@
1133
  },
1134
  {
1135
  "cell_type": "code",
1136
- "execution_count": 11,
1137
  "metadata": {
1138
  "execution": {
1139
  "iopub.execute_input": "2023-09-05T09:39:34.697074Z",
@@ -1173,7 +669,7 @@
1173
  },
1174
  {
1175
  "cell_type": "code",
1176
- "execution_count": 12,
1177
  "metadata": {
1178
  "execution": {
1179
  "iopub.execute_input": "2023-09-05T09:39:34.708217Z",
@@ -1208,7 +704,7 @@
1208
  },
1209
  {
1210
  "cell_type": "code",
1211
- "execution_count": 13,
1212
  "metadata": {
1213
  "execution": {
1214
  "iopub.execute_input": "2023-09-05T09:39:34.791771Z",
@@ -1253,7 +749,7 @@
1253
  },
1254
  {
1255
  "cell_type": "code",
1256
- "execution_count": 14,
1257
  "metadata": {
1258
  "execution": {
1259
  "iopub.execute_input": "2023-09-05T09:39:36.982179Z",
@@ -1315,7 +811,7 @@
1315
  },
1316
  {
1317
  "cell_type": "code",
1318
- "execution_count": 15,
1319
  "metadata": {
1320
  "execution": {
1321
  "iopub.execute_input": "2023-09-05T09:39:37.002731Z",
@@ -1342,7 +838,7 @@
1342
  },
1343
  {
1344
  "cell_type": "code",
1345
- "execution_count": 16,
1346
  "metadata": {
1347
  "execution": {
1348
  "iopub.execute_input": "2023-09-05T09:39:37.724820Z",
@@ -1409,7 +905,7 @@
1409
  },
1410
  {
1411
  "cell_type": "code",
1412
- "execution_count": 17,
1413
  "metadata": {
1414
  "execution": {
1415
  "iopub.execute_input": "2023-09-05T13:34:56.073438Z",
@@ -1427,7 +923,7 @@
1427
  "traceback": [
1428
  "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
1429
  "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
1430
- "\u001b[0;32m<ipython-input-17-91c7d6fec2eb>\u001b[0m in \u001b[0;36m<cell line: 1>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mhistory\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mhistory\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'accuracy'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mlabel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'Train Accuracy'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mhistory\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mhistory\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'val_accuracy'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mlabel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'Validation Accuracy'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtitle\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Accuracy Per epoch'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mylabel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Accuracy'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mxlabel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Epoch'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
1431
  "\u001b[0;31mNameError\u001b[0m: name 'history' is not defined"
1432
  ]
1433
  }
 
128
  " <tbody>\n",
129
  " <tr>\n",
130
  " <th>0</th>\n",
131
+ " <td>1673610944981</td>\n",
132
+ " <td>2023-01-13 11:55:44</td>\n",
133
+ " <td>18924.2</td>\n",
134
+ " <td>26.472</td>\n",
135
+ " <td>18924.1</td>\n",
136
+ " <td>0.482</td>\n",
137
+ " <td>18924.0</td>\n",
138
+ " <td>0.126</td>\n",
139
+ " <td>18923.9</td>\n",
140
+ " <td>3.706</td>\n",
141
  " <td>...</td>\n",
142
+ " <td>18925.0</td>\n",
143
+ " <td>0.528</td>\n",
144
+ " <td>18925.2</td>\n",
145
+ " <td>0.039</td>\n",
146
+ " <td>18925.3</td>\n",
147
+ " <td>4.107</td>\n",
148
+ " <td>18925.5</td>\n",
149
+ " <td>0.137</td>\n",
150
+ " <td>18925.6</td>\n",
151
+ " <td>0.001</td>\n",
152
  " </tr>\n",
153
  " <tr>\n",
154
  " <th>1</th>\n",
155
+ " <td>1673599829908</td>\n",
156
+ " <td>2023-01-13 08:50:29</td>\n",
157
+ " <td>18833.9</td>\n",
158
+ " <td>2.253</td>\n",
159
+ " <td>18833.8</td>\n",
160
+ " <td>4.126</td>\n",
161
+ " <td>18833.3</td>\n",
162
+ " <td>0.014</td>\n",
163
+ " <td>18833.0</td>\n",
164
+ " <td>0.005</td>\n",
165
  " <td>...</td>\n",
166
+ " <td>18834.5</td>\n",
167
+ " <td>0.283</td>\n",
168
+ " <td>18834.6</td>\n",
169
+ " <td>0.380</td>\n",
170
+ " <td>18834.7</td>\n",
171
+ " <td>2.505</td>\n",
172
+ " <td>18834.8</td>\n",
173
+ " <td>0.476</td>\n",
174
+ " <td>18834.9</td>\n",
175
+ " <td>0.638</td>\n",
176
  " </tr>\n",
177
  " <tr>\n",
178
  " <th>2</th>\n",
179
+ " <td>1673821068275</td>\n",
180
+ " <td>2023-01-15 22:17:48</td>\n",
181
+ " <td>20841.4</td>\n",
182
+ " <td>26.090</td>\n",
183
+ " <td>20841.3</td>\n",
184
+ " <td>0.131</td>\n",
185
+ " <td>20841.2</td>\n",
186
+ " <td>1.236</td>\n",
187
+ " <td>20841.1</td>\n",
188
+ " <td>0.013</td>\n",
189
  " <td>...</td>\n",
190
+ " <td>20842.3</td>\n",
 
 
 
 
 
 
 
 
191
  " <td>0.001</td>\n",
192
+ " <td>20842.6</td>\n",
193
+ " <td>0.046</td>\n",
194
+ " <td>20842.7</td>\n",
195
+ " <td>0.085</td>\n",
196
+ " <td>20842.8</td>\n",
197
+ " <td>0.003</td>\n",
198
+ " <td>20842.9</td>\n",
199
+ " <td>0.021</td>\n",
200
  " </tr>\n",
201
  " <tr>\n",
202
  " <th>3</th>\n",
203
+ " <td>1673721207006</td>\n",
204
+ " <td>2023-01-14 18:33:27</td>\n",
205
+ " <td>20708.0</td>\n",
206
+ " <td>16.755</td>\n",
207
+ " <td>20707.2</td>\n",
208
+ " <td>0.270</td>\n",
209
+ " <td>20707.1</td>\n",
210
+ " <td>0.376</td>\n",
211
+ " <td>20707.0</td>\n",
212
+ " <td>0.417</td>\n",
213
  " <td>...</td>\n",
214
+ " <td>20708.7</td>\n",
215
+ " <td>0.007</td>\n",
216
+ " <td>20708.8</td>\n",
217
+ " <td>1.316</td>\n",
218
+ " <td>20709.0</td>\n",
219
+ " <td>0.751</td>\n",
220
+ " <td>20709.3</td>\n",
221
+ " <td>0.303</td>\n",
222
+ " <td>20709.4</td>\n",
223
+ " <td>0.404</td>\n",
224
  " </tr>\n",
225
  " <tr>\n",
226
  " <th>4</th>\n",
227
+ " <td>1673910614914</td>\n",
228
+ " <td>2023-01-16 23:10:14</td>\n",
229
+ " <td>21135.2</td>\n",
230
+ " <td>3.634</td>\n",
231
+ " <td>21135.1</td>\n",
232
+ " <td>0.229</td>\n",
233
+ " <td>21135.0</td>\n",
234
+ " <td>1.672</td>\n",
235
+ " <td>21134.7</td>\n",
236
+ " <td>0.002</td>\n",
237
  " <td>...</td>\n",
238
+ " <td>21136.0</td>\n",
239
+ " <td>0.002</td>\n",
240
+ " <td>21136.3</td>\n",
241
+ " <td>0.015</td>\n",
242
+ " <td>21136.4</td>\n",
243
+ " <td>0.425</td>\n",
244
+ " <td>21136.5</td>\n",
245
+ " <td>1.554</td>\n",
246
+ " <td>21136.6</td>\n",
247
+ " <td>0.045</td>\n",
248
  " </tr>\n",
249
  " <tr>\n",
250
  " <th>...</th>\n",
 
272
  " </tr>\n",
273
  " <tr>\n",
274
  " <th>99995</th>\n",
275
+ " <td>1673837297061</td>\n",
276
+ " <td>2023-01-16 02:48:17</td>\n",
277
+ " <td>21233.8</td>\n",
278
+ " <td>5.008</td>\n",
279
+ " <td>21233.7</td>\n",
280
+ " <td>0.033</td>\n",
281
+ " <td>21233.6</td>\n",
282
+ " <td>0.015</td>\n",
283
+ " <td>21233.3</td>\n",
284
+ " <td>0.235</td>\n",
285
  " <td>...</td>\n",
286
+ " <td>21236.0</td>\n",
287
+ " <td>0.832</td>\n",
288
+ " <td>21236.1</td>\n",
289
+ " <td>0.297</td>\n",
290
+ " <td>21236.2</td>\n",
291
+ " <td>1.679</td>\n",
292
+ " <td>21236.4</td>\n",
293
+ " <td>0.001</td>\n",
294
+ " <td>21236.6</td>\n",
295
+ " <td>0.405</td>\n",
296
  " </tr>\n",
297
  " <tr>\n",
298
  " <th>99996</th>\n",
299
+ " <td>1673848823936</td>\n",
300
+ " <td>2023-01-16 06:00:23</td>\n",
301
+ " <td>21196.7</td>\n",
302
+ " <td>33.906</td>\n",
303
+ " <td>21196.6</td>\n",
304
+ " <td>1.028</td>\n",
305
+ " <td>21196.5</td>\n",
306
+ " <td>2.057</td>\n",
307
+ " <td>21196.3</td>\n",
308
  " <td>0.013</td>\n",
 
 
 
 
309
  " <td>...</td>\n",
310
+ " <td>21197.5</td>\n",
311
+ " <td>0.002</td>\n",
312
+ " <td>21197.6</td>\n",
313
+ " <td>0.186</td>\n",
314
+ " <td>21197.7</td>\n",
315
+ " <td>0.387</td>\n",
316
+ " <td>21197.8</td>\n",
317
+ " <td>0.096</td>\n",
318
+ " <td>21198.0</td>\n",
319
+ " <td>0.249</td>\n",
320
  " </tr>\n",
321
  " <tr>\n",
322
  " <th>99997</th>\n",
323
+ " <td>1673611110905</td>\n",
324
+ " <td>2023-01-13 11:58:30</td>\n",
325
+ " <td>18904.8</td>\n",
326
+ " <td>22.603</td>\n",
327
+ " <td>18904.7</td>\n",
328
+ " <td>0.095</td>\n",
329
+ " <td>18904.6</td>\n",
330
+ " <td>0.098</td>\n",
331
+ " <td>18904.5</td>\n",
332
+ " <td>0.553</td>\n",
333
  " <td>...</td>\n",
334
+ " <td>18905.4</td>\n",
335
+ " <td>0.974</td>\n",
336
+ " <td>18905.5</td>\n",
337
+ " <td>1.309</td>\n",
338
+ " <td>18905.6</td>\n",
339
+ " <td>1.053</td>\n",
340
+ " <td>18905.7</td>\n",
341
+ " <td>4.041</td>\n",
342
+ " <td>18905.9</td>\n",
343
+ " <td>0.020</td>\n",
344
  " </tr>\n",
345
  " <tr>\n",
346
  " <th>99998</th>\n",
347
+ " <td>1673695517927</td>\n",
348
+ " <td>2023-01-14 11:25:17</td>\n",
349
+ " <td>20694.6</td>\n",
350
+ " <td>4.137</td>\n",
351
+ " <td>20694.5</td>\n",
352
+ " <td>2.055</td>\n",
353
+ " <td>20694.4</td>\n",
354
+ " <td>0.491</td>\n",
355
+ " <td>20694.3</td>\n",
356
+ " <td>0.050</td>\n",
357
  " <td>...</td>\n",
358
+ " <td>20695.4</td>\n",
359
+ " <td>0.325</td>\n",
360
+ " <td>20695.7</td>\n",
361
+ " <td>0.144</td>\n",
362
+ " <td>20695.9</td>\n",
363
+ " <td>0.503</td>\n",
364
+ " <td>20696.0</td>\n",
365
+ " <td>0.120</td>\n",
366
+ " <td>20696.1</td>\n",
367
+ " <td>0.267</td>\n",
368
  " </tr>\n",
369
  " <tr>\n",
370
  " <th>99999</th>\n",
371
+ " <td>1673750073798</td>\n",
372
+ " <td>2023-01-15 02:34:33</td>\n",
373
+ " <td>20784.9</td>\n",
374
+ " <td>0.055</td>\n",
375
+ " <td>20784.8</td>\n",
376
+ " <td>0.007</td>\n",
377
+ " <td>20784.7</td>\n",
378
+ " <td>0.015</td>\n",
379
+ " <td>20784.4</td>\n",
380
  " <td>0.001</td>\n",
 
 
 
 
 
 
381
  " <td>...</td>\n",
382
+ " <td>20785.8</td>\n",
383
+ " <td>2.815</td>\n",
384
+ " <td>20785.9</td>\n",
385
+ " <td>2.103</td>\n",
386
+ " <td>20786.0</td>\n",
387
+ " <td>0.409</td>\n",
388
+ " <td>20786.1</td>\n",
389
+ " <td>1.456</td>\n",
390
+ " <td>20786.2</td>\n",
391
+ " <td>0.021</td>\n",
392
  " </tr>\n",
393
  " </tbody>\n",
394
  "</table>\n",
 
396
  "</div>"
397
  ],
398
  "text/plain": [
399
+ " 0 1 2 3 4 5 \\\n",
400
+ "0 1673610944981 2023-01-13 11:55:44 18924.2 26.472 18924.1 0.482 \n",
401
+ "1 1673599829908 2023-01-13 08:50:29 18833.9 2.253 18833.8 4.126 \n",
402
+ "2 1673821068275 2023-01-15 22:17:48 20841.4 26.090 20841.3 0.131 \n",
403
+ "3 1673721207006 2023-01-14 18:33:27 20708.0 16.755 20707.2 0.270 \n",
404
+ "4 1673910614914 2023-01-16 23:10:14 21135.2 3.634 21135.1 0.229 \n",
405
+ "... ... ... ... ... ... ... \n",
406
+ "99995 1673837297061 2023-01-16 02:48:17 21233.8 5.008 21233.7 0.033 \n",
407
+ "99996 1673848823936 2023-01-16 06:00:23 21196.7 33.906 21196.6 1.028 \n",
408
+ "99997 1673611110905 2023-01-13 11:58:30 18904.8 22.603 18904.7 0.095 \n",
409
+ "99998 1673695517927 2023-01-14 11:25:17 20694.6 4.137 20694.5 2.055 \n",
410
+ "99999 1673750073798 2023-01-15 02:34:33 20784.9 0.055 20784.8 0.007 \n",
411
  "\n",
412
  " 6 7 8 9 ... 32 33 34 35 \\\n",
413
+ "0 18924.0 0.126 18923.9 3.706 ... 18925.0 0.528 18925.2 0.039 \n",
414
+ "1 18833.3 0.014 18833.0 0.005 ... 18834.5 0.283 18834.6 0.380 \n",
415
+ "2 20841.2 1.236 20841.1 0.013 ... 20842.3 0.001 20842.6 0.046 \n",
416
+ "3 20707.1 0.376 20707.0 0.417 ... 20708.7 0.007 20708.8 1.316 \n",
417
+ "4 21135.0 1.672 21134.7 0.002 ... 21136.0 0.002 21136.3 0.015 \n",
418
  "... ... ... ... ... ... ... ... ... ... \n",
419
+ "99995 21233.6 0.015 21233.3 0.235 ... 21236.0 0.832 21236.1 0.297 \n",
420
+ "99996 21196.5 2.057 21196.3 0.013 ... 21197.5 0.002 21197.6 0.186 \n",
421
+ "99997 18904.6 0.098 18904.5 0.553 ... 18905.4 0.974 18905.5 1.309 \n",
422
+ "99998 20694.4 0.491 20694.3 0.050 ... 20695.4 0.325 20695.7 0.144 \n",
423
+ "99999 20784.7 0.015 20784.4 0.001 ... 20785.8 2.815 20785.9 2.103 \n",
424
  "\n",
425
+ " 36 37 38 39 40 41 \n",
426
+ "0 18925.3 4.107 18925.5 0.137 18925.6 0.001 \n",
427
+ "1 18834.7 2.505 18834.8 0.476 18834.9 0.638 \n",
428
+ "2 20842.7 0.085 20842.8 0.003 20842.9 0.021 \n",
429
+ "3 20709.0 0.751 20709.3 0.303 20709.4 0.404 \n",
430
+ "4 21136.4 0.425 21136.5 1.554 21136.6 0.045 \n",
431
+ "... ... ... ... ... ... ... \n",
432
+ "99995 21236.2 1.679 21236.4 0.001 21236.6 0.405 \n",
433
+ "99996 21197.7 0.387 21197.8 0.096 21198.0 0.249 \n",
434
+ "99997 18905.6 1.053 18905.7 4.041 18905.9 0.020 \n",
435
+ "99998 20695.9 0.503 20696.0 0.120 20696.1 0.267 \n",
436
+ "99999 20786.0 0.409 20786.1 1.456 20786.2 0.021 \n",
437
  "\n",
438
  "[100000 rows x 42 columns]"
439
  ]
 
474
  },
475
  {
476
  "cell_type": "code",
477
+ "execution_count": null,
478
  "metadata": {
479
  "execution": {
480
  "iopub.execute_input": "2023-09-05T09:39:29.463834Z",
 
486
  "id": "Cuoj1Qlmi3KE",
487
  "outputId": "5b6214b3-5747-428d-d523-5303bbb74f36"
488
  },
489
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
490
  "source": [
491
  "data"
492
  ]
493
  },
494
  {
495
  "cell_type": "code",
496
+ "execution_count": 4,
497
  "metadata": {
498
  "execution": {
499
  "iopub.execute_input": "2023-09-05T09:39:29.600307Z",
 
514
  },
515
  {
516
  "cell_type": "code",
517
+ "execution_count": null,
518
  "metadata": {
519
  "execution": {
520
  "iopub.execute_input": "2023-09-05T09:39:30.064297Z",
 
526
  "id": "uGIijxh4nyaE",
527
  "outputId": "0361db7f-7048-40e4-f657-e4b190abce04"
528
  },
529
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
530
  "source": [
531
  "midprice"
532
  ]
533
  },
534
  {
535
  "cell_type": "code",
536
+ "execution_count": 5,
537
  "metadata": {
538
  "execution": {
539
  "iopub.execute_input": "2023-09-05T09:39:30.088816Z",
 
564
  },
565
  {
566
  "cell_type": "code",
567
+ "execution_count": 6,
568
  "metadata": {
569
  "execution": {
570
  "iopub.execute_input": "2023-09-05T09:39:30.101491Z",
 
585
  },
586
  {
587
  "cell_type": "code",
588
+ "execution_count": 7,
589
  "metadata": {
590
  "execution": {
591
  "iopub.execute_input": "2023-09-05T09:39:31.142370Z",
 
609
  },
610
  {
611
  "cell_type": "code",
612
+ "execution_count": 8,
613
  "metadata": {
614
  "execution": {
615
  "iopub.execute_input": "2023-09-05T09:39:34.504304Z",
 
629
  },
630
  {
631
  "cell_type": "code",
632
+ "execution_count": 9,
633
  "metadata": {
634
  "execution": {
635
  "iopub.execute_input": "2023-09-05T09:39:34.697074Z",
 
669
  },
670
  {
671
  "cell_type": "code",
672
+ "execution_count": 10,
673
  "metadata": {
674
  "execution": {
675
  "iopub.execute_input": "2023-09-05T09:39:34.708217Z",
 
704
  },
705
  {
706
  "cell_type": "code",
707
+ "execution_count": 11,
708
  "metadata": {
709
  "execution": {
710
  "iopub.execute_input": "2023-09-05T09:39:34.791771Z",
 
749
  },
750
  {
751
  "cell_type": "code",
752
+ "execution_count": 12,
753
  "metadata": {
754
  "execution": {
755
  "iopub.execute_input": "2023-09-05T09:39:36.982179Z",
 
811
  },
812
  {
813
  "cell_type": "code",
814
+ "execution_count": 13,
815
  "metadata": {
816
  "execution": {
817
  "iopub.execute_input": "2023-09-05T09:39:37.002731Z",
 
838
  },
839
  {
840
  "cell_type": "code",
841
+ "execution_count": 14,
842
  "metadata": {
843
  "execution": {
844
  "iopub.execute_input": "2023-09-05T09:39:37.724820Z",
 
905
  },
906
  {
907
  "cell_type": "code",
908
+ "execution_count": 15,
909
  "metadata": {
910
  "execution": {
911
  "iopub.execute_input": "2023-09-05T13:34:56.073438Z",
 
