import numpy as np import pickle import os import pandas as pd # root="./csi" root="/home/chentingwei/LoFi/csi_csv" data=[] csi_vaid_subcarrier_index = range(0, 52) def handle_complex_data(x, valid_indices): real_parts = [] imag_parts = [] for i in valid_indices: real_parts.append(x[i * 2]) imag_parts.append(x[i * 2 - 1]) return np.array(real_parts) + 1j * np.array(imag_parts) people_id=0 for people in os.listdir(root): print(people) path=os.path.join(root,people) for file in os.listdir(path): if file[-3:] != "csv": continue # print(file) df = pd.read_csv(os.path.join(path,file)) df.dropna(inplace=True) df['data'] = df['data'].apply(lambda x: eval(x)) complex_data = df['data'].apply(lambda x: handle_complex_data(x, csi_vaid_subcarrier_index)) magnitude = complex_data.apply(lambda x: np.abs(x)) phase = complex_data.apply(lambda x: np.angle(x, deg=True)) time = np.array(df['timestamp']) local_time = np.array(df['local_timestamp']) data.append({ 'csi_time':time, 'csi_local_time':local_time, 'people_name': people, 'people': people_id, 'magnitude': np.array([np.array(a) for a in magnitude]), 'phase': np.array([np.array(a) for a in phase]), 'CSI': np.array([np.array(a) for a in complex_data]) }) people_id+=1 output_file = './csi_data.pkl' with open(output_file, 'wb') as f: pickle.dump(data, f)