923
  "traceback": [
924
  "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
925
  "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
926
+ "\u001b[0;32m<ipython-input-15-91c7d6fec2eb>\u001b[0m in \u001b[0;36m<cell line: 1>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mhistory\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mhistory\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'accuracy'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mlabel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'Train Accuracy'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mplot\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mhistory\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mhistory\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'val_accuracy'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mlabel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'Validation Accuracy'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtitle\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Accuracy Per epoch'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mylabel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Accuracy'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mplt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mxlabel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Epoch'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
927
  "\u001b[0;31mNameError\u001b[0m: name 'history' is not defined"
928
  ]
929
  }
benchmark/NBspecific_6/data.weights.h5 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3c8beca11d33da211fbe5db12ad1061a5f068626d5022711e78b5a6a761954eb
3
  size 1818056
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3f76ce48dc63003d6d75891f58244def1e77804453361dfe6f35b9263bf012f
3
  size 1818056
benchmark/NBspecific_7/NBspecific_7_fixed.ipynb CHANGED
@@ -64,7 +64,7 @@
64
  },
65
  {
66
  "cell_type": "code",
67
- "execution_count": 3,
68
  "metadata": {
69
  "execution": {
70
  "iopub.execute_input": "2023-04-12T16:58:13.529325Z",
@@ -74,139 +74,14 @@
74
  "shell.execute_reply.started": "2023-04-12T16:58:13.529284Z"
75
  }
76
  },
77
- "outputs": [
78
- {
79
- "data": {
80
- "text/html": [
81
- "<div>\n",
82
- "<style scoped>\n",
83
- " .dataframe tbody tr th:only-of-type {\n",
84
- " vertical-align: middle;\n",
85
- " }\n",
86
- "\n",
87
- " .dataframe tbody tr th {\n",
88
- " vertical-align: top;\n",
89
- " }\n",
90
- "\n",
91
- " .dataframe thead th {\n",
92
- " text-align: right;\n",
93
- " }\n",
94
- "</style>\n",
95
- "<table border=\"1\" class=\"dataframe\">\n",
96
- " <thead>\n",
97
- " <tr style=\"text-align: right;\">\n",
98
- " <th></th>\n",
99
- " <th>Unnamed: 0</th>\n",
100
- " <th>region</th>\n",
101
- " <th>country</th>\n",
102
- " <th>emissions</th>\n",
103
- " <th>type</th>\n",
104
- " <th>segment</th>\n",
105
- " <th>reason</th>\n",
106
- " <th>baseYear</th>\n",
107
- " <th>notes</th>\n",
108
- " </tr>\n",
109
- " </thead>\n",
110
- " <tbody>\n",
111
- " <tr>\n",
112
- " <th>0</th>\n",
113
- " <td>0</td>\n",
114
- " <td>Africa</td>\n",
115
- " <td>Algeria</td>\n",
116
- " <td>257.611206</td>\n",
117
- " <td>Agriculture</td>\n",
118
- " <td>Total</td>\n",
119
- " <td>All</td>\n",
120
- " <td>2019-2021</td>\n",
121
- " <td>Average based on United Nations Framework Conv...</td>\n",
122
- " </tr>\n",
123
- " <tr>\n",
124
- " <th>1</th>\n",
125
- " <td>1</td>\n",
126
- " <td>Africa</td>\n",
127
- " <td>Algeria</td>\n",
128
- " <td>0.052000</td>\n",
129
- " <td>Energy</td>\n",
130
- " <td>Bioenergy</td>\n",
131
- " <td>All</td>\n",
132
- " <td>2022</td>\n",
133
- " <td>Estimates from end-uses are for 2020 or 2021 (...</td>\n",
134
- " </tr>\n",
135
- " <tr>\n",
136
- " <th>2</th>\n",
137
- " <td>2</td>\n",
138
- " <td>Africa</td>\n",
139
- " <td>Algeria</td>\n",
140
- " <td>130.798996</td>\n",
141
- " <td>Energy</td>\n",
142
- " <td>Gas pipelines and LNG facilities</td>\n",
143
- " <td>Fugitive</td>\n",
144
- " <td>2022</td>\n",
145
- " <td>Not available</td>\n",
146
- " </tr>\n",
147
- " <tr>\n",
148
- " <th>3</th>\n",
149
- " <td>3</td>\n",
150
- " <td>Africa</td>\n",
151
- " <td>Algeria</td>\n",
152
- " <td>69.741898</td>\n",
153
- " <td>Energy</td>\n",
154
- " <td>Gas pipelines and LNG facilities</td>\n",
155
- " <td>Vented</td>\n",
156
- " <td>2022</td>\n",
157
- " <td>Not available</td>\n",
158
- " </tr>\n",
159
- " <tr>\n",
160
- " <th>4</th>\n",
161
- " <td>4</td>\n",
162
- " <td>Africa</td>\n",
163
- " <td>Algeria</td>\n",
164
- " <td>213.987000</td>\n",
165
- " <td>Energy</td>\n",
166
- " <td>Onshore gas</td>\n",
167
- " <td>Fugitive</td>\n",
168
- " <td>2022</td>\n",
169
- " <td>Not available</td>\n",
170
- " </tr>\n",
171
- " </tbody>\n",
172
- "</table>\n",
173
- "</div>"
174
- ],
175
- "text/plain": [
176
- " Unnamed: 0 region country emissions type \\\n",
177
- "0 0 Africa Algeria 257.611206 Agriculture \n",
178
- "1 1 Africa Algeria 0.052000 Energy \n",
179
- "2 2 Africa Algeria 130.798996 Energy \n",
180
- "3 3 Africa Algeria 69.741898 Energy \n",
181
- "4 4 Africa Algeria 213.987000 Energy \n",
182
- "\n",
183
- " segment reason baseYear \\\n",
184
- "0 Total All 2019-2021 \n",
185
- "1 Bioenergy All 2022 \n",
186
- "2 Gas pipelines and LNG facilities Fugitive 2022 \n",
187
- "3 Gas pipelines and LNG facilities Vented 2022 \n",
188
- "4 Onshore gas Fugitive 2022 \n",
189
- "\n",
190
- " notes \n",
191
- "0 Average based on United Nations Framework Conv... \n",
192
- "1 Estimates from end-uses are for 2020 or 2021 (... \n",
193
- "2 Not available \n",
194
- "3 Not available \n",
195
- "4 Not available "
196
- ]
197
- },
198
- "execution_count": 3,
199
- "metadata": {},
200
- "output_type": "execute_result"
201
- }
202
- ],
203
  "source": [
204
  "df.head()"
205
  ]
206
  },
207
  {
208
  "cell_type": "code",
209
- "execution_count": 4,
210
  "metadata": {
211
  "execution": {
212
  "iopub.execute_input": "2023-04-12T16:58:13.563328Z",
@@ -216,27 +91,14 @@
216
  "shell.execute_reply.started": "2023-04-12T16:58:13.563289Z"
217
  }
218
  },
219
- "outputs": [
220
- {
221
- "data": {
222
- "text/plain": [
223
- "Index(['Unnamed: 0', 'region', 'country', 'emissions', 'type', 'segment',\n",
224
- " 'reason', 'baseYear', 'notes'],\n",
225
- " dtype='object')"
226
- ]
227
- },
228
- "execution_count": 4,
229
- "metadata": {},
230
- "output_type": "execute_result"
231
- }
232
- ],
233
  "source": [
234
  "df.columns\n"
235
  ]
236
  },
237
  {
238
  "cell_type": "code",
239
- "execution_count": 5,
240
  "metadata": {
241
  "execution": {
242
  "iopub.execute_input": "2023-04-12T16:58:13.573802Z",
@@ -246,25 +108,14 @@
246
  "shell.execute_reply.started": "2023-04-12T16:58:13.573767Z"
247
  }
248
  },
249
- "outputs": [
250
- {
251
- "data": {
252
- "text/plain": [
253
- "(1548, 9)"
254
- ]
255
- },
256
- "execution_count": 5,
257
- "metadata": {},
258
- "output_type": "execute_result"
259
- }
260
- ],
261
  "source": [
262
  "df.shape"
263
  ]
264
  },
265
  {
266
  "cell_type": "code",
267
- "execution_count": 6,
268
  "metadata": {
269
  "execution": {
270
  "iopub.execute_input": "2023-04-12T16:58:13.591898Z",
@@ -274,30 +125,7 @@
274
  "shell.execute_reply.started": "2023-04-12T16:58:13.591857Z"
275
  }
276
  },
277
- "outputs": [
278
- {
279
- "name": "stdout",
280
- "output_type": "stream",
281
- "text": [
282
- "<class 'pandas.core.frame.DataFrame'>\n",
283
- "RangeIndex: 1548 entries, 0 to 1547\n",
284
- "Data columns (total 9 columns):\n",
285
- " # Column Non-Null Count Dtype \n",
286
- "--- ------ -------------- ----- \n",
287
- " 0 Unnamed: 0 1548 non-null int64 \n",
288
- " 1 region 1548 non-null object \n",
289
- " 2 country 1548 non-null object \n",
290
- " 3 emissions 1548 non-null float64\n",
291
- " 4 type 1548 non-null object \n",
292
- " 5 segment 1548 non-null object \n",
293
- " 6 reason 1548 non-null object \n",
294
- " 7 baseYear 1548 non-null object \n",
295
- " 8 notes 1548 non-null object \n",
296
- "dtypes: float64(1), int64(1), object(7)\n",
297
- "memory usage: 109.0+ KB\n"
298
- ]
299
- }
300
- ],
301
  "source": [
302
  "df.info()"
303
  ]
@@ -373,7 +201,7 @@
373
  },
374
  {
375
  "cell_type": "code",
376
- "execution_count": 7,
377
  "metadata": {
378
  "execution": {
379
  "iopub.execute_input": "2023-04-12T16:58:13.690937Z",
@@ -392,7 +220,7 @@
392
  },
393
  {
394
  "cell_type": "code",
395
- "execution_count": 8,
396
  "metadata": {
397
  "execution": {
398
  "iopub.execute_input": "2023-04-12T16:58:13.705427Z",
@@ -402,37 +230,14 @@
402
  "shell.execute_reply.started": "2023-04-12T16:58:13.705385Z"
403
  }
404
  },
405
- "outputs": [
406
- {
407
- "name": "stdout",
408
- "output_type": "stream",
409
- "text": [
410
- "<class 'pandas.core.frame.DataFrame'>\n",
411
- "RangeIndex: 1548 entries, 0 to 1547\n",
412
- "Data columns (total 9 columns):\n",
413
- " # Column Non-Null Count Dtype \n",
414
- "--- ------ -------------- ----- \n",
415
- " 0 Unnamed: 0 1548 non-null int64 \n",
416
- " 1 region 1548 non-null category\n",
417
- " 2 country 1548 non-null object \n",
418
- " 3 emissions 1548 non-null float64 \n",
419
- " 4 type 1548 non-null category\n",
420
- " 5 segment 1548 non-null object \n",
421
- " 6 reason 1548 non-null category\n",
422
- " 7 baseYear 1548 non-null object \n",
423
- " 8 notes 1548 non-null object \n",
424
- "dtypes: category(3), float64(1), int64(1), object(4)\n",
425
- "memory usage: 78.0+ KB\n"
426
- ]
427
- }
428
- ],
429
  "source": [
430
  "df.info()"
431
  ]
432
  },
433
  {
434
  "cell_type": "code",
435
- "execution_count": 9,
436
  "metadata": {
437
  "execution": {
438
  "iopub.execute_input": "2023-04-12T16:58:13.733193Z",
@@ -449,7 +254,7 @@
449
  },
450
  {
451
  "cell_type": "code",
452
- "execution_count": 10,
453
  "metadata": {
454
  "execution": {
455
  "iopub.execute_input": "2023-04-12T16:58:13.743153Z",
@@ -459,87 +264,14 @@
459
  "shell.execute_reply.started": "2023-04-12T16:58:13.743111Z"
460
  }
461
  },
462
- "outputs": [
463
- {
464
- "data": {
465
- "text/html": [
466
- "<div>\n",
467
- "<style scoped>\n",
468
- " .dataframe tbody tr th:only-of-type {\n",
469
- " vertical-align: middle;\n",
470
- " }\n",
471
- "\n",
472
- " .dataframe tbody tr th {\n",
473
- " vertical-align: top;\n",
474
- " }\n",
475
- "\n",
476
- " .dataframe thead th {\n",
477
- " text-align: right;\n",
478
- " }\n",
479
- "</style>\n",
480
- "<table border=\"1\" class=\"dataframe\">\n",
481
- " <thead>\n",
482
- " <tr style=\"text-align: right;\">\n",
483
- " <th></th>\n",
484
- " <th>region</th>\n",
485
- " <th>country</th>\n",
486
- " <th>emissions</th>\n",
487
- " <th>type</th>\n",
488
- " <th>segment</th>\n",
489
- " <th>reason</th>\n",
490
- " <th>baseYear</th>\n",
491
- " <th>notes</th>\n",
492
- " </tr>\n",
493
- " </thead>\n",
494
- " <tbody>\n",
495
- " <tr>\n",
496
- " <th>0</th>\n",
497
- " <td>Africa</td>\n",
498
- " <td>Algeria</td>\n",
499
- " <td>257.611206</td>\n",
500
- " <td>Agriculture</td>\n",
501
- " <td>Total</td>\n",
502
- " <td>All</td>\n",
503
- " <td>2019-2021</td>\n",
504
- " <td>Average based on United Nations Framework Conv...</td>\n",
505
- " </tr>\n",
506
- " <tr>\n",
507
- " <th>1</th>\n",
508
- " <td>Africa</td>\n",
509
- " <td>Algeria</td>\n",
510
- " <td>0.052000</td>\n",
511
- " <td>Energy</td>\n",
512
- " <td>Bioenergy</td>\n",
513
- " <td>All</td>\n",
514
- " <td>2022</td>\n",
515
- " <td>Estimates from end-uses are for 2020 or 2021 (...</td>\n",
516
- " </tr>\n",
517
- " </tbody>\n",
518
- "</table>\n",
519
- "</div>"
520
- ],
521
- "text/plain": [
522
- " region country emissions type segment reason baseYear \\\n",
523
- "0 Africa Algeria 257.611206 Agriculture Total All 2019-2021 \n",
524
- "1 Africa Algeria 0.052000 Energy Bioenergy All 2022 \n",
525
- "\n",
526
- " notes \n",
527
- "0 Average based on United Nations Framework Conv... \n",
528
- "1 Estimates from end-uses are for 2020 or 2021 (... "
529
- ]
530
- },
531
- "execution_count": 10,
532
- "metadata": {},
533
- "output_type": "execute_result"
534
- }
535
- ],
536
  "source": [
537
  "df.head(2)"
538
  ]
539
  },
540
  {
541
  "cell_type": "code",
542
- "execution_count": 11,
543
  "metadata": {
544
  "execution": {
545
  "iopub.execute_input": "2023-04-12T16:58:13.765226Z",
@@ -556,7 +288,7 @@
556
  },
557
  {
558
  "cell_type": "code",
559
- "execution_count": 12,
560
  "metadata": {
561
  "execution": {
562
  "iopub.execute_input": "2023-04-12T16:58:13.774881Z",
@@ -566,33 +298,14 @@
566
  "shell.execute_reply.started": "2023-04-12T16:58:13.774840Z"
567
  }
568
  },
569
- "outputs": [
570
- {
571
- "data": {
572
- "text/plain": [
573
- "region 0\n",
574
- "country 0\n",
575
- "emissions 0\n",
576
- "type 0\n",
577
- "segment 0\n",
578
- "reason 0\n",
579
- "baseYear 0\n",
580
- "notes 0\n",
581
- "dtype: int64"
582
- ]
583
- },
584
- "execution_count": 12,
585
- "metadata": {},
586
- "output_type": "execute_result"
587
- }
588
- ],
589
  "source": [
590
  "df.isnull().sum()"
591
  ]
592
  },
593
  {
594
  "cell_type": "code",
595
- "execution_count": 13,
596
  "metadata": {
597
  "execution": {
598
  "iopub.execute_input": "2023-04-12T16:58:13.789464Z",
@@ -602,25 +315,14 @@
602
  "shell.execute_reply.started": "2023-04-12T16:58:13.789403Z"
603
  }
604
  },
605
- "outputs": [
606
- {
607
- "data": {
608
- "text/plain": [
609
- "0"
610
- ]
611
- },
612
- "execution_count": 13,
613
- "metadata": {},
614
- "output_type": "execute_result"
615
- }
616
- ],
617
  "source": [
618
  "df.duplicated().sum()"
619
  ]
620
  },
621
  {
622
  "cell_type": "code",
623
- "execution_count": 14,
624
  "metadata": {
625
  "execution": {
626
  "iopub.execute_input": "2023-04-12T16:58:13.808188Z",
@@ -630,74 +332,14 @@
630
  "shell.execute_reply.started": "2023-04-12T16:58:13.808144Z"
631
  }
632
  },
633
- "outputs": [
634
- {
635
- "data": {
636
- "text/html": [
637
- "<div>\n",
638
- "<style scoped>\n",
639
- " .dataframe tbody tr th:only-of-type {\n",
640
- " vertical-align: middle;\n",
641
- " }\n",
642
- "\n",
643
- " .dataframe tbody tr th {\n",
644
- " vertical-align: top;\n",
645
- " }\n",
646
- "\n",
647
- " .dataframe thead th {\n",
648
- " text-align: right;\n",
649
- " }\n",
650
- "</style>\n",
651
- "<table border=\"1\" class=\"dataframe\">\n",
652
- " <thead>\n",
653
- " <tr style=\"text-align: right;\">\n",
654
- " <th></th>\n",
655
- " <th>count</th>\n",
656
- " <th>mean</th>\n",
657
- " <th>std</th>\n",
658
- " <th>min</th>\n",
659
- " <th>25%</th>\n",
660
- " <th>50%</th>\n",
661
- " <th>75%</th>\n",
662
- " <th>max</th>\n",
663
- " </tr>\n",
664
- " </thead>\n",
665
- " <tbody>\n",
666
- " <tr>\n",
667
- " <th>emissions</th>\n",
668
- " <td>1548.0</td>\n",
669
- " <td>643.255885</td>\n",
670
- " <td>5566.23818</td>\n",
671
- " <td>0.0</td>\n",
672
- " <td>2.6575</td>\n",
673
- " <td>24.065</td>\n",
674
- " <td>128.42</td>\n",
675
- " <td>141953.77</td>\n",
676
- " </tr>\n",
677
- " </tbody>\n",
678
- "</table>\n",
679
- "</div>"
680
- ],
681
- "text/plain": [
682
- " count mean std min 25% 50% 75% \\\n",
683
- "emissions 1548.0 643.255885 5566.23818 0.0 2.6575 24.065 128.42 \n",
684
- "\n",
685
- " max \n",
686
- "emissions 141953.77 "
687
- ]
688
- },
689
- "execution_count": 14,
690
- "metadata": {},
691
- "output_type": "execute_result"
692
- }
693
- ],
694
  "source": [
695
  "df.describe().T"
696
  ]
697
  },
698
  {
699
  "cell_type": "code",
700
- "execution_count": 15,
701
  "metadata": {
702
  "execution": {
703
  "iopub.execute_input": "2023-04-12T16:58:13.830033Z",
@@ -707,21 +349,7 @@
707
  "shell.execute_reply.started": "2023-04-12T16:58:13.829998Z"
708
  }
709
  },
710
- "outputs": [
711
- {
712
- "data": {
713
- "text/plain": [
714
- "baseYear\n",
715
- "2022 1233\n",
716
- "2019-2021 315\n",
717
- "Name: count, dtype: int64"
718
- ]
719
- },
720
- "execution_count": 15,
721
- "metadata": {},
722
- "output_type": "execute_result"
723
- }
724
- ],
725
  "source": [
726
  "df.baseYear.value_counts()"
727
  ]
@@ -745,7 +373,7 @@
745
  },
746
  {
747
  "cell_type": "code",
748
- "execution_count": 16,
749
  "metadata": {
750
  "execution": {
751
  "iopub.execute_input": "2023-04-12T16:58:13.863938Z",
@@ -762,7 +390,7 @@
762
  },
763
  {
764
  "cell_type": "code",
765
- "execution_count": 17,
766
  "metadata": {
767
  "execution": {
768
  "iopub.execute_input": "2023-04-12T16:58:13.879267Z",
@@ -772,21 +400,7 @@
772
  "shell.execute_reply.started": "2023-04-12T16:58:13.879223Z"
773
  }
774
  },
775
- "outputs": [
776
- {
777
- "data": {
778
- "text/plain": [
779
- "baseYear\n",
780
- "2022 1233\n",
781
- "2020 315\n",
782
- "Name: count, dtype: int64"
783
- ]
784
- },
785
- "execution_count": 17,
786
- "metadata": {},
787
- "output_type": "execute_result"
788
- }
789
- ],
790
  "source": [
791
  "df.baseYear.value_counts()"
792
  ]
@@ -933,7 +547,7 @@
933
  },
934
  {
935
  "cell_type": "code",
936
- "execution_count": 23,
937
  "metadata": {
938
  "execution": {
939
  "iopub.execute_input": "2023-04-12T16:58:15.882728Z",
@@ -945,7 +559,7 @@
945
  },
946
  "outputs": [],
947
  "source": [
948
- "# fix -- a future warning (because groupby() is handling categorical variables differently in future versions, observed=True removes unused categories)\n",
949
  "\n",
950
  "# df6=df.groupby('region').get_group('Asia Pacific').sort_values(by='%percent emission')\n",
951
  "df6=df.groupby('region', observed=True).get_group('Asia Pacific').sort_values(by='%percent emission') "
@@ -1008,7 +622,7 @@
1008
  },
1009
  {
1010
  "cell_type": "code",
1011
- "execution_count": 18,
1012
  "metadata": {
1013
  "execution": {
1014
  "iopub.status.busy": "2023-04-12T16:58:16.054775Z",
@@ -1019,12 +633,13 @@
1019
  },
1020
  "outputs": [],
1021
  "source": [
 
1022
  "df[\"%percent emission\"]= ((df[\"emissions\"]/df[\"emissions\"].sum())*100)"
1023
  ]
1024
  },
1025
  {
1026
  "cell_type": "code",
1027
- "execution_count": 19,
1028
  "metadata": {
1029
  "execution": {
1030
  "iopub.status.busy": "2023-04-12T16:58:16.057017Z",
@@ -1033,132 +648,7 @@
1033
  "shell.execute_reply.started": "2023-04-12T16:58:16.057268Z"
1034
  }
1035
  },
1036
- "outputs": [
1037
- {
1038
- "data": {
1039
- "text/html": [
1040
- "<div>\n",
1041
- "<style scoped>\n",
1042
- " .dataframe tbody tr th:only-of-type {\n",
1043
- " vertical-align: middle;\n",
1044
- " }\n",
1045
- "\n",
1046
- " .dataframe tbody tr th {\n",
1047
- " vertical-align: top;\n",
1048
- " }\n",
1049
- "\n",
1050
- " .dataframe thead th {\n",
1051
- " text-align: right;\n",
1052
- " }\n",
1053
- "</style>\n",
1054
- "<table border=\"1\" class=\"dataframe\">\n",
1055
- " <thead>\n",
1056
- " <tr style=\"text-align: right;\">\n",
1057
- " <th></th>\n",
1058
- " <th>region</th>\n",
1059
- " <th>country</th>\n",
1060
- " <th>emissions</th>\n",
1061
- " <th>type</th>\n",
1062
- " <th>segment</th>\n",
1063
- " <th>reason</th>\n",
1064
- " <th>baseYear</th>\n",
1065
- " <th>notes</th>\n",
1066
- " <th>%percent emission</th>\n",
1067
- " </tr>\n",
1068
- " </thead>\n",
1069
- " <tbody>\n",
1070
- " <tr>\n",
1071
- " <th>0</th>\n",
1072
- " <td>Africa</td>\n",
1073
- " <td>Algeria</td>\n",
1074
- " <td>257.61</td>\n",
1075
- " <td>Agriculture</td>\n",
1076
- " <td>Total</td>\n",
1077
- " <td>All</td>\n",
1078
- " <td>2020</td>\n",
1079
- " <td>Average based on United Nations Framework Conv...</td>\n",
1080
- " <td>0.025871</td>\n",
1081
- " </tr>\n",
1082
- " <tr>\n",
1083
- " <th>1</th>\n",
1084
- " <td>Africa</td>\n",
1085
- " <td>Algeria</td>\n",
1086
- " <td>0.05</td>\n",
1087
- " <td>Energy</td>\n",
1088
- " <td>Bioenergy</td>\n",
1089
- " <td>All</td>\n",
1090
- " <td>2022</td>\n",
1091
- " <td>Estimates from end-uses are for 2020 or 2021 (...</td>\n",
1092
- " <td>0.000005</td>\n",
1093
- " </tr>\n",
1094
- " <tr>\n",
1095
- " <th>2</th>\n",
1096
- " <td>Africa</td>\n",
1097
- " <td>Algeria</td>\n",
1098
- " <td>130.80</td>\n",
1099
- " <td>Energy</td>\n",
1100
- " <td>Gas pipelines and LNG facilities</td>\n",
1101
- " <td>Fugitive</td>\n",
1102
- " <td>2022</td>\n",
1103
- " <td>Not available</td>\n",
1104
- " <td>0.013136</td>\n",
1105
- " </tr>\n",
1106
- " <tr>\n",
1107
- " <th>3</th>\n",
1108
- " <td>Africa</td>\n",
1109
- " <td>Algeria</td>\n",
1110
- " <td>69.74</td>\n",
1111
- " <td>Energy</td>\n",
1112
- " <td>Gas pipelines and LNG facilities</td>\n",
1113
- " <td>Vented</td>\n",
1114
- " <td>2022</td>\n",
1115
- " <td>Not available</td>\n",
1116
- " <td>0.007004</td>\n",
1117
- " </tr>\n",
1118
- " <tr>\n",
1119
- " <th>4</th>\n",
1120
- " <td>Africa</td>\n",
1121
- " <td>Algeria</td>\n",
1122
- " <td>213.99</td>\n",
1123
- " <td>Energy</td>\n",
1124
- " <td>Onshore gas</td>\n",
1125
- " <td>Fugitive</td>\n",
1126
- " <td>2022</td>\n",
1127
- " <td>Not available</td>\n",
1128
- " <td>0.021490</td>\n",
1129
- " </tr>\n",
1130
- " </tbody>\n",
1131
- "</table>\n",
1132
- "</div>"
1133
- ],
1134
- "text/plain": [
1135
- " region country emissions type segment \\\n",
1136
- "0 Africa Algeria 257.61 Agriculture Total \n",
1137
- "1 Africa Algeria 0.05 Energy Bioenergy \n",
1138
- "2 Africa Algeria 130.80 Energy Gas pipelines and LNG facilities \n",
1139
- "3 Africa Algeria 69.74 Energy Gas pipelines and LNG facilities \n",
1140
- "4 Africa Algeria 213.99 Energy Onshore gas \n",
1141
- "\n",
1142
- " reason baseYear notes \\\n",
1143
- "0 All 2020 Average based on United Nations Framework Conv... \n",
1144
- "1 All 2022 Estimates from end-uses are for 2020 or 2021 (... \n",
1145
- "2 Fugitive 2022 Not available \n",
1146
- "3 Vented 2022 Not available \n",
1147
- "4 Fugitive 2022 Not available \n",
1148
- "\n",
1149
- " %percent emission \n",
1150
- "0 0.025871 \n",
1151
- "1 0.000005 \n",
1152
- "2 0.013136 \n",
1153
- "3 0.007004 \n",
1154
- "4 0.021490 "
1155
- ]
1156
- },
1157
- "execution_count": 19,
1158
- "metadata": {},
1159
- "output_type": "execute_result"
1160
- }
1161
- ],
1162
  "source": [
1163
  "df.head()"
1164
  ]
 
64
  },
65
  {
66
  "cell_type": "code",
67
+ "execution_count": null,
68
  "metadata": {
69
  "execution": {
70
  "iopub.execute_input": "2023-04-12T16:58:13.529325Z",
 
74
  "shell.execute_reply.started": "2023-04-12T16:58:13.529284Z"
75
  }
76
  },
77
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78
  "source": [
79
  "df.head()"
80
  ]
81
  },
82
  {
83
  "cell_type": "code",
84
+ "execution_count": null,
85
  "metadata": {
86
  "execution": {
87
  "iopub.execute_input": "2023-04-12T16:58:13.563328Z",
 
91
  "shell.execute_reply.started": "2023-04-12T16:58:13.563289Z"
92
  }
93
  },
94
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
95
  "source": [
96
  "df.columns\n"
97
  ]
98
  },
99
  {
100
  "cell_type": "code",
101
+ "execution_count": null,
102
  "metadata": {
103
  "execution": {
104
  "iopub.execute_input": "2023-04-12T16:58:13.573802Z",
 
108
  "shell.execute_reply.started": "2023-04-12T16:58:13.573767Z"
109
  }
110
  },
111
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
112
  "source": [
113
  "df.shape"
114
  ]
115
  },
116
  {
117
  "cell_type": "code",
118
+ "execution_count": null,
119
  "metadata": {
120
  "execution": {
121
  "iopub.execute_input": "2023-04-12T16:58:13.591898Z",
 
125
  "shell.execute_reply.started": "2023-04-12T16:58:13.591857Z"
126
  }
127
  },
128
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129
  "source": [
130
  "df.info()"
131
  ]
 
201
  },
202
  {
203
  "cell_type": "code",
204
+ "execution_count": 3,
205
  "metadata": {
206
  "execution": {
207
  "iopub.execute_input": "2023-04-12T16:58:13.690937Z",
 
220
  },
221
  {
222
  "cell_type": "code",
223
+ "execution_count": null,
224
  "metadata": {
225
  "execution": {
226
  "iopub.execute_input": "2023-04-12T16:58:13.705427Z",
 
230
  "shell.execute_reply.started": "2023-04-12T16:58:13.705385Z"
231
  }
232
  },
233
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
234
  "source": [
235
  "df.info()"
236
  ]
237
  },
238
  {
239
  "cell_type": "code",
240
+ "execution_count": 4,
241
  "metadata": {
242
  "execution": {
243
  "iopub.execute_input": "2023-04-12T16:58:13.733193Z",
 
254
  },
255
  {
256
  "cell_type": "code",
257
+ "execution_count": null,
258
  "metadata": {
259
  "execution": {
260
  "iopub.execute_input": "2023-04-12T16:58:13.743153Z",
 
264
  "shell.execute_reply.started": "2023-04-12T16:58:13.743111Z"
265
  }
266
  },
267
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
268
  "source": [
269
  "df.head(2)"
270
  ]
271
  },
272
  {
273
  "cell_type": "code",
274
+ "execution_count": 5,
275
  "metadata": {
276
  "execution": {
277
  "iopub.execute_input": "2023-04-12T16:58:13.765226Z",
 
288
  },
289
  {
290
  "cell_type": "code",
291
+ "execution_count": null,
292
  "metadata": {
293
  "execution": {
294
  "iopub.execute_input": "2023-04-12T16:58:13.774881Z",
 
298
  "shell.execute_reply.started": "2023-04-12T16:58:13.774840Z"
299
  }
300
  },
301
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
302
  "source": [
303
  "df.isnull().sum()"
304
  ]
305
  },
306
  {
307
  "cell_type": "code",
308
+ "execution_count": null,
309
  "metadata": {
310
  "execution": {
311
  "iopub.execute_input": "2023-04-12T16:58:13.789464Z",
 
315
  "shell.execute_reply.started": "2023-04-12T16:58:13.789403Z"
316
  }
317
  },
318
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
319
  "source": [
320
  "df.duplicated().sum()"
321
  ]
322
  },
323
  {
324
  "cell_type": "code",
325
+ "execution_count": null,
326
  "metadata": {
327
  "execution": {
328
  "iopub.execute_input": "2023-04-12T16:58:13.808188Z",
 
332
  "shell.execute_reply.started": "2023-04-12T16:58:13.808144Z"
333
  }
334
  },
335
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
336
  "source": [
337
  "df.describe().T"
338
  ]
339
  },
340
  {
341
  "cell_type": "code",
342
+ "execution_count": null,
343
  "metadata": {
344
  "execution": {
345
  "iopub.execute_input": "2023-04-12T16:58:13.830033Z",
 
349
  "shell.execute_reply.started": "2023-04-12T16:58:13.829998Z"
350
  }
351
  },
352
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
353
  "source": [
354
  "df.baseYear.value_counts()"
355
  ]
 
373
  },
374
  {
375
  "cell_type": "code",
376
+ "execution_count": 6,
377
  "metadata": {
378
  "execution": {
379
  "iopub.execute_input": "2023-04-12T16:58:13.863938Z",
 
390
  },
391
  {
392
  "cell_type": "code",
393
+ "execution_count": null,
394
  "metadata": {
395
  "execution": {
396
  "iopub.execute_input": "2023-04-12T16:58:13.879267Z",
 
400
  "shell.execute_reply.started": "2023-04-12T16:58:13.879223Z"
401
  }
402
  },
403
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
404
  "source": [
405
  "df.baseYear.value_counts()"
406
  ]
 
547
  },
548
  {
549
  "cell_type": "code",
550
+ "execution_count": 8,
551
  "metadata": {
552
  "execution": {
553
  "iopub.execute_input": "2023-04-12T16:58:15.882728Z",
 
559
  },
560
  "outputs": [],
561
  "source": [
562
+ "# fix 2-- a future warning (because groupby() is handling categorical variables differently in future versions, observed=True removes unused categories)\n",
563
  "\n",
564
  "# df6=df.groupby('region').get_group('Asia Pacific').sort_values(by='%percent emission')\n",
565
  "df6=df.groupby('region', observed=True).get_group('Asia Pacific').sort_values(by='%percent emission') "
 
622
  },
623
  {
624
  "cell_type": "code",
625
+ "execution_count": 7,
626
  "metadata": {
627
  "execution": {
628
  "iopub.status.busy": "2023-04-12T16:58:16.054775Z",
 
633
  },
634
  "outputs": [],
635
  "source": [
636
+ "# fix 1--- execute this cell\n",
637
  "df[\"%percent emission\"]= ((df[\"emissions\"]/df[\"emissions\"].sum())*100)"
638
  ]
639
  },
640
  {
641
  "cell_type": "code",
642
+ "execution_count": null,
643
  "metadata": {
644
  "execution": {
645
  "iopub.status.busy": "2023-04-12T16:58:16.057017Z",
 
648
  "shell.execute_reply.started": "2023-04-12T16:58:16.057268Z"
649
  }
650
  },
651
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
652
  "source": [
653
  "df.head()"
654
  ]
benchmark/NBspecific_7/NBspecific_7_reproduced.ipynb CHANGED
@@ -64,7 +64,7 @@
64
  },
65
  {
66
  "cell_type": "code",
67
- "execution_count": 3,
68
  "metadata": {
69
  "execution": {
70
  "iopub.execute_input": "2023-04-12T16:58:13.529325Z",
@@ -74,139 +74,14 @@
74
  "shell.execute_reply.started": "2023-04-12T16:58:13.529284Z"
75
  }
76
  },
77
- "outputs": [
78
- {
79
- "data": {
80
- "text/html": [
81
- "<div>\n",
82
- "<style scoped>\n",
83
- " .dataframe tbody tr th:only-of-type {\n",
84
- " vertical-align: middle;\n",
85
- " }\n",
86
- "\n",
87
- " .dataframe tbody tr th {\n",
88
- " vertical-align: top;\n",
89
- " }\n",
90
- "\n",
91
- " .dataframe thead th {\n",
92
- " text-align: right;\n",
93
- " }\n",
94
- "</style>\n",
95
- "<table border=\"1\" class=\"dataframe\">\n",
96
- " <thead>\n",
97
- " <tr style=\"text-align: right;\">\n",
98
- " <th></th>\n",
99
- " <th>Unnamed: 0</th>\n",
100
- " <th>region</th>\n",
101
- " <th>country</th>\n",
102
- " <th>emissions</th>\n",
103
- " <th>type</th>\n",
104
- " <th>segment</th>\n",
105
- " <th>reason</th>\n",
106
- " <th>baseYear</th>\n",
107
- " <th>notes</th>\n",
108
- " </tr>\n",
109
- " </thead>\n",
110
- " <tbody>\n",
111
- " <tr>\n",
112
- " <th>0</th>\n",
113
- " <td>0</td>\n",
114
- " <td>Africa</td>\n",
115
- " <td>Algeria</td>\n",
116
- " <td>257.611206</td>\n",
117
- " <td>Agriculture</td>\n",
118
- " <td>Total</td>\n",
119
- " <td>All</td>\n",
120
- " <td>2019-2021</td>\n",
121
- " <td>Average based on United Nations Framework Conv...</td>\n",
122
- " </tr>\n",
123
- " <tr>\n",
124
- " <th>1</th>\n",
125
- " <td>1</td>\n",
126
- " <td>Africa</td>\n",
127
- " <td>Algeria</td>\n",
128
- " <td>0.052000</td>\n",
129
- " <td>Energy</td>\n",
130
- " <td>Bioenergy</td>\n",
131
- " <td>All</td>\n",
132
- " <td>2022</td>\n",
133
- " <td>Estimates from end-uses are for 2020 or 2021 (...</td>\n",
134
- " </tr>\n",
135
- " <tr>\n",
136
- " <th>2</th>\n",
137
- " <td>2</td>\n",
138
- " <td>Africa</td>\n",
139
- " <td>Algeria</td>\n",
140
- " <td>130.798996</td>\n",
141
- " <td>Energy</td>\n",
142
- " <td>Gas pipelines and LNG facilities</td>\n",
143
- " <td>Fugitive</td>\n",
144
- " <td>2022</td>\n",
145
- " <td>Not available</td>\n",
146
- " </tr>\n",
147
- " <tr>\n",
148
- " <th>3</th>\n",
149
- " <td>3</td>\n",
150
- " <td>Africa</td>\n",
151
- " <td>Algeria</td>\n",
152
- " <td>69.741898</td>\n",
153
- " <td>Energy</td>\n",
154
- " <td>Gas pipelines and LNG facilities</td>\n",
155
- " <td>Vented</td>\n",
156
- " <td>2022</td>\n",
157
- " <td>Not available</td>\n",
158
- " </tr>\n",
159
- " <tr>\n",
160
- " <th>4</th>\n",
161
- " <td>4</td>\n",
162
- " <td>Africa</td>\n",
163
- " <td>Algeria</td>\n",
164
- " <td>213.987000</td>\n",
165
- " <td>Energy</td>\n",
166
- " <td>Onshore gas</td>\n",
167
- " <td>Fugitive</td>\n",
168
- " <td>2022</td>\n",
169
- " <td>Not available</td>\n",
170
- " </tr>\n",
171
- " </tbody>\n",
172
- "</table>\n",
173
- "</div>"
174
- ],
175
- "text/plain": [
176
- " Unnamed: 0 region country emissions type \\\n",
177
- "0 0 Africa Algeria 257.611206 Agriculture \n",
178
- "1 1 Africa Algeria 0.052000 Energy \n",
179
- "2 2 Africa Algeria 130.798996 Energy \n",
180
- "3 3 Africa Algeria 69.741898 Energy \n",
181
- "4 4 Africa Algeria 213.987000 Energy \n",
182
- "\n",
183
- " segment reason baseYear \\\n",
184
- "0 Total All 2019-2021 \n",
185
- "1 Bioenergy All 2022 \n",
186
- "2 Gas pipelines and LNG facilities Fugitive 2022 \n",
187
- "3 Gas pipelines and LNG facilities Vented 2022 \n",
188
- "4 Onshore gas Fugitive 2022 \n",
189
- "\n",
190
- " notes \n",
191
- "0 Average based on United Nations Framework Conv... \n",
192
- "1 Estimates from end-uses are for 2020 or 2021 (... \n",
193
- "2 Not available \n",
194
- "3 Not available \n",
195
- "4 Not available "
196
- ]
197
- },
198
- "execution_count": 3,
199
- "metadata": {},
200
- "output_type": "execute_result"
201
- }
202
- ],
203
  "source": [
204
  "df.head()"
205
  ]
206
  },
207
  {
208
  "cell_type": "code",
209
- "execution_count": 4,
210
  "metadata": {
211
  "execution": {
212
  "iopub.execute_input": "2023-04-12T16:58:13.563328Z",
@@ -216,27 +91,14 @@
216
  "shell.execute_reply.started": "2023-04-12T16:58:13.563289Z"
217
  }
218
  },
219
- "outputs": [
220
- {
221
- "data": {
222
- "text/plain": [
223
- "Index(['Unnamed: 0', 'region', 'country', 'emissions', 'type', 'segment',\n",
224
- " 'reason', 'baseYear', 'notes'],\n",
225
- " dtype='object')"
226
- ]
227
- },
228
- "execution_count": 4,
229
- "metadata": {},
230
- "output_type": "execute_result"
231
- }
232
- ],
233
  "source": [
234
  "df.columns\n"
235
  ]
236
  },
237
  {
238
  "cell_type": "code",
239
- "execution_count": 5,
240
  "metadata": {
241
  "execution": {
242
  "iopub.execute_input": "2023-04-12T16:58:13.573802Z",
@@ -246,25 +108,14 @@
246
  "shell.execute_reply.started": "2023-04-12T16:58:13.573767Z"
247
  }
248
  },
249
- "outputs": [
250
- {
251
- "data": {
252
- "text/plain": [
253
- "(1548, 9)"
254
- ]
255
- },
256
- "execution_count": 5,
257
- "metadata": {},
258
- "output_type": "execute_result"
259
- }
260
- ],
261
  "source": [
262
  "df.shape"
263
  ]
264
  },
265
  {
266
  "cell_type": "code",
267
- "execution_count": 6,
268
  "metadata": {
269
  "execution": {
270
  "iopub.execute_input": "2023-04-12T16:58:13.591898Z",
@@ -274,30 +125,7 @@
274
  "shell.execute_reply.started": "2023-04-12T16:58:13.591857Z"
275
  }
276
  },
277
- "outputs": [
278
- {
279
- "name": "stdout",
280
- "output_type": "stream",
281
- "text": [
282
- "<class 'pandas.core.frame.DataFrame'>\n",
283
- "RangeIndex: 1548 entries, 0 to 1547\n",
284
- "Data columns (total 9 columns):\n",
285
- " # Column Non-Null Count Dtype \n",
286
- "--- ------ -------------- ----- \n",
287
- " 0 Unnamed: 0 1548 non-null int64 \n",
288
- " 1 region 1548 non-null object \n",
289
- " 2 country 1548 non-null object \n",
290
- " 3 emissions 1548 non-null float64\n",
291
- " 4 type 1548 non-null object \n",
292
- " 5 segment 1548 non-null object \n",
293
- " 6 reason 1548 non-null object \n",
294
- " 7 baseYear 1548 non-null object \n",
295
- " 8 notes 1548 non-null object \n",
296
- "dtypes: float64(1), int64(1), object(7)\n",
297
- "memory usage: 109.0+ KB\n"
298
- ]
299
- }
300
- ],
301
  "source": [
302
  "df.info()"
303
  ]
@@ -373,7 +201,7 @@
373
  },
374
  {
375
  "cell_type": "code",
376
- "execution_count": 7,
377
  "metadata": {
378
  "execution": {
379
  "iopub.execute_input": "2023-04-12T16:58:13.690937Z",
@@ -392,7 +220,7 @@
392
  },
393
  {
394
  "cell_type": "code",
395
- "execution_count": 8,
396
  "metadata": {
397
  "execution": {
398
  "iopub.execute_input": "2023-04-12T16:58:13.705427Z",
@@ -402,37 +230,14 @@
402
  "shell.execute_reply.started": "2023-04-12T16:58:13.705385Z"
403
  }
404
  },
405
- "outputs": [
406
- {
407
- "name": "stdout",
408
- "output_type": "stream",
409
- "text": [
410
- "<class 'pandas.core.frame.DataFrame'>\n",
411
- "RangeIndex: 1548 entries, 0 to 1547\n",
412
- "Data columns (total 9 columns):\n",
413
- " # Column Non-Null Count Dtype \n",
414
- "--- ------ -------------- ----- \n",
415
- " 0 Unnamed: 0 1548 non-null int64 \n",
416
- " 1 region 1548 non-null category\n",
417
- " 2 country 1548 non-null object \n",
418
- " 3 emissions 1548 non-null float64 \n",
419
- " 4 type 1548 non-null category\n",
420
- " 5 segment 1548 non-null object \n",
421
- " 6 reason 1548 non-null category\n",
422
- " 7 baseYear 1548 non-null object \n",
423
- " 8 notes 1548 non-null object \n",
424
- "dtypes: category(3), float64(1), int64(1), object(4)\n",
425
- "memory usage: 78.0+ KB\n"
426
- ]
427
- }
428
- ],
429
  "source": [
430
  "df.info()"
431
  ]
432
  },
433
  {
434
  "cell_type": "code",
435
- "execution_count": 9,
436
  "metadata": {
437
  "execution": {
438
  "iopub.execute_input": "2023-04-12T16:58:13.733193Z",
@@ -449,7 +254,7 @@
449
  },
450
  {
451
  "cell_type": "code",
452
- "execution_count": 10,
453
  "metadata": {
454
  "execution": {
455
  "iopub.execute_input": "2023-04-12T16:58:13.743153Z",
@@ -459,87 +264,14 @@
459
  "shell.execute_reply.started": "2023-04-12T16:58:13.743111Z"
460
  }
461
  },
462
- "outputs": [
463
- {
464
- "data": {
465
- "text/html": [
466
- "<div>\n",
467
- "<style scoped>\n",
468
- " .dataframe tbody tr th:only-of-type {\n",
469
- " vertical-align: middle;\n",
470
- " }\n",
471
- "\n",
472
- " .dataframe tbody tr th {\n",
473
- " vertical-align: top;\n",
474
- " }\n",
475
- "\n",
476
- " .dataframe thead th {\n",
477
- " text-align: right;\n",
478
- " }\n",
479
- "</style>\n",
480
- "<table border=\"1\" class=\"dataframe\">\n",
481
- " <thead>\n",
482
- " <tr style=\"text-align: right;\">\n",
483
- " <th></th>\n",
484
- " <th>region</th>\n",
485
- " <th>country</th>\n",
486
- " <th>emissions</th>\n",
487
- " <th>type</th>\n",
488
- " <th>segment</th>\n",
489
- " <th>reason</th>\n",
490
- " <th>baseYear</th>\n",
491
- " <th>notes</th>\n",
492
- " </tr>\n",
493
- " </thead>\n",
494
- " <tbody>\n",
495
- " <tr>\n",
496
- " <th>0</th>\n",
497
- " <td>Africa</td>\n",
498
- " <td>Algeria</td>\n",
499
- " <td>257.611206</td>\n",
500
- " <td>Agriculture</td>\n",
501
- " <td>Total</td>\n",
502
- " <td>All</td>\n",
503
- " <td>2019-2021</td>\n",
504
- " <td>Average based on United Nations Framework Conv...</td>\n",
505
- " </tr>\n",
506
- " <tr>\n",
507
- " <th>1</th>\n",
508
- " <td>Africa</td>\n",
509
- " <td>Algeria</td>\n",
510
- " <td>0.052000</td>\n",
511
- " <td>Energy</td>\n",
512
- " <td>Bioenergy</td>\n",
513
- " <td>All</td>\n",
514
- " <td>2022</td>\n",
515
- " <td>Estimates from end-uses are for 2020 or 2021 (...</td>\n",
516
- " </tr>\n",
517
- " </tbody>\n",
518
- "</table>\n",
519
- "</div>"
520
- ],
521
- "text/plain": [
522
- " region country emissions type segment reason baseYear \\\n",
523
- "0 Africa Algeria 257.611206 Agriculture Total All 2019-2021 \n",
524
- "1 Africa Algeria 0.052000 Energy Bioenergy All 2022 \n",
525
- "\n",
526
- " notes \n",
527
- "0 Average based on United Nations Framework Conv... \n",
528
- "1 Estimates from end-uses are for 2020 or 2021 (... "
529
- ]
530
- },
531
- "execution_count": 10,
532
- "metadata": {},
533
- "output_type": "execute_result"
534
- }
535
- ],
536
  "source": [
537
  "df.head(2)"
538
  ]
539
  },
540
  {
541
  "cell_type": "code",
542
- "execution_count": 11,
543
  "metadata": {
544
  "execution": {
545
  "iopub.execute_input": "2023-04-12T16:58:13.765226Z",
@@ -556,7 +288,7 @@
556
  },
557
  {
558
  "cell_type": "code",
559
- "execution_count": 12,
560
  "metadata": {
561
  "execution": {
562
  "iopub.execute_input": "2023-04-12T16:58:13.774881Z",
@@ -566,33 +298,14 @@
566
  "shell.execute_reply.started": "2023-04-12T16:58:13.774840Z"
567
  }
568
  },
569
- "outputs": [
570
- {
571
- "data": {
572
- "text/plain": [
573
- "region 0\n",
574
- "country 0\n",
575
- "emissions 0\n",
576
- "type 0\n",
577
- "segment 0\n",
578
- "reason 0\n",
579
- "baseYear 0\n",
580
- "notes 0\n",
581
- "dtype: int64"
582
- ]
583
- },
584
- "execution_count": 12,
585
- "metadata": {},
586
- "output_type": "execute_result"
587
- }
588
- ],
589
  "source": [
590
  "df.isnull().sum()"
591
  ]
592
  },
593
  {
594
  "cell_type": "code",
595
- "execution_count": 13,
596
  "metadata": {
597
  "execution": {
598
  "iopub.execute_input": "2023-04-12T16:58:13.789464Z",
@@ -602,25 +315,14 @@
602
  "shell.execute_reply.started": "2023-04-12T16:58:13.789403Z"
603
  }
604
  },
605
- "outputs": [
606
- {
607
- "data": {
608
- "text/plain": [
609
- "0"
610
- ]
611
- },
612
- "execution_count": 13,
613
- "metadata": {},
614
- "output_type": "execute_result"
615
- }
616
- ],
617
  "source": [
618
  "df.duplicated().sum()"
619
  ]
620
  },
621
  {
622
  "cell_type": "code",
623
- "execution_count": 14,
624
  "metadata": {
625
  "execution": {
626
  "iopub.execute_input": "2023-04-12T16:58:13.808188Z",
@@ -630,74 +332,14 @@
630
  "shell.execute_reply.started": "2023-04-12T16:58:13.808144Z"
631
  }
632
  },
633
- "outputs": [
634
- {
635
- "data": {
636
- "text/html": [
637
- "<div>\n",
638
- "<style scoped>\n",
639
- " .dataframe tbody tr th:only-of-type {\n",
640
- " vertical-align: middle;\n",
641
- " }\n",
642
- "\n",
643
- " .dataframe tbody tr th {\n",
644
- " vertical-align: top;\n",
645
- " }\n",
646
- "\n",
647
- " .dataframe thead th {\n",
648
- " text-align: right;\n",
649
- " }\n",
650
- "</style>\n",
651
- "<table border=\"1\" class=\"dataframe\">\n",
652
- " <thead>\n",
653
- " <tr style=\"text-align: right;\">\n",
654
- " <th></th>\n",
655
- " <th>count</th>\n",
656
- " <th>mean</th>\n",
657
- " <th>std</th>\n",
658
- " <th>min</th>\n",
659
- " <th>25%</th>\n",
660
- " <th>50%</th>\n",
661
- " <th>75%</th>\n",
662
- " <th>max</th>\n",
663
- " </tr>\n",
664
- " </thead>\n",
665
- " <tbody>\n",
666
- " <tr>\n",
667
- " <th>emissions</th>\n",
668
- " <td>1548.0</td>\n",
669
- " <td>643.255885</td>\n",
670
- " <td>5566.23818</td>\n",
671
- " <td>0.0</td>\n",
672
- " <td>2.6575</td>\n",
673
- " <td>24.065</td>\n",
674
- " <td>128.42</td>\n",
675
- " <td>141953.77</td>\n",
676
- " </tr>\n",
677
- " </tbody>\n",
678
- "</table>\n",
679
- "</div>"
680
- ],
681
- "text/plain": [
682
- " count mean std min 25% 50% 75% \\\n",
683
- "emissions 1548.0 643.255885 5566.23818 0.0 2.6575 24.065 128.42 \n",
684
- "\n",
685
- " max \n",
686
- "emissions 141953.77 "
687
- ]
688
- },
689
- "execution_count": 14,
690
- "metadata": {},
691
- "output_type": "execute_result"
692
- }
693
- ],
694
  "source": [
695
  "df.describe().T"
696
  ]
697
  },
698
  {
699
  "cell_type": "code",
700
- "execution_count": 15,
701
  "metadata": {
702
  "execution": {
703
  "iopub.execute_input": "2023-04-12T16:58:13.830033Z",
@@ -707,21 +349,7 @@
707
  "shell.execute_reply.started": "2023-04-12T16:58:13.829998Z"
708
  }
709
  },
710
- "outputs": [
711
- {
712
- "data": {
713
- "text/plain": [
714
- "baseYear\n",
715
- "2022 1233\n",
716
- "2019-2021 315\n",
717
- "Name: count, dtype: int64"
718
- ]
719
- },
720
- "execution_count": 15,
721
- "metadata": {},
722
- "output_type": "execute_result"
723
- }
724
- ],
725
  "source": [
726
  "df.baseYear.value_counts()"
727
  ]
@@ -745,7 +373,7 @@
745
  },
746
  {
747
  "cell_type": "code",
748
- "execution_count": 16,
749
  "metadata": {
750
  "execution": {
751
  "iopub.execute_input": "2023-04-12T16:58:13.863938Z",
@@ -762,7 +390,7 @@
762
  },
763
  {
764
  "cell_type": "code",
765
- "execution_count": 17,
766
  "metadata": {
767
  "execution": {
768
  "iopub.execute_input": "2023-04-12T16:58:13.879267Z",
@@ -772,21 +400,7 @@
772
  "shell.execute_reply.started": "2023-04-12T16:58:13.879223Z"
773
  }
774
  },
775
- "outputs": [
776
- {
777
- "data": {
778
- "text/plain": [
779
- "baseYear\n",
780
- "2022 1233\n",
781
- "2020 315\n",
782
- "Name: count, dtype: int64"
783
- ]
784
- },
785
- "execution_count": 17,
786
- "metadata": {},
787
- "output_type": "execute_result"
788
- }
789
- ],
790
  "source": [
791
  "df.baseYear.value_counts()"
792
  ]
@@ -933,7 +547,7 @@
933
  },
934
  {
935
  "cell_type": "code",
936
- "execution_count": 18,
937
  "metadata": {
938
  "execution": {
939
  "iopub.execute_input": "2023-04-12T16:58:15.882728Z",
@@ -948,7 +562,7 @@
948
  "name": "stderr",
949
  "output_type": "stream",
950
  "text": [
951
- "<ipython-input-18-71a6516fd873>:1: FutureWarning: The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and silence this warning.\n",
952
  " df6=df.groupby('region').get_group('Asia Pacific').sort_values(by='%percent emission')\n"
953
  ]
954
  },
@@ -959,7 +573,7 @@
959
  "traceback": [
960
  "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
961
  "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)",
962
- "\u001b[0;32m<ipython-input-18-71a6516fd873>\u001b[0m in \u001b[0;36m<cell line: 1>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mdf6\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgroupby\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'region'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_group\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Asia Pacific'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msort_values\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mby\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'%percent emission'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
963
  "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36msort_values\u001b[0;34m(self, by, axis, ascending, inplace, kind, na_position, ignore_index, key)\u001b[0m\n\u001b[1;32m 6942\u001b[0m \u001b[0;31m# len(by) == 1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6943\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 6944\u001b[0;31m \u001b[0mk\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_label_or_level_values\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mby\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 6945\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6946\u001b[0m \u001b[0;31m# need to rewrap column in Series to apply key function\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
964
  "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36m_get_label_or_level_values\u001b[0;34m(self, key, axis)\u001b[0m\n\u001b[1;32m 1842\u001b[0m \u001b[0mvalues\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0maxes\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_level_values\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_values\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1843\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1844\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1845\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1846\u001b[0m \u001b[0;31m# Check for duplicates\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
965
  "\u001b[0;31mKeyError\u001b[0m: '%percent emission'"
 
64
  },
65
  {
66
  "cell_type": "code",
67
+ "execution_count": null,
68
  "metadata": {
69
  "execution": {
70
  "iopub.execute_input": "2023-04-12T16:58:13.529325Z",
 
74
  "shell.execute_reply.started": "2023-04-12T16:58:13.529284Z"
75
  }
76
  },
77
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78
  "source": [
79
  "df.head()"
80
  ]
81
  },
82
  {
83
  "cell_type": "code",
84
+ "execution_count": null,
85
  "metadata": {
86
  "execution": {
87
  "iopub.execute_input": "2023-04-12T16:58:13.563328Z",
 
91
  "shell.execute_reply.started": "2023-04-12T16:58:13.563289Z"
92
  }
93
  },
94
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
95
  "source": [
96
  "df.columns\n"
97
  ]
98
  },
99
  {
100
  "cell_type": "code",
101
+ "execution_count": null,
102
  "metadata": {
103
  "execution": {
104
  "iopub.execute_input": "2023-04-12T16:58:13.573802Z",
 
108
  "shell.execute_reply.started": "2023-04-12T16:58:13.573767Z"
109
  }
110
  },
111
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
112
  "source": [
113
  "df.shape"
114
  ]
115
  },
116
  {
117
  "cell_type": "code",
118
+ "execution_count": null,
119
  "metadata": {
120
  "execution": {
121
  "iopub.execute_input": "2023-04-12T16:58:13.591898Z",
 
125
  "shell.execute_reply.started": "2023-04-12T16:58:13.591857Z"
126
  }
127
  },
128
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
129
  "source": [
130
  "df.info()"
131
  ]
 
201
  },
202
  {
203
  "cell_type": "code",
204
+ "execution_count": 3,
205
  "metadata": {
206
  "execution": {
207
  "iopub.execute_input": "2023-04-12T16:58:13.690937Z",
 
220
  },
221
  {
222
  "cell_type": "code",
223
+ "execution_count": null,
224
  "metadata": {
225
  "execution": {
226
  "iopub.execute_input": "2023-04-12T16:58:13.705427Z",
 
230
  "shell.execute_reply.started": "2023-04-12T16:58:13.705385Z"
231
  }
232
  },
233
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
234
  "source": [
235
  "df.info()"
236
  ]
237
  },
238
  {
239
  "cell_type": "code",
240
+ "execution_count": 4,
241
  "metadata": {
242
  "execution": {
243
  "iopub.execute_input": "2023-04-12T16:58:13.733193Z",
 
254
  },
255
  {
256
  "cell_type": "code",
257
+ "execution_count": null,
258
  "metadata": {
259
  "execution": {
260
  "iopub.execute_input": "2023-04-12T16:58:13.743153Z",
 
264
  "shell.execute_reply.started": "2023-04-12T16:58:13.743111Z"
265
  }
266
  },
267
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
268
  "source": [
269
  "df.head(2)"
270
  ]
271
  },
272
  {
273
  "cell_type": "code",
274
+ "execution_count": 5,
275
  "metadata": {
276
  "execution": {
277
  "iopub.execute_input": "2023-04-12T16:58:13.765226Z",
 
288
  },
289
  {
290
  "cell_type": "code",
291
+ "execution_count": null,
292
  "metadata": {
293
  "execution": {
294
  "iopub.execute_input": "2023-04-12T16:58:13.774881Z",
 
298
  "shell.execute_reply.started": "2023-04-12T16:58:13.774840Z"
299
  }
300
  },
301
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
302
  "source": [
303
  "df.isnull().sum()"
304
  ]
305
  },
306
  {
307
  "cell_type": "code",
308
+ "execution_count": null,
309
  "metadata": {
310
  "execution": {
311
  "iopub.execute_input": "2023-04-12T16:58:13.789464Z",
 
315
  "shell.execute_reply.started": "2023-04-12T16:58:13.789403Z"
316
  }
317
  },
318
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
319
  "source": [
320
  "df.duplicated().sum()"
321
  ]
322
  },
323
  {
324
  "cell_type": "code",
325
+ "execution_count": null,
326
  "metadata": {
327
  "execution": {
328
  "iopub.execute_input": "2023-04-12T16:58:13.808188Z",
 
332
  "shell.execute_reply.started": "2023-04-12T16:58:13.808144Z"
333
  }
334
  },
335
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
336
  "source": [
337
  "df.describe().T"
338
  ]
339
  },
340
  {
341
  "cell_type": "code",
342
+ "execution_count": null,
343
  "metadata": {
344
  "execution": {
345
  "iopub.execute_input": "2023-04-12T16:58:13.830033Z",
 
349
  "shell.execute_reply.started": "2023-04-12T16:58:13.829998Z"
350
  }
351
  },
352
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
353
  "source": [
354
  "df.baseYear.value_counts()"
355
  ]
 
373
  },
374
  {
375
  "cell_type": "code",
376
+ "execution_count": 6,
377
  "metadata": {
378
  "execution": {
379
  "iopub.execute_input": "2023-04-12T16:58:13.863938Z",
 
390
  },
391
  {
392
  "cell_type": "code",
393
+ "execution_count": null,
394
  "metadata": {
395
  "execution": {
396
  "iopub.execute_input": "2023-04-12T16:58:13.879267Z",
 
400
  "shell.execute_reply.started": "2023-04-12T16:58:13.879223Z"
401
  }
402
  },
403
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
404
  "source": [
405
  "df.baseYear.value_counts()"
406
  ]
 
547
  },
548
  {
549
  "cell_type": "code",
550
+ "execution_count": 7,
551
  "metadata": {
552
  "execution": {
553
  "iopub.execute_input": "2023-04-12T16:58:15.882728Z",
 
562
  "name": "stderr",
563
  "output_type": "stream",
564
  "text": [
565
+ "<ipython-input-7-71a6516fd873>:1: FutureWarning: The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and silence this warning.\n",
566
  " df6=df.groupby('region').get_group('Asia Pacific').sort_values(by='%percent emission')\n"
567
  ]
568
  },
 
573
  "traceback": [
574
  "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
575
  "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)",
576
+ "\u001b[0;32m<ipython-input-7-71a6516fd873>\u001b[0m in \u001b[0;36m<cell line: 1>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mdf6\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mdf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgroupby\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'region'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_group\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'Asia Pacific'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msort_values\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mby\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'%percent emission'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
577
  "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36msort_values\u001b[0;34m(self, by, axis, ascending, inplace, kind, na_position, ignore_index, key)\u001b[0m\n\u001b[1;32m 6942\u001b[0m \u001b[0;31m# len(by) == 1\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6943\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 6944\u001b[0;31m \u001b[0mk\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_get_label_or_level_values\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mby\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 6945\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 6946\u001b[0m \u001b[0;31m# need to rewrap column in Series to apply key function\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
578
  "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36m_get_label_or_level_values\u001b[0;34m(self, key, axis)\u001b[0m\n\u001b[1;32m 1842\u001b[0m \u001b[0mvalues\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0maxes\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_level_values\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_values\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1843\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1844\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1845\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1846\u001b[0m \u001b[0;31m# Check for duplicates\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
579
  "\u001b[0;31mKeyError\u001b[0m: '%percent emission'"
benchmark/NBspecific_8/NBspecific_8_fixed.ipynb CHANGED
@@ -322,7 +322,7 @@
322
  },
323
  {
324
  "cell_type": "code",
325
- "execution_count": 3,
326
  "metadata": {
327
  "_cell_guid": "500a7db4-22b9-43e1-a2df-0d84927700f6",
328
  "_uuid": "6476fe5078d5e3335cc5b10b754d164c7872c0f9",
@@ -335,28 +335,7 @@
335
  },
336
  "scrolled": true
337
  },
338
- "outputs": [
339
- {
340
- "data": {
341
- "text/plain": [
342
- "Text(0, 0.5, '# transactions')"
343
- ]
344
- },
345
- "execution_count": 3,
346
- "metadata": {},
347
- "output_type": "execute_result"
348
- },
349
- {
350
- "data": {
351
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhsAAAE8CAYAAABpZnOuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/JElEQVR4nO3deVyU5f4//tewzAgKiKFssrjCMTYDQXFFMSS/mlpqm4kaZoKpqKWZiXY+4dEySynypFLnaC6dtFzSFEQ9ysEV0RBTQ8QFEJFFlG3m+v3hg/k5gcqN94ADr+fjMY+Y67rmut9zNQxvr/u6r1shhBAgIiIi0hOjxg6AiIiImjYmG0RERKRXTDaIiIhIr5hsEBERkV4x2SAiIiK9YrJBREREesVkg4iIiPSKyQYRERHpFZMNIiIi0ismG0TUJCQlJUGhUCApKamxQyGiv2CyQUSPlZmZicjISHTt2hXm5uYwNzdHt27dEBERgbS0tMYOj4iecgreG4WIHmXHjh0YO3YsTExM8Prrr8Pb2xtGRkbIyMjATz/9hKysLGRmZsLFxaVR49RoNKioqIBSqYSREf8dRfQ0YbJBRA916dIleHt7w9nZGQkJCbC3t9epr6qqwldffYWRI0fCycmpkaIkoqcd038ieqilS5eitLQU69atq5FoAICJiQneffddnUQjIyMDL7/8Mtq0aYMWLVrAz88Pv/zyi87r4uPjoVAocPjwYURFRaFt27Zo2bIlRo4ciZs3b+q0VSgUiI6OrnFsV1dXhIWFaZ/XtmZjwIAB8PDwQHp6OoKCgmBubg5HR0csXbq0Rn/l5eVYuHAhOnfuDJVKBScnJ7z33nsoLy+v42gR0cMw2SCih9qxYwc6d+6MgICAOrX//fff0bNnT5w7dw5z587FZ599hpYtW2LEiBHYunVrjfbTpk3D6dOnsXDhQrzzzjvYvn07IiMjZX0Pt2/fxpAhQ+Dt7Y3PPvsM7u7ueP/99/Hrr79q22g0GgwfPhyffvophg0bhpUrV2LEiBH4/PPPMXbsWFnjIWqOTBo7ACJ6OhUXF+P69esYMWJEjbrCwkJUVVVpn7ds2RJmZmaYPn06nJ2dcezYMahUKgDA1KlT0adPH7z//vsYOXKkTj/PPPMMfvvtNygUCgD3/+h/+eWXKCoqgpWVlSzv4/r16/j+++8xbtw4AMCkSZPg4uKCNWvWIDQ0FACwYcMG7Nu3DwcOHECfPn20r/Xw8MCUKVNw5MgRBAYGyhIPUXPEmQ0iqlVxcTEAoFWrVjXqBgwYgLZt22ofsbGxKCgoQGJiIsaMGYOSkhLk5+cjPz8ft27dQkhICC5cuIBr167p9DN58mRtogEAffv2hVqtRlZWlmzvo1WrVnjjjTe0z5VKJfz9/fHnn39qy7Zs2YK//e1vcHd318adn5+PgQMHAgD2798vWzxEzRFnNoioVhYWFgCAO3fu1Kj75ptvUFJSgtzcXO0f8osXL0IIgQULFmDBggW19pmXlwdHR0ftc2dnZ516a2trAPdPfcilffv2OglN9XEevGT3woULOHfuHNq2bVtrH3l5ebLFQ9QcMdkgolpZWVnB3t4eZ8+erVFXvYbj8uXL2jKNRgMAmD17NkJCQmrts3PnzjrPjY2Na21Xl4vk1Gr1Y9vU9RgajQaenp5Yvnx5rW15pQ3Rk2GyQUQPNXToUHz77bc4evQo/P39H9m2Y8eOAABTU1MEBwfLFoO1tTUKCwt1yioqKnDjxg3ZjtGpUyecPn0agwYNqjELQkRPjms2iOih3nvvPZibm2PixInIzc2tUf/g7EC7du0wYMAAfPPNN7UmAn+9pLWuOnXqhIMHD+qUrV69us4zG3UxZswYXLt2Df/85z9r1N27dw+lpaWyHYuoOeLMBhE9VJcuXbBhwwa8+uqrcHNz0+4gKoRAZmYmNmzYACMjI7Rv3x4AEBsbiz59+sDT0xPh4eHo2LEjcnNzkZycjKtXr+L06dOSY3jrrbcwZcoUvPTSSxg8eDBOnz6NPXv2wMbGRrb3OW7cOGzevBlTpkzB/v370bt3b6jVamRkZGDz5s3Ys2cP/Pz8ZDseUXPDZIOIHunFF1/EmTNn8Nlnn+G3337D2rVroVAo4OLigqFDh2LKlCnw9vYGAHTr1g3Hjx/HokWLEB8fj1u3bqFdu3bo3r07Pvroo3odPzw8HJmZmVizZg12796Nvn37Yu/evRg0aJBs79HIyAjbtm3D559/ju+//x5bt26Fubk5OnbsiOnTp6Nr166yHYuoOeJ25URERKRXXLNBREREesVkg4iIiPSKyQYRERHpFZMNIiIi0ismG0RERKRXTDaIiIhIr5r9PhsajQbXr1+HhYUFtykmIiKSQAiBkpISODg4wMjo4fMXzT7ZuH79Om+yRERE9ASys7O1OwnXptknG9W30c7OzoalpWUjR0NERGQ4iouL4eTkpP1b+jDNPtmoPnViaWnJZIOIiKgeHrcM4YkXiKrVaqSmpuL27dtP2hURERE1QZJnNmbMmAFPT09MmjQJarUa/fv3x5EjR2Bubo4dO3ZgwIABegjT8EQnRT+6fsCj64mIiJoKyTMbP/74o/YOj9u3b0dmZiYyMjIwc+ZMzJ8/X/YAiYiIyLBJTjby8/NhZ2cHANi1axdGjx6Nrl27YuLEiThz5ozsARIREZFhk3waxdbWFunp6bC3t8fu3bvx9ddfAwDu3r0LY2Nj2QOsC1dXV1haWsLIyAjW1tbYv39/o8RBRERENUlONiZMmIAxY8bA3t4eCoUCwcHBAICUlBS4u7vLHmBdHTlyBK1atWq04xMREVHtJCcb0dHR8PDwQHZ2NkaPHg2VSgUAMDY2xty5c2UPkIiIiAxbvS59ffnllzFz5kyd3cLGjx+PF198UXJfBw8exLBhw+Dg4ACFQoFt27bVaBMbGwtXV1e0aNECAQEBOHr0qE69QqFA//790aNHD6xfv15yDERERKQ/9drUKyEhAQkJCcjLy4NGo9GpW7t2raS+SktL4e3tjYkTJ2LUqFE16jdt2oSoqCjExcUhICAAK1asQEhICM6fP4927doBAP773//C0dERN27cQHBwMDw9PeHl5VXr8crLy1FeXq59XlxcLCleIiIikkbyzMaiRYvw/PPPIyEhAfn5+bh9+7bOQ6rQ0FD8/e9/x8iRI2utX758OcLDwzFhwgR069YNcXFxMDc310lqHB0dAQD29vZ44YUXcPLkyYceLyYmBlZWVtoH74tCRESkX5JnNuLi4hAfH49x48bpIx4dFRUVOHHiBObNm6ctMzIyQnBwMJKTkwHcnxnRaDSwsLDAnTt3kJiYiDFjxjy0z3nz5iEqKkr7vHpfdyIiItIPyclGRUUFAgMD9RFLDfn5+VCr1bC1tdUpt7W1RUZGBgAgNzdXOyuiVqsRHh6OHj16PLRPlUqlXdRKRERE+ic52XjrrbewYcMGLFiwQB/xSNaxY0ecPn26scMgIiKih5CcbJSVlWH16tXYt28fvLy8YGpqqlO/fPly2YKzsbGBsbExcnNzdcpzc3O1u5gSERHR001yspGWlgYfHx8AwNmzZ3XqHneLWamUSiV8fX2RkJCAESNGAAA0Gg0SEhIQGRkp67GIiIhIPyQnG3JvBX7nzh1cvHhR+zwzMxOpqalo06YNnJ2dERUVhfHjx8PPzw/+/v5YsWIFSktLMWHCBFnjICIiIv2o1z4b1a5evQoAOpt7SXX8+HEEBQVpn1dfKTJ+/HjEx8dj7NixuHnzJj766CPk5OTAx8cHu3fvrrFolIiIiJ5OkvfZ0Gg0WLx4MaysrODi4gIXFxe0bt0aH3/8cY0NvupiwIABEELUeMTHx2vbREZGIisrC+Xl5UhJSUFAQIDk4xAREVHjkDyzMX/+fKxZswZLlixB7969AdzfwTM6OhplZWX4v//7P9mDJCIiIsMlOdn47rvv8O2332L48OHaMi8vLzg6OmLq1KlMNoiIiEiH5NMoBQUFtd5K3t3dHQUFBbIERURERE2H5GTD29sbq1atqlG+atUqeHt7yxIUERERNR2ST6MsXboUQ4cOxb59+9CrVy8AQHJyMrKzs7Fr1y7ZAyQiIiLDJnlmo3///vjjjz8wcuRIFBYWorCwEKNGjcL58+fRt29ffcRIREREBqxe+2w4ODhwISgRERHVSZ2SjbS0NHh4eMDIyAhpaWmPbOvl5SVLYERERNQ01CnZ8PHxQU5ODtq1awcfHx8oFAoIIWq0UygUUKvVsgdJREREhqtOyUZmZibatm2r/ZmIiIioruqUbLi4uGh/zsrKQmBgIExMdF9aVVWFI0eO6LQlIiIiknw1SlBQUK2bdxUVFencUI2IiIgIqEeyIYSAQqGoUX7r1i20bNlSlqCIiIio6ajzpa+jRo0CcH8RaFhYGFQqlbZOrVYjLS0NgYGB8kfYREUnRT++zYDHtyEiInra1TnZsLKyAnB/ZsPCwgJmZmbaOqVSiZ49eyI8PFz+CImIiMig1TnZWLduHQDA1dUVc+bMgbm5ud6CIiIioqZD8pqNN998E9euXatRfuHCBVy+fFmOmIiIiKgJkZxshIWF4ciRIzXKU1JSEBYWJkdMRERE1IRITjZOnTqF3r171yjv2bMnUlNT5YiJiIiImhDJyYZCoUBJSUmN8qKiIm5VTkRERDVITjb69euHmJgYncRCrVYjJiYGffr0kTU4IiIiMnySbzH/j3/8A/369YObmxv69u0LADh06BCKi4uRmJgoe4BERERk2CTPbHTr1g1paWkYM2YM8vLyUFJSgjfffBMZGRnw8PDQR4xERERkwBSitnvFNyPFxcWwsrJCUVERLC0tZeu3LjuEPvExuMMoERE1orr+DZV8GqXa3bt3ceXKFVRUVOiUe3l51bdLIiIiaoIkJxs3b97EhAkT8Ouvv9ZazytSiIiI6EGS12zMmDEDhYWFSElJgZmZGXbv3o3vvvsOXbp0wS+//KKPGImIiMiASZ7ZSExMxM8//ww/Pz8YGRnBxcUFgwcPhqWlJWJiYjB06FB9xElEREQGSvLMRmlpKdq1awcAsLa2xs2bNwEAnp6eOHnypLzRERERkcGTnGy4ubnh/PnzAABvb2988803uHbtGuLi4mBvby97gERERGTYJJ9GmT59Om7cuAEAWLhwIYYMGYL169dDqVQiPj5e7vjoEepyeS0vjyUiosYmOdl44403tD/7+voiKysLGRkZcHZ2ho2NjazBERERkeGTfBrlr1QqFYyMjGBsbCxHPERERNTE1OvS1zVr1gC4v6dGv3798Nxzz8HJyQlJSUlyx0dEREQGTnKy8eOPP8Lb2xsAsH37dly+fBkZGRmYOXMm5s+fL3uAREREZNgkJxv5+fmws7MDAOzatQujR49G165dMXHiRJw5c0b2AImIiMiwSU42bG1tkZ6eDrVajd27d2Pw4MEA7t8rhes2iIiI6K8kX40yYcIEjBkzBvb29lAoFAgODgYApKSkwN3dXfYAiYiIyLBJTjaio6Ph4eGB7OxsjB49GiqVCgBgbGyMuXPnyh7g42RnZ2PcuHHIy8uDiYkJFixYgNGjRzd4HE+rx+3FwX04iIhI3+p1i/mXX365Rtn48eOfOJj6MDExwYoVK+Dj44OcnBz4+vrihRdeQMuWLRslHiIiItJVr2QjISEBCQkJyMvLg0aj0albu3atLIHVlb29vXabdDs7O9jY2KCgoIDJBhER0VNCcrKxaNEiLF68GH5+ftp1G0/i4MGDWLZsGU6cOIEbN25g69atGDFihE6b2NhYLFu2DDk5OfD29sbKlSvh7+9fo68TJ05ArVbDycnpiWJqTniahYiI9E1yshEXF4f4+HiMGzdOlgBKS0vh7e2NiRMnYtSoUTXqN23ahKioKMTFxSEgIAArVqxASEgIzp8/r737LAAUFBTgzTffxD//+U9Z4iIiIiJ5SE42KioqEBgYKFsAoaGhCA0NfWj98uXLER4ejgkTJgC4n+zs3LkTa9eu1S5ILS8vx4gRIzB37tzHxlZeXo7y8nLt8+LiYhneBRERET2M5GTjrbfewoYNG7BgwQJ9xKOjoqICJ06cwLx587RlRkZGCA4ORnJyMgBACIGwsDAMHDiwTrMtMTExWLRokd5ibmp4Z1kiInpSkpONsrIyrF69Gvv27YOXlxdMTU116pcvXy5bcPn5+VCr1bC1tdUpt7W1RUZGBgDg8OHD2LRpE7y8vLBt2zYAwL/+9S94enrW2ue8efMQFRWlfV5cXMw1HkRERHokOdlIS0uDj48PAODs2bM6dU+6WLQ++vTpU+OKmEdRqVTavUGIiIhI/yQnG/v379dHHLWysbGBsbExcnNzdcpzc3O192ehxscrWoiI6FEk3xulISmVSvj6+iIhIUFbptFokJCQgF69ejViZERERFRX9drU6/jx49i8eTOuXLmCiooKnbqffvpJUl937tzBxYsXtc8zMzORmpqKNm3awNnZGVFRURg/fjz8/Pzg7++PFStWoLS0VHt1ChERET3dJM9sbNy4EYGBgTh37hy2bt2KyspK/P7770hMTISVlZXkAI4fP47u3buje/fuAICoqCh0794dH330EQBg7Nix+PTTT/HRRx/Bx8cHqamp2L17d41Fo0RERPR0kjyz8cknn+Dzzz9HREQELCws8MUXX6BDhw54++23tduGSzFgwAAIIR7ZJjIyEpGRkZL7JiIiosYnOdm4dOkShg4dCuD+morS0lIoFArMnDkTAwcO5B4WVAP36iAiat4kn0axtrZGSUkJAMDR0VF7+WthYSHu3r0rb3RERERk8CTPbPTr1w979+6Fp6cnRo8ejenTpyMxMRF79+7FoEGD9BEjERERGTDJycaqVatQVlYGAJg/fz5MTU1x5MgRvPTSS/jwww9lD5CaB+7VQUTUdElKNqqqqrBjxw6EhIQAuH+fkuqboRERERHVRtKaDRMTE0yZMkU7s0FERET0OJIXiPr7+yM1NVUPoRAREVFTJHnNxtSpUxEVFYXs7Gz4+vqiZcuWOvVeXl6yBUdERESGT3Ky8corrwAA3n33XW2ZQqGAEAIKhQJqtVq+6IiIiMjgSU42MjMz9REH0SPVZWOwx/bBK1qIiBqF5GQjKysLgYGBMDHRfWlVVRWOHDkCFxcX2YIjIiIiwyd5gWhQUBAKCgpqlBcVFSEoKEiWoIiIiKjpkJxsVK/N+Ktbt27VWCxKREREVOfTKKNGjQJwfzFoWFgYVCqVtk6tViMtLQ2BgYHyR0hEREQGrc7JhpWVFYD7MxsWFhYwMzPT1imVSvTs2RPh4eHyR0hEREQGrc7Jxrp16wAArq6umD17Nk+ZkMGR44oWOfCqGCJqbiRfjbJw4UJ9xEFERERNlOQFokRERERSMNkgIiIivWKyQURERHrFZIOIiIj0ql7JRmRkZK27iBIRERH9VZ2vRrl69Srat28PANiwYQPee+89tGnTBp6enti1axecnJz0FiRRc1KXS3Qfd/msHH0QEcmlzsmGu7s7nnnmGfTu3RtlZWXIzs6Gs7MzLl++jMrKSn3GSERERAaszqdRCgsLsWXLFvj6+kKj0eCFF15A165dUV5ejj179iA3N1efcRIREZGBqnOyUVlZCX9/f8yaNQtmZmY4deoU1q1bB2NjY6xduxYdOnSAm5ubPmMlIiIiA1Tn0yitW7eGj48PevfujYqKCty7dw+9e/eGiYkJNm3aBEdHRxw7dkyfsRIREZEBqnOyce3aNSQnJ+PIkSOoqqqCr68vevTogYqKCpw8eRLt27dHnz599BkrUZPwtNyjRQ5yvBcudn36NMQiZf4/k9/TPOZ1Po1iY2ODYcOGISYmBubm5jh27BimTZsGhUKB2bNnw8rKCv3799dnrERERGSA6r2pl5WVFcaMGQNTU1MkJiYiMzMTU6dOlTM2IiIiagIk3/UVANLS0uDo6AgAcHFxgampKezs7DB27FhZgyMiIiLDV69k48ENvM6ePStbMI1BCAEAKC4ulrXf8tJyWfsjetDjPq91+fzJ8ZmX43Pe0O9l6NChAICdO3fW+TXNjRxj/rg+5P7OpcYZ8+o+q/+WPoxCPK5FE3f16lXufkpERPQEsrOztbuM16bZJxsajQbXr1+HhYUFFAqFLH0WFxfDyckJ2dnZsLS0lKXP5ojjKI+GHMf169dj6tSpmD9/PlxcXHTq/va3v8HLy0uvx6+LJ5nZ4GdSHhxHeTwN4yiEQElJCRwcHGBk9PBloPU6jdKUGBkZPTIbexKWlpb8RZIBx1EeDTGOZmZmAIARI0bAz8/vse3LysqgVCof+SUlN2NjYwB4orHgZ1IeHEd5NPY4WllZPbYNbzFPRA0iKSkJCoUCGzduxIcffghHR0eYm5ujuLgYBQUFmD17Njw9PdGqVStYWloiNDQUp0+f1ukjPj4eCoUCly9frrXvpKQknfLVq1ejU6dOMDMzg7+/Pw4dOqTnd0lEtWn2MxtEJL+ioiLk5+fXWvfxxx9DqVRi9uzZKC8vh1KpRHp6OrZt24bRo0ejQ4cOyM3NxTfffIP+/fsjPT0dDg4OkmNYs2YN3n77bQQGBmLGjBn4888/MXz4cLRp04brtIgaGJMNPVCpVFi4cCFUKlVjh2LQOI7yaIxxDA4OrlG2f/9+APdPnRw/flx7ygUAPD098ccff+icThk3bhzc3d2xZs0aLFiwQNLxKysr8cEHH8DHxwf79++HUqkEAHTr1g2TJ0+ud7LBz6Q8OI7yMKRxZLKhByqVCtHR0Y0dhsHjOMqjMcYxNjYWXbt2rbVu/PjxOokGAJ0vS7VajcLCQrRq1Qpubm44efKk5OMfP34ceXl5WLx4sTbRAICwsDDMmTNHcn8PxsnP5JPjOMrDkMaRyQYRyc7f37/GAtHq9RQdOnSo0V6j0eCLL77AV199hczMTKjVam3dM888I/n4WVlZAIAuXbrolJuamqJjx46S+yOiJ8MFokTUoP46qwEAn3zyCaKiotCvXz/8+9//xp49e7B37148++yz0Gg02nYPuzz9weSEiJ4+nNkgokb3448/IigoCGvWrNEpLywshI2Njfa5tbW1tvxB1TMZ1ar3+Lhw4QIGDhyoLa+srERmZia8vb3lDJ+IHoMzG0TU6IyNjWtsd7xlyxZcu3ZNp6xTp04AgIMHD2rL1Go1Vq9erdPOz88Pbdu2RVxcHCoqKrTl8fHxNRIVItI/zmwQUaP7f//v/2Hx4sWYMGECAgMDcebMGaxfv77G+opnn30WPXv2xLx581BQUIA2bdpg48aNqKqq0mlnamqKv//973j77bcxcOBAjB07FpmZmVi3bh3XbBA1As5sEFGj++CDDzBr1izs2bMH06dPx8mTJ7Fz585aL1Fdv349AgMDsWTJEnzyyScICgrCkiVLarSbPHkyvvrqK1y/fh1z5szBoUOH8Msvv3CPDaJG0OzvjUJERET6xZkNIiIi0ismG0RERKRXTDaIiIhIr5hsEBERkV4x2SAiIiK9YrJBREREetXsN/XSaDS4fv06LCwsHnrfBSIiIqpJCIGSkhI4ODjAyOjh8xfNPtm4fv06N/khIiJ6AtnZ2Wjfvv1D65t9smFhYQHg/kBZWlo2cjRERESGo7i4GE5OTtq/pQ/T7JON6lMnlpaWTDaIiIjq4XHLEJ54gaharUZqaipu3779pF0RERFREyQ52ZgxYwbWrFkD4H6i0b9/fzz33HNwcnJCUlKS3PHpTWxsLLp164YePXo0dihERERNmuRk48cff4S3tzcAYPv27cjMzERGRgZmzpyJ+fPnyx6gvkRERCA9PR3Hjh1r7FCIiIiaNMnJRn5+Puzs7AAAu3btwujRo9G1a1dMnDgRZ86ckT1AIiIiMmySkw1bW1ukp6dDrVZj9+7dGDx4MADg7t27MDY2lj1AIiIiMmySr0aZMGECxowZA3t7eygUCgQHBwMAUlJS4O7uLnuAREREZNgkJxvR0dHw8PBAdnY2Ro8eDZVKBQAwNjbG3LlzZQ+QiIiIDJtCCCEaO4jGVFxcDCsrKxQVFXGfDSIiIgnq+je0Xpt6JSQkICEhAXl5edBoNDp1a9eurU+XDS42NhaxsbFQq9WNHQoREVGTJnlmY9GiRVi8eDH8/Py06zYetHXrVlkD1DfObBAREdWP3mY24uLiEB8fj3Hjxj1RgERERNQ8SL70taKiAoGBgfqIhYiIiJogycnGW2+9hQ0bNugjFiIiImqCJJ9GKSsrw+rVq7Fv3z54eXnB1NRUp3758uWyBUdERESGT3KykZaWBh8fHwDA2bNndeoed4tZfcjOzsa4ceOQl5cHExMTLFiwAKNHj27wOIiIiKh2Br/Pxo0bN5CbmwsfHx/k5OTA19cXf/zxB1q2bFmn1/NqFCIiovrR6z4b1a5evQoAaN++/ZN080Ts7e1hb28PALCzs4ONjQ0KCgrqnGwQERGRfkleIKrRaLB48WJYWVnBxcUFLi4uaN26NT7++OMaG3zVxcGDBzFs2DA4ODhAoVBg27ZtNdrExsbC1dUVLVq0QEBAAI4ePVprXydOnIBarYaTk5PkOIiIiEg/JCcb8+fPx6pVq7BkyRKcOnUKp06dwieffIKVK1diwYIFkgMoLS2Ft7c3YmNja63ftGkToqKisHDhQpw8eRLe3t4ICQlBXl6eTruCggK8+eabWL16teQYiIiISH8kr9lwcHBAXFwchg8frlP+888/Y+rUqbh27Vr9g1EosHXrVowYMUJbFhAQgB49emDVqlUA7s+sODk5Ydq0adobv5WXl2Pw4MEIDw9/7GZj5eXlKC8v1z4vLi6Gk5MT12wQERFJVNc1G5JnNgoKCmq9lby7uzsKCgqkdvdIFRUVOHHihPY29gBgZGSE4OBgJCcnAwCEEAgLC8PAgQPrtKtpTEwMrKystA+eciEiItIvycmGt7e3dpbhQatWrYK3t7csQVXLz8+HWq2Gra2tTrmtrS1ycnIAAIcPH8amTZuwbds2+Pj4wMfHB2fOnHlon/PmzUNRURE+/fRTuLm5oXPnzrLGTERERLokX42ydOlSDB06FPv27UOvXr0AAMnJycjOzsauXbtkD/Bx+vTpI2lhqkqlgkqlwqxZszBr1iztFBARERHph+SZjf79++OPP/7AyJEjUVhYiMLCQowaNQrnz59H3759ZQ3OxsYGxsbGyM3N1SnPzc2FnZ3dE/UdGxuLbt26oUePHk/UDxERET3aU7Wp18MWiPr7+2PlypUA7i8QdXZ2RmRkpHaB6JPgpl5ERET1I+umXmlpafDw8ICRkRHS0tIe2dbLy0tSoHfu3MHFixe1zzMzM5Gamoo2bdrA2dkZUVFRGD9+PPz8/ODv748VK1agtLQUEyZMkHQcIiIiahx1mtkwMjJCTk4O2rVrByMjIygUCtT2MoVCAbVaLSmApKQkBAUF1SgfP3484uPjAdxffLps2TLk5OTAx8cHX375JQICAiQd569iY2MRGxsLtVqNP/74gzMbREREEtV1ZqNOyUZWVhacnZ2hUCiQlZX1yLYuLi7So21EPI1CRERUP7Lus+Hi4qK9o2tWVhYcHR21W5VXPxwdHR+biDxNGmSBaHS0/vomIiIyEJKvRgkKCqp1866ioqJaT4c8rSIiIpCeno5jx441dihERERNmuRkQwihneV40K1bt3inVSIiIqqhzpt6jRo1CsD9RaBhYWFQqVTaOrVajbS0NAQGBsofoZ48uECUiIiI9KfOyUb1LptCCFhYWMDMzExbp1Qq0bNnT4SHh8sfoZ5EREQgIiKCO4gSERHpWZ2TjXXr1gEAXF1dMWfOHJibm+stKCIiImo6JK/ZePPNN2u9jfyFCxdw+fJlOWIiIiKiJkRyshEWFoYjR47UKE9JSUFYWJgcMTUI3huFiIioYUhONk6dOoXevXvXKO/ZsydSU1PliKlB8NJXIiKihiE52VAoFCgpKalRXlRUxCs7iIiIqAbJyUa/fv0QExOjk1io1WrExMSgT58+sgZHREREhq/OV6NU+8c//oF+/frBzc0Nffv2BQAcOnQIxcXFSExMlD1AIiIiMmySZza6deuGtLQ0jBkzBnl5eSgpKcGbb76JjIwMeHh46CNGvdD7AlHeF4WIiAhAHe/62pTp7a6v1ckGkw4iImqi6vo3VPJplGp3797FlStXUFFRoVPu5eVV3y6JiIioCZKcbNy8eRMTJkzAr7/+Wms9r0ghIiKiB0leszFjxgwUFhYiJSUFZmZm2L17N7777jt06dIFv/zyiz5iJCIiIgMmeWYjMTERP//8M/z8/GBkZAQXFxcMHjwYlpaWiImJwdChQ/URJxERERkoyTMbpaWlaNeuHQDA2toaN2/eBAB4enri5MmT8kZHREREBk9ysuHm5obz588DALy9vfHNN9/g2rVriIuLg729vewB6gvvjUJERNQwJJ9GmT59Om7cuAEAWLhwIYYMGYL169dDqVQiPj5e7vj0JiIiAhEREdrLdoiIiEg/JCcbb7zxhvZnX19fZGVlISMjA87OzrCxsZE1OCIiIjJ8kk+j/JVKpYKRkRGMjY3liIeIiIiamHpd+rpmzRoA9/fU6NevH5577jk4OTkhKSlJ7viIiIjIwElONn788Ud4e3sDALZv347Lly8jIyMDM2fOxPz582UPkIiIiAyb5GQjPz8fdnZ2AIBdu3Zh9OjR6Nq1KyZOnIgzZ87IHmBdjBw5EtbW1nj55Zcb5fhERET0cJKTDVtbW6Snp0OtVmP37t0YPHgwgPv3SmmsdRvTp0/H999/3yjHJiIiokeTnGxMmDABY8aMgYeHBxQKBYKDgwEAKSkpcHd3lz3AuhgwYAAsLCwa5dhERET0aJKTjejoaHz77beYPHkyDh8+DJVKBQAwNjbG3LlzJQdw8OBBDBs2DA4ODlAoFNi2bVuNNrGxsXB1dUWLFi0QEBCAo0ePSj4OERERNY563WK+trUR48ePr1cApaWl8Pb2xsSJEzFq1Kga9Zs2bUJUVBTi4uIQEBCAFStWICQkBOfPn9dumy5FeXk5ysvLtc+Li4vrFbck0dH3H0RERM1QvZKNhIQEJCQkIC8vDxqNRqdu7dq1kvoKDQ1FaGjoQ+uXL1+O8PBwTJgwAQAQFxeHnTt3Yu3atfWaSYmJicGiRYskv46IiIjqR/JplEWLFuH5559HQkIC8vPzcfv2bZ2HnCoqKnDixAntuhAAMDIyQnBwMJKTk+vV57x581BUVKR9ZGdnyxUuERER1ULyzEZcXBzi4+Mxbtw4fcSjIz8/H2q1Gra2tjrltra2yMjI0D4PDg7G6dOnUVpaivbt22PLli3o1atXrX2qVCqoVCrExsYiNjYWarVar++Bp0+IiKi5k5xsVFRUIDAwUB+x1Nu+ffskv4Y3YiMiImoYkk+jvPXWW9iwYYM+YqnBxsYGxsbGyM3N1SnPzc3VbixWXw1+i3kuEiUiomZK8sxGWVkZVq9ejX379sHLywumpqY69cuXL5ctOKVSCV9fXyQkJGDEiBEAAI1Gg4SEBERGRj5R35zZICIiahiSk420tDT4+PgAAM6ePatTp1AoJAdw584dXLx4Ufs8MzMTqampaNOmDZydnREVFYXx48fDz88P/v7+WLFiBUpLS7VXp9RXg63ZICIiauYUQgjRmAEkJSUhKCioRvn48eMRHx8PAFi1ahWWLVuGnJwc+Pj44Msvv0RAQIAsx6+e2SgqKoKlpaUsfQJ4+CkTnkohIqImoq5/Q+u1z4acBgwYgMflO5GRkU982oSIiIgaR72SjePHj2Pz5s24cuUKKioqdOp++uknWQLTN55GISIiahiSr0bZuHEjAgMDce7cOWzduhWVlZX4/fffkZiYaFALLSMiIpCeno5jx441dihERERNmuRk45NPPsHnn3+O7du3Q6lU4osvvkBGRgbGjBkDZ2dnfcRIREREBkxysnHp0iUMHToUwP1LU0tLS6FQKDBz5kysXr1a9gD1pcH32fgrLhQlIqJmQnKyYW1tjZKSEgCAo6Oj9vLXwsJC3L17V97o9IinUYiIiBqG5AWi/fr1w969e+Hp6YnRo0dj+vTpSExMxN69ezFo0CB9xEhEREQGTHKysWrVKpSVlQEA5s+fD1NTUxw5cgQvvfQSPvzwQ9kDJCIiIsMmKdmoqqrCjh07EBISAuD+7d7nzp2rl8D0jZe+EhERNQxJazZMTEwwZcoU7cyGIeOaDSIiooYheYGov78/UlNT9RAKERERNUWS12xMnToVUVFRyM7Ohq+vL1q2bKlT7+XlJVtwREREZPgkJxuvvPIKAODdd9/VlikUCgghoFAouAaCiIiIdEhONjIzM/URR4N7qhaIVm/wxY2+iIioCZKcbGRlZSEwMBAmJrovraqqwpEjR+Di4iJbcPoUERGBiIgI7e1xiYiISD8kLxANCgpCQUFBjfKioiIEBQXJEhQRERE1HZKTjeq1GX9169atGotFiYiIiOp8GmXUqFEA7i8GDQsLg0ql0tap1WqkpaUhMDBQ/giJiIjIoNU52ahe1yCEgIWFBczMzLR1SqUSPXv2RHh4uPwREhERkUGrc7Kxbt06AICrqytmz55t8KdMGvVqlIddfRId/egrUnjVChERGSDJazYWLlxo8IkGwO3KiYiIGorkZIOIiIhICiYbREREpFdMNoiIiEivmGwQERGRXtUr2YiMjKx1F9HGsmPHDri5uaFLly749ttvGzscIiIiekCdk42rV69qf96wYQPu3LkDAPD09ER2drb8kdVRVVUVoqKikJiYiFOnTmHZsmW4detWo8VDREREuuqcbLi7u8PFxQWvvfYaysrKtAnG5cuXUVlZqbcAH+fo0aN49tln4ejoiFatWiE0NBS//fZbo8VDREREuuqcbBQWFmLLli3w9fWFRqPBCy+8gK5du6K8vBx79uxBbm5uvQI4ePAghg0bBgcHBygUCmzbtq1Gm9jYWLi6uqJFixYICAjA0aNHtXXXr1+Ho6Oj9rmjoyOuXbtWr1iIiIhIfnVONiorK+Hv749Zs2bBzMwMp06dwrp162BsbIy1a9eiQ4cOcHNzkxxAaWkpvL29ERsbW2v9pk2bEBUVhYULF+LkyZPw9vZGSEgI8vLyJB+LiIiIGl6dtytv3bo1fHx80Lt3b1RUVODevXvo3bs3TExMsGnTJjg6OtZrN87Q0FCEhoY+tH758uUIDw/HhAkTAABxcXHYuXMn1q5di7lz58LBwUFnJuPatWvw9/d/aH/l5eUoLy/XPi8uLpYcMxEREdVdnWc2rl27hg8//BAqlQpVVVXw9fVF3759UVFRgZMnT0KhUKBPnz6yBldRUYETJ04gODj4/w/YyAjBwcFITk4GAPj7++Ps2bO4du0a7ty5g19//RUhISEP7TMmJgZWVlbah5OTk6wxP9bj7mvyYP2j7oXyJGVEREQNqM7Jho2NDYYNG4aYmBiYm5vj2LFjmDZtGhQKBWbPng0rKyv0799f1uDy8/OhVqtha2urU25ra4ucnBwAgImJCT777DMEBQXBx8cHs2bNwjPPPPPQPufNm4eioiLtozGvpCEiImoO6nwa5a+srKwwZswYTJo0CYmJiTA3N8eBAwfkjK3Ohg8fjuHDh9eprUqlgkqlaty7vhIRETUj9drUKy0tDe3btwcAuLi4wNTUFHZ2dhg7dqyswdnY2MDY2LjGlS65ubmws7N7or5511ciIqKGUa+ZjQfXOZw9e1a2YP5KqVTC19cXCQkJGDFiBABAo9EgISEBkZGRT9R39cxGVVUVAD0sFH1gEapk1bGUl9//+cH/VtdXl/31mHUpIyIikkH1304hxKMbikZWUlIiTp06JU6dOiUAiOXLl4tTp06JrKwsIYQQGzduFCqVSsTHx4v09HQxefJk0bp1a5GTkyPL8bOzswUAPvjggw8++OCjno/s7OxH/q1VCPG4dES/kpKSEBQUVKN8/PjxiI+PBwCsWrUKy5YtQ05ODnx8fPDll18iICBAluNrNBpcv34dFhYWUCgUsvRZXFwMJycnZGdnw9LSUpY+myOOozw4jvLhWMqD4yiPp2EchRAoKSmBg4MDjIwevjKj0ZONpqi4uBhWVlYoKiriL9IT4DjKg+MoH46lPDiO8jCkceQt5omIiEivmGwQERGRXjHZ0AOVSoWFCxdCpVI1digGjeMoD46jfDiW8uA4ysOQxpFrNoiIiEivOLNBREREesVkg4iIiPSKyQYRERHpFZMNIiIi0ismGzKLjY2Fq6srWrRogYCAABw9erSxQ2pU0dHRUCgUOg93d3dtfVlZGSIiIvDMM8+gVatWeOmll2rceO/KlSsYOnQozM3N0a5dO8yZM0d7T5tqSUlJeO6556BSqdC5c2ft7rOG6uDBgxg2bBgcHBygUCiwbds2nXohBD766CPY29vDzMwMwcHBuHDhgk6bgoICvP7667C0tETr1q0xadIk3LlzR6dNWloa+vbtixYtWsDJyQlLly6tEcuWLVvg7u6OFi1awNPTE7t27ZL9/erL48YxLCysxudzyJAhOm04jkBMTAx69OgBCwsLtGvXDiNGjMD58+d12jTk77Khfs/WZRwHDBhQ4zM5ZcoUnTYGOY6y3GCEhBD37+OiVCrF2rVrxe+//y7Cw8NF69atRW5ubmOH1mgWLlwonn32WXHjxg3t4+bNm9r6KVOmCCcnJ5GQkCCOHz8uevbsKQIDA7X1VVVVwsPDQwQHB4tTp06JXbt2CRsbGzFv3jxtmz///FOYm5uLqKgokZ6eLlauXCmMjY3F7t27G/S9ymnXrl1i/vz54qeffhIAxNatW3XqlyxZIqysrMS2bdvE6dOnxfDhw0WHDh3EvXv3tG2GDBkivL29xf/+9z9x6NAh0blzZ/Hqq69q64uKioStra14/fXXxdmzZ8UPP/wgzMzMxDfffKNtc/jwYWFsbCyWLl0q0tPTxYcffihMTU3FmTNn9D4GcnjcOI4fP14MGTJE5/NZUFCg04bjKERISIhYt26dOHv2rEhNTRUvvPCCcHZ2Fnfu3NG2aajfZUP+nq3LOPbv31+Eh4frfCaLioq09YY6jkw2ZOTv7y8iIiK0z9VqtXBwcBAxMTGNGFXjWrhwofD29q61rrCwUJiamootW7Zoy86dOycAiOTkZCHE/T8WRkZGOjfe+/rrr4WlpaUoLy8XQgjx3nvviWeffVan77Fjx4qQkBCZ303j+OsfSY1GI+zs7MSyZcu0ZYWFhUKlUokffvhBCCFEenq6ACCOHTumbfPrr78KhUIhrl27JoQQ4quvvhLW1tbacRRCiPfff1+4ublpn48ZM0YMHTpUJ56AgADx9ttvy/oeG8LDko0XX3zxoa/hONYuLy9PABAHDhwQQjTs73JT+p796zgKcT/ZmD59+kNfY6jjyNMoMqmoqMCJEycQHBysLTMyMkJwcDCSk5MbMbLGd+HCBTg4OKBjx454/fXXceXKFQDAiRMnUFlZqTNm7u7ucHZ21o5ZcnIyPD09YWtrq20TEhKC4uJi/P7779o2D/ZR3aapjntmZiZycnJ03rOVlRUCAgJ0xq1169bw8/PTtgkODoaRkRFSUlK0bfr16welUqltExISgvPnz+P27dvaNk19bJOSktCuXTu4ubnhnXfewa1bt7R1HMfaFRUVAQDatGkDoOF+l5va9+xfx7Ha+vXrYWNjAw8PD8ybNw93797V1hnqOJropddmKD8/H2q1WucDAAC2trbIyMhopKgaX0BAAOLj4+Hm5oYbN25g0aJF6Nu3L86ePYucnBwolUq0bt1a5zW2trbIyckBAOTk5NQ6ptV1j2pTXFyMe/fuwczMTE/vrnFUv+/a3vODY9KuXTudehMTE7Rp00anTYcOHWr0UV1nbW390LGt7sPQDRkyBKNGjUKHDh1w6dIlfPDBBwgNDUVycjKMjY05jrXQaDSYMWMGevfuDQ8PDwBosN/l27dvN5nv2drGEQBee+01uLi4wMHBAWlpaXj//fdx/vx5/PTTTwAMdxyZbJBehYaGan/28vJCQEAAXFxcsHnz5iaXBJDheeWVV7Q/e3p6wsvLC506dUJSUhIGDRrUiJE9vSIiInD27Fn897//bexQDNrDxnHy5Mnanz09PWFvb49Bgwbh0qVL6NSpU0OHKRueRpGJjY0NjI2Na6y+zs3NhZ2dXSNF9fRp3bo1unbtiosXL8LOzg4VFRUoLCzUafPgmNnZ2dU6ptV1j2pjaWnZJBOa6vf9qM+anZ0d8vLydOqrqqpQUFAgy9g21c90x44dYWNjg4sXLwLgOP5VZGQkduzYgf3796N9+/ba8ob6XW4q37MPG8faBAQEAIDOZ9IQx5HJhkyUSiV8fX2RkJCgLdNoNEhISECvXr0aMbKny507d3Dp0iXY29vD19cXpqamOmN2/vx5XLlyRTtmvXr1wpkzZ3S+8Pfu3QtLS0t069ZN2+bBPqrbNNVx79ChA+zs7HTec3FxMVJSUnTGrbCwECdOnNC2SUxMhEaj0X559erVCwcPHkRlZaW2zd69e+Hm5gZra2ttm+Y0tlevXsWtW7dgb28PgONYTQiByMhIbN26FYmJiTVOGzXU77Khf88+bhxrk5qaCgA6n0mDHEe9LDttpjZu3ChUKpWIj48X6enpYvLkyaJ169Y6q4abm1mzZomkpCSRmZkpDh8+LIKDg4WNjY3Iy8sTQty/XM7Z2VkkJiaK48ePi169eolevXppX199mdfzzz8vUlNTxe7du0Xbtm1rvcxrzpw54ty5cyI2NtbgL30tKSkRp06dEqdOnRIAxPLly8WpU6dEVlaWEOL+pa+tW7cWP//8s0hLSxMvvvhirZe+du/eXaSkpIj//ve/okuXLjqXbBYWFgpbW1sxbtw4cfbsWbFx40Zhbm5e45JNExMT8emnn4pz586JhQsXGtQlm48ax5KSEjF79myRnJwsMjMzxb59+8Rzzz0nunTpIsrKyrR9cByFeOedd4SVlZVISkrSuSTz7t272jYN9btsyN+zjxvHixcvisWLF4vjx4+LzMxM8fPPP4uOHTuKfv36afsw1HFksiGzlStXCmdnZ6FUKoW/v7/43//+19ghNaqxY8cKe3t7oVQqhaOjoxg7dqy4ePGitv7evXti6tSpwtraWpibm4uRI0eKGzdu6PRx+fJlERoaKszMzISNjY2YNWuWqKys1Gmzf/9+4ePjI5RKpejYsaNYt25dQ7w9vdm/f78AUOMxfvx4IcT9y18XLFggbG1thUqlEoMGDRLnz5/X6ePWrVvi1VdfFa1atRKWlpZiwoQJoqSkRKfN6dOnRZ8+fYRKpRKOjo5iyZIlNWLZvHmz6Nq1q1AqleLZZ58VO3fu1Nv7ltujxvHu3bvi+eefF23bthWmpqbCxcVFhIeH1/iy5TiKWscQgM7vWUP+Lhvq9+zjxvHKlSuiX79+ok2bNkKlUonOnTuLOXPm6OyzIYRhjiNvMU9ERER6xTUbREREpFdMNoiIiEivmGwQERGRXjHZICIiIr1iskFERER6xWSDiIiI9IrJBhEREekVkw0iIiLSKyYbRNQsnT9/HnZ2digpKalRFxYWVutr4uLiMGzYMD1HRtT0MNkgIh3JyckwNjbG0KFDGzsUyQYMGIAZM2bUqe28efMwbdo0WFhY1Ln/iRMn4uTJkzh06FA9IyRqnphsEJGONWvWYNq0aTh48CCuX7/e2OHoxZUrV7Bjx44aMxhfffUVPDw88MMPP8De3h79+/fHgQMHtPVKpRKvvfYavvzyywaOmMiwMdkgIq07d+5g06ZNeOeddzB06FDEx8fr1CclJUGhUGDPnj3o3r07zMzMMHDgQOTl5eHXX3/F3/72N1haWuK1117D3bt3ta8rLy/Hu+++i3bt2qFFixbo06cPjh07pq2Pj49H69atdY61bds2KBQK7fPo6Gj4+PjgX//6F1xdXWFlZYVXXnlFexokLCwMBw4cwBdffAGFQgGFQoHLly/X+j43b94Mb29vODo6assSExMxbdo07Xvfvn07XnvtNZSVlem8dtiwYfjll19w7949KUNL1Kwx2SAirc2bN8Pd3R1ubm544403sHbtWtR2r8bo6GisWrUKR44cQXZ2NsaMGYMVK1Zgw4YN2LlzJ3777TesXLlS2/69997Df/7zH3z33Xc4efIkOnfujJCQEBQUFEiK79KlS9i2bRt27NiBHTt24MCBA1iyZAkA4IsvvkCvXr0QHh6OGzdu4MaNG3Bycqq1n0OHDsHPz0+n7OTJk+jYsSMiIiJgaWkJPz8/vP322wgJCdFp5+fnh6qqKqSkpEiKnag5Y7JBRFpr1qzBG2+8AQAYMmQIioqKdE4jVPv73/+O3r17o3v37pg0aRIOHDiAr7/+Gt27d0ffvn3x8ssvY//+/QCA0tJSfP3111i2bBlCQ0PRrVs3/POf/4SZmRnWrFkjKT6NRoP4+Hh4eHigb9++GDduHBISEgAAVlZWUCqVMDc3h52dHezs7GBsbFxrP1lZWXBwcNAp69WrF/7880/84x//wK1btx4ag7m5OaysrJCVlSUpdqLmjMkGEQG4f3XG0aNH8eqrrwIATExMMHbs2FoTAi8vL+3Ptra2MDc3R8eOHXXK8vLyANyfjaisrETv3r219aampvD398e5c+ckxejq6qqzoNPe3l57HCnu3buHFi1a6JT17t0bP/30E3bu3Ik9e/bA3t4eU6ZMQW5ubo3Xm5mZ6ZwmIqJHY7JBRADuz2pUVVXBwcEBJiYmMDExwddff43//Oc/KCoq0mlramqq/VmhUOg8ry7TaDR1PraRkVGN0zWVlZU12j3pcarZ2Njg9u3bNcpffPFFHDx4EK+99hrWr1+PEydOYOTIkTXaFRQUoG3btpKPS9RcMdkgIlRVVeH777/HZ599htTUVO3j9OnTcHBwwA8//FDvvjt16gSlUonDhw9ryyorK3Hs2DF069YNANC2bVuUlJSgtLRU2yY1NVXysZRKJdRq9WPbde/eHenp6Y9sM3DgQHz00Uf43//+p5P4XLp0CWVlZejevbvk+IiaK5PGDoCIGt+OHTtw+/ZtTJo0CVZWVjp1L730EtasWYMpU6bUq++WLVvinXfewZw5c9CmTRs4Oztj6dKluHv3LiZNmgQACAgIgLm5OT744AO8++67SElJqXElTF24uroiJSUFly9fRqtWrdCmTRsYGdX8N1VISAjeeustqNVq7bqOf/3rX6ioqMDzzz8PIQSuXLmC1atXw8vLS2dG5dChQ+jYsSM6depUr/Egao44s0FEWLNmDYKDg2skGsD9ZOP48eNIS0urd/9LlizBSy+9hHHjxuG5557DxYsXsWfPHlhbWwMA2rRpg3//+9/YtWsXPD098cMPPyA6OlrycWbPng1jY2N069YNbdu2xZUrV2ptFxoaChMTE+zbt09b1rlzZ/z888/o0aMH/v3vf8PLywuVlZXYtGmTzmt/+OEHhIeHS46NqDlTiNquayMiauJiY2Pxyy+/YM+ePTXqwsLCap1Z+f333zFw4ED88ccftSZmRFQ7nkYhombp7bffRmFhIUpKSuq8ZfmNGzfw/fffM9EgkogzG0RERKRXXLNBREREesVkg4iIiPSKyQYRERHpFZMNIiIi0ismG0RERKRXTDaIiIhIr5hsEBERkV4x2SAiIiK9YrJBREREevX/Ac78qQxs5Y2SAAAAAElFTkSuQmCC\n",
352
- "text/plain": [
353
- "<Figure size 600x300 with 2 Axes>"
354
- ]
355
- },
356
- "metadata": {},
357
- "output_type": "display_data"
358
- }
359
- ],
360
  "source": [
361
  "#let us check another feature Amount\n",
362
  "fig, (ax3,ax4) = plt.subplots(2,1, figsize = (6,3), sharex = True)\n",
@@ -386,7 +365,7 @@
386
  },
387
  {
388
  "cell_type": "code",
389
- "execution_count": 4,
390
  "metadata": {
391
  "_cell_guid": "532903ce-1f12-4301-804c-c0e351e59079",
392
  "_uuid": "f726254bf9cdc512c96c3995df10b74ea18f94e5",
 
322
  },
323
  {
324
  "cell_type": "code",
325
+ "execution_count": null,
326
  "metadata": {
327
  "_cell_guid": "500a7db4-22b9-43e1-a2df-0d84927700f6",
328
  "_uuid": "6476fe5078d5e3335cc5b10b754d164c7872c0f9",
 
335
  },
336
  "scrolled": true
337
  },
338
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
339
  "source": [
340
  "#let us check another feature Amount\n",
341
  "fig, (ax3,ax4) = plt.subplots(2,1, figsize = (6,3), sharex = True)\n",
 
365
  },
366
  {
367
  "cell_type": "code",
368
+ "execution_count": 3,
369
  "metadata": {
370
  "_cell_guid": "532903ce-1f12-4301-804c-c0e351e59079",
371
  "_uuid": "f726254bf9cdc512c96c3995df10b74ea18f94e5",
benchmark/NBspecific_8/NBspecific_8_reproduced.ipynb CHANGED
@@ -322,7 +322,7 @@
322
  },
323
  {
324
  "cell_type": "code",
325
- "execution_count": 3,
326
  "metadata": {
327
  "_cell_guid": "500a7db4-22b9-43e1-a2df-0d84927700f6",
328
  "_uuid": "6476fe5078d5e3335cc5b10b754d164c7872c0f9",
@@ -335,28 +335,7 @@
335
  },
336
  "scrolled": true
337
  },
338
- "outputs": [
339
- {
340
- "data": {
341
- "text/plain": [
342
- "Text(0, 0.5, '# transactions')"
343
- ]
344
- },
345
- "execution_count": 3,
346
- "metadata": {},
347
- "output_type": "execute_result"
348
- },
349
- {
350
- "data": {
351
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhsAAAE8CAYAAABpZnOuAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/JElEQVR4nO3deVyU5f4//tewzAgKiKFssrjCMTYDQXFFMSS/mlpqm4kaZoKpqKWZiXY+4dEySynypFLnaC6dtFzSFEQ9ysEV0RBTQ8QFEJFFlG3m+v3hg/k5gcqN94ADr+fjMY+Y67rmut9zNQxvr/u6r1shhBAgIiIi0hOjxg6AiIiImjYmG0RERKRXTDaIiIhIr5hsEBERkV4x2SAiIiK9YrJBREREesVkg4iIiPSKyQYRERHpFZMNIiIi0ismG0TUJCQlJUGhUCApKamxQyGiv2CyQUSPlZmZicjISHTt2hXm5uYwNzdHt27dEBERgbS0tMYOj4iecgreG4WIHmXHjh0YO3YsTExM8Prrr8Pb2xtGRkbIyMjATz/9hKysLGRmZsLFxaVR49RoNKioqIBSqYSREf8dRfQ0YbJBRA916dIleHt7w9nZGQkJCbC3t9epr6qqwldffYWRI0fCycmpkaIkoqcd038ieqilS5eitLQU69atq5FoAICJiQneffddnUQjIyMDL7/8Mtq0aYMWLVrAz88Pv/zyi87r4uPjoVAocPjwYURFRaFt27Zo2bIlRo4ciZs3b+q0VSgUiI6OrnFsV1dXhIWFaZ/XtmZjwIAB8PDwQHp6OoKCgmBubg5HR0csXbq0Rn/l5eVYuHAhOnfuDJVKBScnJ7z33nsoLy+v42gR0cMw2SCih9qxYwc6d+6MgICAOrX//fff0bNnT5w7dw5z587FZ599hpYtW2LEiBHYunVrjfbTpk3D6dOnsXDhQrzzzjvYvn07IiMjZX0Pt2/fxpAhQ+Dt7Y3PPvsM7u7ueP/99/Hrr79q22g0GgwfPhyffvophg0bhpUrV2LEiBH4/PPPMXbsWFnjIWqOTBo7ACJ6OhUXF+P69esYMWJEjbrCwkJUVVVpn7ds2RJmZmaYPn06nJ2dcezYMahUKgDA1KlT0adPH7z//vsYOXKkTj/PPPMMfvvtNygUCgD3/+h/+eWXKCoqgpWVlSzv4/r16/j+++8xbtw4AMCkSZPg4uKCNWvWIDQ0FACwYcMG7Nu3DwcOHECfPn20r/Xw8MCUKVNw5MgRBAYGyhIPUXPEmQ0iqlVxcTEAoFWrVjXqBgwYgLZt22ofsbGxKCgoQGJiIsaMGYOSkhLk5+cjPz8ft27dQkhICC5cuIBr167p9DN58mRtogEAffv2hVqtRlZWlmzvo1WrVnjjjTe0z5VKJfz9/fHnn39qy7Zs2YK//e1vcHd318adn5+PgQMHAgD2798vWzxEzRFnNoioVhYWFgCAO3fu1Kj75ptvUFJSgtzcXO0f8osXL0IIgQULFmDBggW19pmXlwdHR0ftc2dnZ516a2trAPdPfcilffv2OglN9XEevGT3woULOHfuHNq2bVtrH3l5ebLFQ9QcMdkgolpZWVnB3t4eZ8+erVFXvYbj8uXL2jKNRgMAmD17NkJCQmrts3PnzjrPjY2Na21Xl4vk1Gr1Y9vU9RgajQaenp5Yvnx5rW15pQ3Rk2GyQUQPNXToUHz77bc4evQo/P39H9m2Y8eOAABTU1MEBwfLFoO1tTUKCwt1yioqKnDjxg3ZjtGpUyecPn0agwYNqjELQkRPjms2iOih3nvvPZibm2PixInIzc2tUf/g7EC7du0wYMAAfPPNN7UmAn+9pLWuOnXqhIMHD+qUrV69us4zG3UxZswYXLt2Df/85z9r1N27dw+lpaWyHYuoOeLMBhE9VJcuXbBhwwa8+uqrcHNz0+4gKoRAZmYmNmzYACMjI7Rv3x4AEBsbiz59+sDT0xPh4eHo2LEjcnNzkZycjKtXr+L06dOSY3jrrbcwZcoUvPTSSxg8eDBOnz6NPXv2wMbGRrb3OW7cOGzevBlTpkzB/v370bt3b6jVamRkZGDz5s3Ys2cP/Pz8ZDseUXPDZIOIHunFF1/EmTNn8Nlnn+G3337D2rVroVAo4OLigqFDh2LKlCnw9vYGAHTr1g3Hjx/HokWLEB8fj1u3bqFdu3bo3r07Pvroo3odPzw8HJmZmVizZg12796Nvn37Yu/evRg0aJBs79HIyAjbtm3D559/ju+//x5bt26Fubk5OnbsiOnTp6Nr166yHYuoOeJ25URERKRXXLNBREREesVkg4iIiPSKyQYRERHpFZMNIiIi0ismG0RERKRXTDaIiIhIr5r9PhsajQbXr1+HhYUFtykmIiKSQAiBkpISODg4wMjo4fMXzT7ZuH79Om+yRERE9ASys7O1OwnXptknG9W30c7OzoalpWUjR0NERGQ4iouL4eTkpP1b+jDNPtmoPnViaWnJZIOIiKgeHrcM4YkXiKrVaqSmpuL27dtP2hURERE1QZJnNmbMmAFPT09MmjQJarUa/fv3x5EjR2Bubo4dO3ZgwIABegjT8EQnRT+6fsCj64mIiJoKyTMbP/74o/YOj9u3b0dmZiYyMjIwc+ZMzJ8/X/YAiYiIyLBJTjby8/NhZ2cHANi1axdGjx6Nrl27YuLEiThz5ozsARIREZFhk3waxdbWFunp6bC3t8fu3bvx9ddfAwDu3r0LY2Nj2QOsC1dXV1haWsLIyAjW1tbYv39/o8RBRERENUlONiZMmIAxY8bA3t4eCoUCwcHBAICUlBS4u7vLHmBdHTlyBK1atWq04xMREVHtJCcb0dHR8PDwQHZ2NkaPHg2VSgUAMDY2xty5c2UPkIiIiAxbvS59ffnllzFz5kyd3cLGjx+PF198UXJfBw8exLBhw+Dg4ACFQoFt27bVaBMbGwtXV1e0aNECAQEBOHr0qE69QqFA//790aNHD6xfv15yDERERKQ/9drUKyEhAQkJCcjLy4NGo9GpW7t2raS+SktL4e3tjYkTJ2LUqFE16jdt2oSoqCjExcUhICAAK1asQEhICM6fP4927doBAP773//C0dERN27cQHBwMDw9PeHl5VXr8crLy1FeXq59XlxcLCleIiIikkbyzMaiRYvw/PPPIyEhAfn5+bh9+7bOQ6rQ0FD8/e9/x8iRI2utX758OcLDwzFhwgR069YNcXFxMDc310lqHB0dAQD29vZ44YUXcPLkyYceLyYmBlZWVtoH74tCRESkX5JnNuLi4hAfH49x48bpIx4dFRUVOHHiBObNm6ctMzIyQnBwMJKTkwHcnxnRaDSwsLDAnTt3kJiYiDFjxjy0z3nz5iEqKkr7vHpfdyIiItIPyclGRUUFAgMD9RFLDfn5+VCr1bC1tdUpt7W1RUZGBgAgNzdXOyuiVqsRHh6OHj16PLRPlUqlXdRKRERE+ic52XjrrbewYcMGLFiwQB/xSNaxY0ecPn26scMgIiKih5CcbJSVlWH16tXYt28fvLy8YGpqqlO/fPly2YKzsbGBsbExcnNzdcpzc3O1u5gSERHR001yspGWlgYfHx8AwNmzZ3XqHneLWamUSiV8fX2RkJCAESNGAAA0Gg0SEhIQGRkp67GIiIhIPyQnG3JvBX7nzh1cvHhR+zwzMxOpqalo06YNnJ2dERUVhfHjx8PPzw/+/v5YsWIFSktLMWHCBFnjICIiIv2o1z4b1a5evQoAOpt7SXX8+HEEBQVpn1dfKTJ+/HjEx8dj7NixuHnzJj766CPk5OTAx8cHu3fvrrFolIiIiJ5OkvfZ0Gg0WLx4MaysrODi4gIXFxe0bt0aH3/8cY0NvupiwIABEELUeMTHx2vbREZGIisrC+Xl5UhJSUFAQIDk4xAREVHjkDyzMX/+fKxZswZLlixB7969AdzfwTM6OhplZWX4v//7P9mDJCIiIsMlOdn47rvv8O2332L48OHaMi8vLzg6OmLq1KlMNoiIiEiH5NMoBQUFtd5K3t3dHQUFBbIERURERE2H5GTD29sbq1atqlG+atUqeHt7yxIUERERNR2ST6MsXboUQ4cOxb59+9CrVy8AQHJyMrKzs7Fr1y7ZAyQiIiLDJnlmo3///vjjjz8wcuRIFBYWorCwEKNGjcL58+fRt29ffcRIREREBqxe+2w4ODhwISgRERHVSZ2SjbS0NHh4eMDIyAhpaWmPbOvl5SVLYERERNQ01CnZ8PHxQU5ODtq1awcfHx8oFAoIIWq0UygUUKvVsgdJREREhqtOyUZmZibatm2r/ZmIiIioruqUbLi4uGh/zsrKQmBgIExMdF9aVVWFI0eO6LQlIiIiknw1SlBQUK2bdxUVFencUI2IiIgIqEeyIYSAQqGoUX7r1i20bNlSlqCIiIio6ajzpa+jRo0CcH8RaFhYGFQqlbZOrVYjLS0NgYGB8kfYREUnRT++zYDHtyEiInra1TnZsLKyAnB/ZsPCwgJmZmbaOqVSiZ49eyI8PFz+CImIiMig1TnZWLduHQDA1dUVc+bMgbm5ud6CIiIioqZD8pqNN998E9euXatRfuHCBVy+fFmOmIiIiKgJkZxshIWF4ciRIzXKU1JSEBYWJkdMRERE1IRITjZOnTqF3r171yjv2bMnUlNT5YiJiIiImhDJyYZCoUBJSUmN8qKiIm5VTkRERDVITjb69euHmJgYncRCrVYjJiYGffr0kTU4IiIiMnySbzH/j3/8A/369YObmxv69u0LADh06BCKi4uRmJgoe4BERERk2CTPbHTr1g1paWkYM2YM8vLyUFJSgjfffBMZGRnw8PDQR4xERERkwBSitnvFNyPFxcWwsrJCUVERLC0tZeu3LjuEPvExuMMoERE1orr+DZV8GqXa3bt3ceXKFVRUVOiUe3l51bdLIiIiaoIkJxs3b97EhAkT8Ouvv9ZazytSiIiI6EGS12zMmDEDhYWFSElJgZmZGXbv3o3vvvsOXbp0wS+//KKPGImIiMiASZ7ZSExMxM8//ww/Pz8YGRnBxcUFgwcPhqWlJWJiYjB06FB9xElEREQGSvLMRmlpKdq1awcAsLa2xs2bNwEAnp6eOHnypLzRERERkcGTnGy4ubnh/PnzAABvb2988803uHbtGuLi4mBvby97gERERGTYJJ9GmT59Om7cuAEAWLhwIYYMGYL169dDqVQiPj5e7vjoEepyeS0vjyUiosYmOdl44403tD/7+voiKysLGRkZcHZ2ho2NjazBERERkeGTfBrlr1QqFYyMjGBsbCxHPERERNTE1OvS1zVr1gC4v6dGv3798Nxzz8HJyQlJSUlyx0dEREQGTnKy8eOPP8Lb2xsAsH37dly+fBkZGRmYOXMm5s+fL3uAREREZNgkJxv5+fmws7MDAOzatQujR49G165dMXHiRJw5c0b2AImIiMiwSU42bG1tkZ6eDrVajd27d2Pw4MEA7t8rhes2iIiI6K8kX40yYcIEjBkzBvb29lAoFAgODgYApKSkwN3dXfYAiYiIyLBJTjaio6Ph4eGB7OxsjB49GiqVCgBgbGyMuXPnyh7g42RnZ2PcuHHIy8uDiYkJFixYgNGjRzd4HE+rx+3FwX04iIhI3+p1i/mXX365Rtn48eOfOJj6MDExwYoVK+Dj44OcnBz4+vrihRdeQMuWLRslHiIiItJVr2QjISEBCQkJyMvLg0aj0albu3atLIHVlb29vXabdDs7O9jY2KCgoIDJBhER0VNCcrKxaNEiLF68GH5+ftp1G0/i4MGDWLZsGU6cOIEbN25g69atGDFihE6b2NhYLFu2DDk5OfD29sbKlSvh7+9fo68TJ05ArVbDycnpiWJqTniahYiI9E1yshEXF4f4+HiMGzdOlgBKS0vh7e2NiRMnYtSoUTXqN23ahKioKMTFxSEgIAArVqxASEgIzp8/r737LAAUFBTgzTffxD//+U9Z4iIiIiJ5SE42KioqEBgYKFsAoaGhCA0NfWj98uXLER4ejgkTJgC4n+zs3LkTa9eu1S5ILS8vx4gRIzB37tzHxlZeXo7y8nLt8+LiYhneBRERET2M5GTjrbfewoYNG7BgwQJ9xKOjoqICJ06cwLx587RlRkZGCA4ORnJyMgBACIGwsDAMHDiwTrMtMTExWLRokd5ibmp4Z1kiInpSkpONsrIyrF69Gvv27YOXlxdMTU116pcvXy5bcPn5+VCr1bC1tdUpt7W1RUZGBgDg8OHD2LRpE7y8vLBt2zYAwL/+9S94enrW2ue8efMQFRWlfV5cXMw1HkRERHokOdlIS0uDj48PAODs2bM6dU+6WLQ++vTpU+OKmEdRqVTavUGIiIhI/yQnG/v379dHHLWysbGBsbExcnNzdcpzc3O192ehxscrWoiI6FEk3xulISmVSvj6+iIhIUFbptFokJCQgF69ejViZERERFRX9drU6/jx49i8eTOuXLmCiooKnbqffvpJUl937tzBxYsXtc8zMzORmpqKNm3awNnZGVFRURg/fjz8/Pzg7++PFStWoLS0VHt1ChERET3dJM9sbNy4EYGBgTh37hy2bt2KyspK/P7770hMTISVlZXkAI4fP47u3buje/fuAICoqCh0794dH330EQBg7Nix+PTTT/HRRx/Bx8cHqamp2L17d41Fo0RERPR0kjyz8cknn+Dzzz9HREQELCws8MUXX6BDhw54++23tduGSzFgwAAIIR7ZJjIyEpGRkZL7JiIiosYnOdm4dOkShg4dCuD+morS0lIoFArMnDkTAwcO5B4WVAP36iAiat4kn0axtrZGSUkJAMDR0VF7+WthYSHu3r0rb3RERERk8CTPbPTr1w979+6Fp6cnRo8ejenTpyMxMRF79+7FoEGD9BEjERERGTDJycaqVatQVlYGAJg/fz5MTU1x5MgRvPTSS/jwww9lD5CaB+7VQUTUdElKNqqqqrBjxw6EhIQAuH+fkuqboRERERHVRtKaDRMTE0yZMkU7s0FERET0OJIXiPr7+yM1NVUPoRAREVFTJHnNxtSpUxEVFYXs7Gz4+vqiZcuWOvVeXl6yBUdERESGT3Ky8corrwAA3n33XW2ZQqGAEAIKhQJqtVq+6IiIiMjgSU42MjMz9REH0SPVZWOwx/bBK1qIiBqF5GQjKysLgYGBMDHRfWlVVRWOHDkCFxcX2YIjIiIiwyd5gWhQUBAKCgpqlBcVFSEoKEiWoIiIiKjpkJxsVK/N+Ktbt27VWCxKREREVOfTKKNGjQJwfzFoWFgYVCqVtk6tViMtLQ2BgYHyR0hEREQGrc7JhpWVFYD7MxsWFhYwMzPT1imVSvTs2RPh4eHyR0hEREQGrc7Jxrp16wAArq6umD17Nk+ZkMGR44oWOfCqGCJqbiRfjbJw4UJ9xEFERERNlOQFokRERERSMNkgIiIivWKyQURERHrFZIOIiIj0ql7JRmRkZK27iBIRERH9VZ2vRrl69Srat28PANiwYQPee+89tGnTBp6enti1axecnJz0FiRRc1KXS3Qfd/msHH0QEcmlzsmGu7s7nnnmGfTu3RtlZWXIzs6Gs7MzLl++jMrKSn3GSERERAaszqdRCgsLsWXLFvj6+kKj0eCFF15A165dUV5ejj179iA3N1efcRIREZGBqnOyUVlZCX9/f8yaNQtmZmY4deoU1q1bB2NjY6xduxYdOnSAm5ubPmMlIiIiA1Tn0yitW7eGj48PevfujYqKCty7dw+9e/eGiYkJNm3aBEdHRxw7dkyfsRIREZEBqnOyce3aNSQnJ+PIkSOoqqqCr68vevTogYqKCpw8eRLt27dHnz599BkrUZPwtNyjRQ5yvBcudn36NMQiZf4/k9/TPOZ1Po1iY2ODYcOGISYmBubm5jh27BimTZsGhUKB2bNnw8rKCv3799dnrERERGSA6r2pl5WVFcaMGQNTU1MkJiYiMzMTU6dOlTM2IiIiagIk3/UVANLS0uDo6AgAcHFxgampKezs7DB27FhZgyMiIiLDV69k48ENvM6ePStbMI1BCAEAKC4ulrXf8tJyWfsjetDjPq91+fzJ8ZmX43Pe0O9l6NChAICdO3fW+TXNjRxj/rg+5P7OpcYZ8+o+q/+WPoxCPK5FE3f16lXufkpERPQEsrOztbuM16bZJxsajQbXr1+HhYUFFAqFLH0WFxfDyckJ2dnZsLS0lKXP5ojjKI+GHMf169dj6tSpmD9/PlxcXHTq/va3v8HLy0uvx6+LJ5nZ4GdSHhxHeTwN4yiEQElJCRwcHGBk9PBloPU6jdKUGBkZPTIbexKWlpb8RZIBx1EeDTGOZmZmAIARI0bAz8/vse3LysqgVCof+SUlN2NjYwB4orHgZ1IeHEd5NPY4WllZPbYNbzFPRA0iKSkJCoUCGzduxIcffghHR0eYm5ujuLgYBQUFmD17Njw9PdGqVStYWloiNDQUp0+f1ukjPj4eCoUCly9frrXvpKQknfLVq1ejU6dOMDMzg7+/Pw4dOqTnd0lEtWn2MxtEJL+ioiLk5+fXWvfxxx9DqVRi9uzZKC8vh1KpRHp6OrZt24bRo0ejQ4cOyM3NxTfffIP+/fsjPT0dDg4OkmNYs2YN3n77bQQGBmLGjBn4888/MXz4cLRp04brtIgaGJMNPVCpVFi4cCFUKlVjh2LQOI7yaIxxDA4OrlG2f/9+APdPnRw/flx7ygUAPD098ccff+icThk3bhzc3d2xZs0aLFiwQNLxKysr8cEHH8DHxwf79++HUqkEAHTr1g2TJ0+ud7LBz6Q8OI7yMKRxZLKhByqVCtHR0Y0dhsHjOMqjMcYxNjYWXbt2rbVu/PjxOokGAJ0vS7VajcLCQrRq1Qpubm44efKk5OMfP34ceXl5WLx4sTbRAICwsDDMmTNHcn8PxsnP5JPjOMrDkMaRyQYRyc7f37/GAtHq9RQdOnSo0V6j0eCLL77AV199hczMTKjVam3dM888I/n4WVlZAIAuXbrolJuamqJjx46S+yOiJ8MFokTUoP46qwEAn3zyCaKiotCvXz/8+9//xp49e7B37148++yz0Gg02nYPuzz9weSEiJ4+nNkgokb3448/IigoCGvWrNEpLywshI2Njfa5tbW1tvxB1TMZ1ar3+Lhw4QIGDhyoLa+srERmZia8vb3lDJ+IHoMzG0TU6IyNjWtsd7xlyxZcu3ZNp6xTp04AgIMHD2rL1Go1Vq9erdPOz88Pbdu2RVxcHCoqKrTl8fHxNRIVItI/zmwQUaP7f//v/2Hx4sWYMGECAgMDcebMGaxfv77G+opnn30WPXv2xLx581BQUIA2bdpg48aNqKqq0mlnamqKv//973j77bcxcOBAjB07FpmZmVi3bh3XbBA1As5sEFGj++CDDzBr1izs2bMH06dPx8mTJ7Fz585aL1Fdv349AgMDsWTJEnzyyScICgrCkiVLarSbPHkyvvrqK1y/fh1z5szBoUOH8Msvv3CPDaJG0OzvjUJERET6xZkNIiIi0ismG0RERKRXTDaIiIhIr5hsEBERkV4x2SAiIiK9YrJBREREetXsN/XSaDS4fv06LCwsHnrfBSIiIqpJCIGSkhI4ODjAyOjh8xfNPtm4fv06N/khIiJ6AtnZ2Wjfvv1D65t9smFhYQHg/kBZWlo2cjRERESGo7i4GE5OTtq/pQ/T7JON6lMnlpaWTDaIiIjq4XHLEJ54gaharUZqaipu3779pF0RERFREyQ52ZgxYwbWrFkD4H6i0b9/fzz33HNwcnJCUlKS3PHpTWxsLLp164YePXo0dihERERNmuRk48cff4S3tzcAYPv27cjMzERGRgZmzpyJ+fPnyx6gvkRERCA9PR3Hjh1r7FCIiIiaNMnJRn5+Puzs7AAAu3btwujRo9G1a1dMnDgRZ86ckT1AIiIiMmySkw1bW1ukp6dDrVZj9+7dGDx4MADg7t27MDY2lj1AIiIiMmySr0aZMGECxowZA3t7eygUCgQHBwMAUlJS4O7uLnuAREREZNgkJxvR0dHw8PBAdnY2Ro8eDZVKBQAwNjbG3LlzZQ+QiIiIDJtCCCEaO4jGVFxcDCsrKxQVFXGfDSIiIgnq+je0Xpt6JSQkICEhAXl5edBoNDp1a9eurU+XDS42NhaxsbFQq9WNHQoREVGTJnlmY9GiRVi8eDH8/Py06zYetHXrVlkD1DfObBAREdWP3mY24uLiEB8fj3Hjxj1RgERERNQ8SL70taKiAoGBgfqIhYiIiJogycnGW2+9hQ0bNugjFiIiImqCJJ9GKSsrw+rVq7Fv3z54eXnB1NRUp3758uWyBUdERESGT3KykZaWBh8fHwDA2bNndeoed4tZfcjOzsa4ceOQl5cHExMTLFiwAKNHj27wOIiIiKh2Br/Pxo0bN5CbmwsfHx/k5OTA19cXf/zxB1q2bFmn1/NqFCIiovrR6z4b1a5evQoAaN++/ZN080Ts7e1hb28PALCzs4ONjQ0KCgrqnGwQERGRfkleIKrRaLB48WJYWVnBxcUFLi4uaN26NT7++OMaG3zVxcGDBzFs2DA4ODhAoVBg27ZtNdrExsbC1dUVLVq0QEBAAI4ePVprXydOnIBarYaTk5PkOIiIiEg/JCcb8+fPx6pVq7BkyRKcOnUKp06dwieffIKVK1diwYIFkgMoLS2Ft7c3YmNja63ftGkToqKisHDhQpw8eRLe3t4ICQlBXl6eTruCggK8+eabWL16teQYiIiISH8kr9lwcHBAXFwchg8frlP+888/Y+rUqbh27Vr9g1EosHXrVowYMUJbFhAQgB49emDVqlUA7s+sODk5Ydq0adobv5WXl2Pw4MEIDw9/7GZj5eXlKC8v1z4vLi6Gk5MT12wQERFJVNc1G5JnNgoKCmq9lby7uzsKCgqkdvdIFRUVOHHihPY29gBgZGSE4OBgJCcnAwCEEAgLC8PAgQPrtKtpTEwMrKystA+eciEiItIvycmGt7e3dpbhQatWrYK3t7csQVXLz8+HWq2Gra2tTrmtrS1ycnIAAIcPH8amTZuwbds2+Pj4wMfHB2fOnHlon/PmzUNRURE+/fRTuLm5oXPnzrLGTERERLokX42ydOlSDB06FPv27UOvXr0AAMnJycjOzsauXbtkD/Bx+vTpI2lhqkqlgkqlwqxZszBr1iztFBARERHph+SZjf79++OPP/7AyJEjUVhYiMLCQowaNQrnz59H3759ZQ3OxsYGxsbGyM3N1SnPzc2FnZ3dE/UdGxuLbt26oUePHk/UDxERET3aU7Wp18MWiPr7+2PlypUA7i8QdXZ2RmRkpHaB6JPgpl5ERET1I+umXmlpafDw8ICRkRHS0tIe2dbLy0tSoHfu3MHFixe1zzMzM5Gamoo2bdrA2dkZUVFRGD9+PPz8/ODv748VK1agtLQUEyZMkHQcIiIiahx1mtkwMjJCTk4O2rVrByMjIygUCtT2MoVCAbVaLSmApKQkBAUF1SgfP3484uPjAdxffLps2TLk5OTAx8cHX375JQICAiQd569iY2MRGxsLtVqNP/74gzMbREREEtV1ZqNOyUZWVhacnZ2hUCiQlZX1yLYuLi7So21EPI1CRERUP7Lus+Hi4qK9o2tWVhYcHR21W5VXPxwdHR+biDxNGmSBaHS0/vomIiIyEJKvRgkKCqp1866ioqJaT4c8rSIiIpCeno5jx441dihERERNmuRkQwihneV40K1bt3inVSIiIqqhzpt6jRo1CsD9RaBhYWFQqVTaOrVajbS0NAQGBsofoZ48uECUiIiI9KfOyUb1LptCCFhYWMDMzExbp1Qq0bNnT4SHh8sfoZ5EREQgIiKCO4gSERHpWZ2TjXXr1gEAXF1dMWfOHJibm+stKCIiImo6JK/ZePPNN2u9jfyFCxdw+fJlOWIiIiKiJkRyshEWFoYjR47UKE9JSUFYWJgcMTUI3huFiIioYUhONk6dOoXevXvXKO/ZsydSU1PliKlB8NJXIiKihiE52VAoFCgpKalRXlRUxCs7iIiIqAbJyUa/fv0QExOjk1io1WrExMSgT58+sgZHREREhq/OV6NU+8c//oF+/frBzc0Nffv2BQAcOnQIxcXFSExMlD1AIiIiMmySZza6deuGtLQ0jBkzBnl5eSgpKcGbb76JjIwMeHh46CNGvdD7AlHeF4WIiAhAHe/62pTp7a6v1ckGkw4iImqi6vo3VPJplGp3797FlStXUFFRoVPu5eVV3y6JiIioCZKcbNy8eRMTJkzAr7/+Wms9r0ghIiKiB0leszFjxgwUFhYiJSUFZmZm2L17N7777jt06dIFv/zyiz5iJCIiIgMmeWYjMTERP//8M/z8/GBkZAQXFxcMHjwYlpaWiImJwdChQ/URJxERERkoyTMbpaWlaNeuHQDA2toaN2/eBAB4enri5MmT8kZHREREBk9ysuHm5obz588DALy9vfHNN9/g2rVriIuLg729vewB6gvvjUJERNQwJJ9GmT59Om7cuAEAWLhwIYYMGYL169dDqVQiPj5e7vj0JiIiAhEREdrLdoiIiEg/JCcbb7zxhvZnX19fZGVlISMjA87OzrCxsZE1OCIiIjJ8kk+j/JVKpYKRkRGMjY3liIeIiIiamHpd+rpmzRoA9/fU6NevH5577jk4OTkhKSlJ7viIiIjIwElONn788Ud4e3sDALZv347Lly8jIyMDM2fOxPz582UPkIiIiAyb5GQjPz8fdnZ2AIBdu3Zh9OjR6Nq1KyZOnIgzZ87IHmBdjBw5EtbW1nj55Zcb5fhERET0cJKTDVtbW6Snp0OtVmP37t0YPHgwgPv3SmmsdRvTp0/H999/3yjHJiIiokeTnGxMmDABY8aMgYeHBxQKBYKDgwEAKSkpcHd3lz3AuhgwYAAsLCwa5dhERET0aJKTjejoaHz77beYPHkyDh8+DJVKBQAwNjbG3LlzJQdw8OBBDBs2DA4ODlAoFNi2bVuNNrGxsXB1dUWLFi0QEBCAo0ePSj4OERERNY563WK+trUR48ePr1cApaWl8Pb2xsSJEzFq1Kga9Zs2bUJUVBTi4uIQEBCAFStWICQkBOfPn9dumy5FeXk5ysvLtc+Li4vrFbck0dH3H0RERM1QvZKNhIQEJCQkIC8vDxqNRqdu7dq1kvoKDQ1FaGjoQ+uXL1+O8PBwTJgwAQAQFxeHnTt3Yu3atfWaSYmJicGiRYskv46IiIjqR/JplEWLFuH5559HQkIC8vPzcfv2bZ2HnCoqKnDixAntuhAAMDIyQnBwMJKTk+vV57x581BUVKR9ZGdnyxUuERER1ULyzEZcXBzi4+Mxbtw4fcSjIz8/H2q1Gra2tjrltra2yMjI0D4PDg7G6dOnUVpaivbt22PLli3o1atXrX2qVCqoVCrExsYiNjYWarVar++Bp0+IiKi5k5xsVFRUIDAwUB+x1Nu+ffskv4Y3YiMiImoYkk+jvPXWW9iwYYM+YqnBxsYGxsbGyM3N1SnPzc3VbixWXw1+i3kuEiUiomZK8sxGWVkZVq9ejX379sHLywumpqY69cuXL5ctOKVSCV9fXyQkJGDEiBEAAI1Gg4SEBERGRj5R35zZICIiahiSk420tDT4+PgAAM6ePatTp1AoJAdw584dXLx4Ufs8MzMTqampaNOmDZydnREVFYXx48fDz88P/v7+WLFiBUpLS7VXp9RXg63ZICIiauYUQgjRmAEkJSUhKCioRvn48eMRHx8PAFi1ahWWLVuGnJwc+Pj44Msvv0RAQIAsx6+e2SgqKoKlpaUsfQJ4+CkTnkohIqImoq5/Q+u1z4acBgwYgMflO5GRkU982oSIiIgaR72SjePHj2Pz5s24cuUKKioqdOp++uknWQLTN55GISIiahiSr0bZuHEjAgMDce7cOWzduhWVlZX4/fffkZiYaFALLSMiIpCeno5jx441dihERERNmuRk45NPPsHnn3+O7du3Q6lU4osvvkBGRgbGjBkDZ2dnfcRIREREBkxysnHp0iUMHToUwP1LU0tLS6FQKDBz5kysXr1a9gD1pcH32fgrLhQlIqJmQnKyYW1tjZKSEgCAo6Oj9vLXwsJC3L17V97o9IinUYiIiBqG5AWi/fr1w969e+Hp6YnRo0dj+vTpSExMxN69ezFo0CB9xEhEREQGTHKysWrVKpSVlQEA5s+fD1NTUxw5cgQvvfQSPvzwQ9kDJCIiIsMmKdmoqqrCjh07EBISAuD+7d7nzp2rl8D0jZe+EhERNQxJazZMTEwwZcoU7cyGIeOaDSIiooYheYGov78/UlNT9RAKERERNUWS12xMnToVUVFRyM7Ohq+vL1q2bKlT7+XlJVtwREREZPgkJxuvvPIKAODdd9/VlikUCgghoFAouAaCiIiIdEhONjIzM/URR4N7qhaIVm/wxY2+iIioCZKcbGRlZSEwMBAmJrovraqqwpEjR+Di4iJbcPoUERGBiIgI7e1xiYiISD8kLxANCgpCQUFBjfKioiIEBQXJEhQRERE1HZKTjeq1GX9169atGotFiYiIiOp8GmXUqFEA7i8GDQsLg0ql0tap1WqkpaUhMDBQ/giJiIjIoNU52ahe1yCEgIWFBczMzLR1SqUSPXv2RHh4uPwREhERkUGrc7Kxbt06AICrqytmz55t8KdMGvVqlIddfRId/egrUnjVChERGSDJazYWLlxo8IkGwO3KiYiIGorkZIOIiIhICiYbREREpFdMNoiIiEivmGwQERGRXtUr2YiMjKx1F9HGsmPHDri5uaFLly749ttvGzscIiIiekCdk42rV69qf96wYQPu3LkDAPD09ER2drb8kdVRVVUVoqKikJiYiFOnTmHZsmW4detWo8VDREREuuqcbLi7u8PFxQWvvfYaysrKtAnG5cuXUVlZqbcAH+fo0aN49tln4ejoiFatWiE0NBS//fZbo8VDREREuuqcbBQWFmLLli3w9fWFRqPBCy+8gK5du6K8vBx79uxBbm5uvQI4ePAghg0bBgcHBygUCmzbtq1Gm9jYWLi6uqJFixYICAjA0aNHtXXXr1+Ho6Oj9rmjoyOuXbtWr1iIiIhIfnVONiorK+Hv749Zs2bBzMwMp06dwrp162BsbIy1a9eiQ4cOcHNzkxxAaWkpvL29ERsbW2v9pk2bEBUVhYULF+LkyZPw9vZGSEgI8vLyJB+LiIiIGl6dtytv3bo1fHx80Lt3b1RUVODevXvo3bs3TExMsGnTJjg6OtZrN87Q0FCEhoY+tH758uUIDw/HhAkTAABxcXHYuXMn1q5di7lz58LBwUFnJuPatWvw9/d/aH/l5eUoLy/XPi8uLpYcMxEREdVdnWc2rl27hg8//BAqlQpVVVXw9fVF3759UVFRgZMnT0KhUKBPnz6yBldRUYETJ04gODj4/w/YyAjBwcFITk4GAPj7++Ps2bO4du0a7ty5g19//RUhISEP7TMmJgZWVlbah5OTk6wxP9bj7mvyYP2j7oXyJGVEREQNqM7Jho2NDYYNG4aYmBiYm5vj2LFjmDZtGhQKBWbPng0rKyv0799f1uDy8/OhVqtha2urU25ra4ucnBwAgImJCT777DMEBQXBx8cHs2bNwjPPPPPQPufNm4eioiLtozGvpCEiImoO6nwa5a+srKwwZswYTJo0CYmJiTA3N8eBAwfkjK3Ohg8fjuHDh9eprUqlgkqlaty7vhIRETUj9drUKy0tDe3btwcAuLi4wNTUFHZ2dhg7dqyswdnY2MDY2LjGlS65ubmws7N7or5511ciIqKGUa+ZjQfXOZw9e1a2YP5KqVTC19cXCQkJGDFiBABAo9EgISEBkZGRT9R39cxGVVUVAD0sFH1gEapk1bGUl9//+cH/VtdXl/31mHUpIyIikkH1304hxKMbikZWUlIiTp06JU6dOiUAiOXLl4tTp06JrKwsIYQQGzduFCqVSsTHx4v09HQxefJk0bp1a5GTkyPL8bOzswUAPvjggw8++OCjno/s7OxH/q1VCPG4dES/kpKSEBQUVKN8/PjxiI+PBwCsWrUKy5YtQ05ODnx8fPDll18iICBAluNrNBpcv34dFhYWUCgUsvRZXFwMJycnZGdnw9LSUpY+myOOozw4jvLhWMqD4yiPp2EchRAoKSmBg4MDjIwevjKj0ZONpqi4uBhWVlYoKiriL9IT4DjKg+MoH46lPDiO8jCkceQt5omIiEivmGwQERGRXjHZ0AOVSoWFCxdCpVI1digGjeMoD46jfDiW8uA4ysOQxpFrNoiIiEivOLNBREREesVkg4iIiPSKyQYRERHpFZMNIiIi0ismGzKLjY2Fq6srWrRogYCAABw9erSxQ2pU0dHRUCgUOg93d3dtfVlZGSIiIvDMM8+gVatWeOmll2rceO/KlSsYOnQozM3N0a5dO8yZM0d7T5tqSUlJeO6556BSqdC5c2ft7rOG6uDBgxg2bBgcHBygUCiwbds2nXohBD766CPY29vDzMwMwcHBuHDhgk6bgoICvP7667C0tETr1q0xadIk3LlzR6dNWloa+vbtixYtWsDJyQlLly6tEcuWLVvg7u6OFi1awNPTE7t27ZL9/erL48YxLCysxudzyJAhOm04jkBMTAx69OgBCwsLtGvXDiNGjMD58+d12jTk77Khfs/WZRwHDBhQ4zM5ZcoUnTYGOY6y3GCEhBD37+OiVCrF2rVrxe+//y7Cw8NF69atRW5ubmOH1mgWLlwonn32WXHjxg3t4+bNm9r6KVOmCCcnJ5GQkCCOHz8uevbsKQIDA7X1VVVVwsPDQwQHB4tTp06JXbt2CRsbGzFv3jxtmz///FOYm5uLqKgokZ6eLlauXCmMjY3F7t27G/S9ymnXrl1i/vz54qeffhIAxNatW3XqlyxZIqysrMS2bdvE6dOnxfDhw0WHDh3EvXv3tG2GDBkivL29xf/+9z9x6NAh0blzZ/Hqq69q64uKioStra14/fXXxdmzZ8UPP/wgzMzMxDfffKNtc/jwYWFsbCyWLl0q0tPTxYcffihMTU3FmTNn9D4GcnjcOI4fP14MGTJE5/NZUFCg04bjKERISIhYt26dOHv2rEhNTRUvvPCCcHZ2Fnfu3NG2aajfZUP+nq3LOPbv31+Eh4frfCaLioq09YY6jkw2ZOTv7y8iIiK0z9VqtXBwcBAxMTGNGFXjWrhwofD29q61rrCwUJiamootW7Zoy86dOycAiOTkZCHE/T8WRkZGOjfe+/rrr4WlpaUoLy8XQgjx3nvviWeffVan77Fjx4qQkBCZ303j+OsfSY1GI+zs7MSyZcu0ZYWFhUKlUokffvhBCCFEenq6ACCOHTumbfPrr78KhUIhrl27JoQQ4quvvhLW1tbacRRCiPfff1+4ublpn48ZM0YMHTpUJ56AgADx9ttvy/oeG8LDko0XX3zxoa/hONYuLy9PABAHDhwQQjTs73JT+p796zgKcT/ZmD59+kNfY6jjyNMoMqmoqMCJEycQHBysLTMyMkJwcDCSk5MbMbLGd+HCBTg4OKBjx454/fXXceXKFQDAiRMnUFlZqTNm7u7ucHZ21o5ZcnIyPD09YWtrq20TEhKC4uJi/P7779o2D/ZR3aapjntmZiZycnJ03rOVlRUCAgJ0xq1169bw8/PTtgkODoaRkRFSUlK0bfr16welUqltExISgvPnz+P27dvaNk19bJOSktCuXTu4ubnhnXfewa1bt7R1HMfaFRUVAQDatGkDoOF+l5va9+xfx7Ha+vXrYWNjAw8PD8ybNw93797V1hnqOJropddmKD8/H2q1WucDAAC2trbIyMhopKgaX0BAAOLj4+Hm5oYbN25g0aJF6Nu3L86ePYucnBwolUq0bt1a5zW2trbIyckBAOTk5NQ6ptV1j2pTXFyMe/fuwczMTE/vrnFUv+/a3vODY9KuXTudehMTE7Rp00anTYcOHWr0UV1nbW390LGt7sPQDRkyBKNGjUKHDh1w6dIlfPDBBwgNDUVycjKMjY05jrXQaDSYMWMGevfuDQ8PDwBosN/l27dvN5nv2drGEQBee+01uLi4wMHBAWlpaXj//fdx/vx5/PTTTwAMdxyZbJBehYaGan/28vJCQEAAXFxcsHnz5iaXBJDheeWVV7Q/e3p6wsvLC506dUJSUhIGDRrUiJE9vSIiInD27Fn897//bexQDNrDxnHy5Mnanz09PWFvb49Bgwbh0qVL6NSpU0OHKRueRpGJjY0NjI2Na6y+zs3NhZ2dXSNF9fRp3bo1unbtiosXL8LOzg4VFRUoLCzUafPgmNnZ2dU6ptV1j2pjaWnZJBOa6vf9qM+anZ0d8vLydOqrqqpQUFAgy9g21c90x44dYWNjg4sXLwLgOP5VZGQkduzYgf3796N9+/ba8ob6XW4q37MPG8faBAQEAIDOZ9IQx5HJhkyUSiV8fX2RkJCgLdNoNEhISECvXr0aMbKny507d3Dp0iXY29vD19cXpqamOmN2/vx5XLlyRTtmvXr1wpkzZ3S+8Pfu3QtLS0t069ZN2+bBPqrbNNVx79ChA+zs7HTec3FxMVJSUnTGrbCwECdOnNC2SUxMhEaj0X559erVCwcPHkRlZaW2zd69e+Hm5gZra2ttm+Y0tlevXsWtW7dgb28PgONYTQiByMhIbN26FYmJiTVOGzXU77Khf88+bhxrk5qaCgA6n0mDHEe9LDttpjZu3ChUKpWIj48X6enpYvLkyaJ169Y6q4abm1mzZomkpCSRmZkpDh8+LIKDg4WNjY3Iy8sTQty/XM7Z2VkkJiaK48ePi169eolevXppX199mdfzzz8vUlNTxe7du0Xbtm1rvcxrzpw54ty5cyI2NtbgL30tKSkRp06dEqdOnRIAxPLly8WpU6dEVlaWEOL+pa+tW7cWP//8s0hLSxMvvvhirZe+du/eXaSkpIj//ve/okuXLjqXbBYWFgpbW1sxbtw4cfbsWbFx40Zhbm5e45JNExMT8emnn4pz586JhQsXGtQlm48ax5KSEjF79myRnJwsMjMzxb59+8Rzzz0nunTpIsrKyrR9cByFeOedd4SVlZVISkrSuSTz7t272jYN9btsyN+zjxvHixcvisWLF4vjx4+LzMxM8fPPP4uOHTuKfv36afsw1HFksiGzlStXCmdnZ6FUKoW/v7/43//+19ghNaqxY8cKe3t7oVQqhaOjoxg7dqy4ePGitv7evXti6tSpwtraWpibm4uRI0eKGzdu6PRx+fJlERoaKszMzISNjY2YNWuWqKys1Gmzf/9+4ePjI5RKpejYsaNYt25dQ7w9vdm/f78AUOMxfvx4IcT9y18XLFggbG1thUqlEoMGDRLnz5/X6ePWrVvi1VdfFa1atRKWlpZiwoQJoqSkRKfN6dOnRZ8+fYRKpRKOjo5iyZIlNWLZvHmz6Nq1q1AqleLZZ58VO3fu1Nv7ltujxvHu3bvi+eefF23bthWmpqbCxcVFhIeH1/iy5TiKWscQgM7vWUP+Lhvq9+zjxvHKlSuiX79+ok2bNkKlUonOnTuLOXPm6OyzIYRhjiNvMU9ERER6xTUbREREpFdMNoiIiEivmGwQERGRXjHZICIiIr1iskFERER6xWSDiIiI9IrJBhEREekVkw0iIiLSKyYbRNQsnT9/HnZ2digpKalRFxYWVutr4uLiMGzYMD1HRtT0MNkgIh3JyckwNjbG0KFDGzsUyQYMGIAZM2bUqe28efMwbdo0WFhY1Ln/iRMn4uTJkzh06FA9IyRqnphsEJGONWvWYNq0aTh48CCuX7/e2OHoxZUrV7Bjx44aMxhfffUVPDw88MMPP8De3h79+/fHgQMHtPVKpRKvvfYavvzyywaOmMiwMdkgIq07d+5g06ZNeOeddzB06FDEx8fr1CclJUGhUGDPnj3o3r07zMzMMHDgQOTl5eHXX3/F3/72N1haWuK1117D3bt3ta8rLy/Hu+++i3bt2qFFixbo06cPjh07pq2Pj49H69atdY61bds2KBQK7fPo6Gj4+PjgX//6F1xdXWFlZYVXXnlFexokLCwMBw4cwBdffAGFQgGFQoHLly/X+j43b94Mb29vODo6assSExMxbdo07Xvfvn07XnvtNZSVlem8dtiwYfjll19w7949KUNL1Kwx2SAirc2bN8Pd3R1ubm544403sHbtWtR2r8bo6GisWrUKR44cQXZ2NsaMGYMVK1Zgw4YN2LlzJ3777TesXLlS2/69997Df/7zH3z33Xc4efIkOnfujJCQEBQUFEiK79KlS9i2bRt27NiBHTt24MCBA1iyZAkA4IsvvkCvXr0QHh6OGzdu4MaNG3Bycqq1n0OHDsHPz0+n7OTJk+jYsSMiIiJgaWkJPz8/vP322wgJCdFp5+fnh6qqKqSkpEiKnag5Y7JBRFpr1qzBG2+8AQAYMmQIioqKdE4jVPv73/+O3r17o3v37pg0aRIOHDiAr7/+Gt27d0ffvn3x8ssvY//+/QCA0tJSfP3111i2bBlCQ0PRrVs3/POf/4SZmRnWrFkjKT6NRoP4+Hh4eHigb9++GDduHBISEgAAVlZWUCqVMDc3h52dHezs7GBsbFxrP1lZWXBwcNAp69WrF/7880/84x//wK1btx4ag7m5OaysrJCVlSUpdqLmjMkGEQG4f3XG0aNH8eqrrwIATExMMHbs2FoTAi8vL+3Ptra2MDc3R8eOHXXK8vLyANyfjaisrETv3r219aampvD398e5c+ckxejq6qqzoNPe3l57HCnu3buHFi1a6JT17t0bP/30E3bu3Ik9e/bA3t4eU6ZMQW5ubo3Xm5mZ6ZwmIqJHY7JBRADuz2pUVVXBwcEBJiYmMDExwddff43//Oc/KCoq0mlramqq/VmhUOg8ry7TaDR1PraRkVGN0zWVlZU12j3pcarZ2Njg9u3bNcpffPFFHDx4EK+99hrWr1+PEydOYOTIkTXaFRQUoG3btpKPS9RcMdkgIlRVVeH777/HZ599htTUVO3j9OnTcHBwwA8//FDvvjt16gSlUonDhw9ryyorK3Hs2DF069YNANC2bVuUlJSgtLRU2yY1NVXysZRKJdRq9WPbde/eHenp6Y9sM3DgQHz00Uf43//+p5P4XLp0CWVlZejevbvk+IiaK5PGDoCIGt+OHTtw+/ZtTJo0CVZWVjp1L730EtasWYMpU6bUq++WLVvinXfewZw5c9CmTRs4Oztj6dKluHv3LiZNmgQACAgIgLm5OT744AO8++67SElJqXElTF24uroiJSUFly9fRqtWrdCmTRsYGdX8N1VISAjeeustqNVq7bqOf/3rX6ioqMDzzz8PIQSuXLmC1atXw8vLS2dG5dChQ+jYsSM6depUr/Egao44s0FEWLNmDYKDg2skGsD9ZOP48eNIS0urd/9LlizBSy+9hHHjxuG5557DxYsXsWfPHlhbWwMA2rRpg3//+9/YtWsXPD098cMPPyA6OlrycWbPng1jY2N069YNbdu2xZUrV2ptFxoaChMTE+zbt09b1rlzZ/z888/o0aMH/v3vf8PLywuVlZXYtGmTzmt/+OEHhIeHS46NqDlTiNquayMiauJiY2Pxyy+/YM+ePTXqwsLCap1Z+f333zFw4ED88ccftSZmRFQ7nkYhombp7bffRmFhIUpKSuq8ZfmNGzfw/fffM9EgkogzG0RERKRXXLNBREREesVkg4iIiPSKyQYRERHpFZMNIiIi0ismG0RERKRXTDaIiIhIr5hsEBERkV4x2SAiIiK9YrJBREREevX/Ac78qQxs5Y2SAAAAAElFTkSuQmCC\n",
352
- "text/plain": [
353
- "<Figure size 600x300 with 2 Axes>"
354
- ]
355
- },
356
- "metadata": {},
357
- "output_type": "display_data"
358
- }
359
- ],
360
  "source": [
361
  "#let us check another feature Amount\n",
362
  "fig, (ax3,ax4) = plt.subplots(2,1, figsize = (6,3), sharex = True)\n",
@@ -386,7 +365,7 @@
386
  },
387
  {
388
  "cell_type": "code",
389
- "execution_count": 5,
390
  "metadata": {
391
  "_cell_guid": "532903ce-1f12-4301-804c-c0e351e59079",
392
  "_uuid": "f726254bf9cdc512c96c3995df10b74ea18f94e5",
@@ -414,7 +393,7 @@
414
  "\u001b[0;31mKeyError\u001b[0m: 'Amount'",
415
  "\nThe above exception was the direct cause of the following exception:\n",
416
  "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)",
417
- "\u001b[0;32m<ipython-input-5-202ae9b48e70>\u001b[0m in \u001b[0;36m<cell line: 3>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# [reexecute] to reproduce the error\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0msklearn\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpreprocessing\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mStandardScaler\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mdf\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'scaled_Amount'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mStandardScaler\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit_transform\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdf\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Amount'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreshape\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0mdf\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdrop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Amount'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
418
  "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36m__getitem__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 3891\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnlevels\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3892\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_getitem_multilevel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3893\u001b[0;31m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3894\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mis_integer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mindexer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3895\u001b[0m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mindexer\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
419
  "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mget_loc\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 3796\u001b[0m ):\n\u001b[1;32m 3797\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mInvalidIndexError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3798\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0merr\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3799\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mTypeError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3800\u001b[0m \u001b[0;31m# If we have a listlike key, _check_indexing_error will raise\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
420
  "\u001b[0;31mKeyError\u001b[0m: 'Amount'"
@@ -422,7 +401,7 @@
422
  }
423
  ],
424
  "source": [
425
- "# [reexecute] to reproduce the error\n",
426
  "from sklearn.preprocessing import StandardScaler\n",
427
  "df['scaled_Amount'] = StandardScaler().fit_transform(df['Amount'].values.reshape(-1,1))\n",
428
  "df = df.drop(['Amount'],axis=1)"
 
322
  },
323
  {
324
  "cell_type": "code",
325
+ "execution_count": null,
326
  "metadata": {
327
  "_cell_guid": "500a7db4-22b9-43e1-a2df-0d84927700f6",
328
  "_uuid": "6476fe5078d5e3335cc5b10b754d164c7872c0f9",
 
335
  },
336
  "scrolled": true
337
  },
338
+ "outputs": [],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
339
  "source": [
340
  "#let us check another feature Amount\n",
341
  "fig, (ax3,ax4) = plt.subplots(2,1, figsize = (6,3), sharex = True)\n",
 
365
  },
366
  {
367
  "cell_type": "code",
368
+ "execution_count": 4,
369
  "metadata": {
370
  "_cell_guid": "532903ce-1f12-4301-804c-c0e351e59079",
371
  "_uuid": "f726254bf9cdc512c96c3995df10b74ea18f94e5",
 
393
  "\u001b[0;31mKeyError\u001b[0m: 'Amount'",
394
  "\nThe above exception was the direct cause of the following exception:\n",
395
  "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)",
396
+ "\u001b[0;32m<ipython-input-4-9ed5de5cec7d>\u001b[0m in \u001b[0;36m<cell line: 3>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# [reexecute] --- execute twice to reproduce the error\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0msklearn\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpreprocessing\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mStandardScaler\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mdf\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'scaled_Amount'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mStandardScaler\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfit_transform\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdf\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Amount'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mreshape\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0mdf\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdrop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Amount'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
397
  "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36m__getitem__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 3891\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnlevels\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;36m1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3892\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_getitem_multilevel\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3893\u001b[0;31m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolumns\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_loc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3894\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mis_integer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mindexer\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3895\u001b[0m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0mindexer\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
398
  "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/indexes/base.py\u001b[0m in \u001b[0;36mget_loc\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 3796\u001b[0m ):\n\u001b[1;32m 3797\u001b[0m \u001b[0;32mraise\u001b[0m \u001b[0mInvalidIndexError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3798\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mKeyError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0merr\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3799\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mTypeError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3800\u001b[0m \u001b[0;31m# If we have a listlike key, _check_indexing_error will raise\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
399
  "\u001b[0;31mKeyError\u001b[0m: 'Amount'"
 
401
  }
402
  ],
403
  "source": [
404
+ "# [reexecute] --- execute twice to reproduce the error\n",
405
  "from sklearn.preprocessing import StandardScaler\n",
406
  "df['scaled_Amount'] = StandardScaler().fit_transform(df['Amount'].values.reshape(-1,1))\n",
407
  "df = df.drop(['Amount'],axis=1)"
benchmark/NBspecific_9/NBspecific_9_reproduced.ipynb CHANGED
@@ -262,7 +262,7 @@
262
  "traceback": [
263
  "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
264
  "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)",
265
- "\u001b[0;32m<ipython-input-4-e250a4939452>\u001b[0m in \u001b[0;36m<cell line: 2>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# [re-execute] this cell needs to be execute twice to reproduce the crash\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mdf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdrop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m10472\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0minplace\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m;\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
266
  "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36mdrop\u001b[0;34m(self, labels, axis, index, columns, level, inplace, errors)\u001b[0m\n\u001b[1;32m 5342\u001b[0m \u001b[0mweight\u001b[0m \u001b[0;36m1.0\u001b[0m \u001b[0;36m0.8\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5343\u001b[0m \"\"\"\n\u001b[0;32m-> 5344\u001b[0;31m return super().drop(\n\u001b[0m\u001b[1;32m 5345\u001b[0m \u001b[0mlabels\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlabels\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5346\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
267
  "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36mdrop\u001b[0;34m(self, labels, axis, index, columns, level, inplace, errors)\u001b[0m\n\u001b[1;32m 4709\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlabels\u001b[0m \u001b[0;32min\u001b[0m \u001b[0maxes\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4710\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlabels\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 4711\u001b[0;31m \u001b[0mobj\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_drop_axis\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlabels\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlevel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlevel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0merrors\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0merrors\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4712\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4713\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0minplace\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
268
  "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36m_drop_axis\u001b[0;34m(self, labels, axis, level, errors, only_slice)\u001b[0m\n\u001b[1;32m 4751\u001b[0m \u001b[0mnew_axis\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdrop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlabels\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlevel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlevel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0merrors\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0merrors\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4752\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 4753\u001b[0;31m \u001b[0mnew_axis\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdrop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlabels\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0merrors\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0merrors\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4754\u001b[0m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_indexer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnew_axis\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4755\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
@@ -272,7 +272,7 @@
272
  }
273
  ],
274
  "source": [
275
- "# [re-execute] this cell needs to be execute twice to reproduce the crash\n",
276
  "df.drop([10472],inplace = True);"
277
  ]
278
  },
 
262
  "traceback": [
263
  "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
264
  "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)",
265
+ "\u001b[0;32m<ipython-input-4-be81b89470fc>\u001b[0m in \u001b[0;36m<cell line: 2>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# [reexecute] --- this cell needs to be execute twice to reproduce the crash\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mdf\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdrop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m10472\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0minplace\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mTrue\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m;\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
266
  "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/frame.py\u001b[0m in \u001b[0;36mdrop\u001b[0;34m(self, labels, axis, index, columns, level, inplace, errors)\u001b[0m\n\u001b[1;32m 5342\u001b[0m \u001b[0mweight\u001b[0m \u001b[0;36m1.0\u001b[0m \u001b[0;36m0.8\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5343\u001b[0m \"\"\"\n\u001b[0;32m-> 5344\u001b[0;31m return super().drop(\n\u001b[0m\u001b[1;32m 5345\u001b[0m \u001b[0mlabels\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlabels\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5346\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0maxis\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
267
  "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36mdrop\u001b[0;34m(self, labels, axis, index, columns, level, inplace, errors)\u001b[0m\n\u001b[1;32m 4709\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlabels\u001b[0m \u001b[0;32min\u001b[0m \u001b[0maxes\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4710\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlabels\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 4711\u001b[0;31m \u001b[0mobj\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mobj\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_drop_axis\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlabels\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlevel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlevel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0merrors\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0merrors\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4712\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4713\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0minplace\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
268
  "\u001b[0;32m/usr/local/lib/python3.10/dist-packages/pandas/core/generic.py\u001b[0m in \u001b[0;36m_drop_axis\u001b[0;34m(self, labels, axis, level, errors, only_slice)\u001b[0m\n\u001b[1;32m 4751\u001b[0m \u001b[0mnew_axis\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdrop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlabels\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlevel\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mlevel\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0merrors\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0merrors\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4752\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 4753\u001b[0;31m \u001b[0mnew_axis\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdrop\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mlabels\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0merrors\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0merrors\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4754\u001b[0m \u001b[0mindexer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0maxis\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_indexer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnew_axis\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4755\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
 
272
  }
273
  ],
274
  "source": [
275
+ "# [reexecute] --- this cell needs to be execute twice to reproduce the crash\n",
276
  "df.drop([10472],inplace = True);"
277
  ]
278
  },