import numpy as np import pickle import pandas as pd result=[] pad=[-1000]*52 loacl_gap=10000 def process_time(timestamp): t = timestamp.split() t = t[-1].split(":") h = float(t[0]) m = float(t[1]) t = t[-1].split(".") s = float(t[0]) ms = float(t[1]) return h * 60 * 60 * 100 + m * 60 * 100 + s * 100 + ms def interpolate_data(original_data): data_interpolate = np.copy(original_data) # 对数据进行插值处理 for j in range(original_data.shape[1]): series = pd.Series(original_data[:, j]) series.interpolate(method='linear', inplace=True) data_interpolate[:, j] = series.values return data_interpolate with open("./csi_data.pkl", 'rb') as f: csi = pickle.load(f) for data in csi: csi_time=data['csi_time'] local_time=data['csi_local_time'] magnitude=data['magnitude'] phase=data['phase'] people=data['people'] last_local=None last_glob=None current_magnitude=[] current_phase=[] current_timestamp=[] global_timestamp=[] for i in range(len(csi_time)): if last_local is None: last_local=local_time[i] last_glob=process_time(csi_time[i]) current_magnitude.append(magnitude[i]) current_phase.append(phase[i]) current_timestamp.append(local_time[i]) else: local = local_time[i] glob = process_time(csi_time[i]) num=round((local-last_local-loacl_gap)/loacl_gap) if num>0: delta=(local-last_local)/(num+1) delta_glob=(glob-last_glob)/(num+1) for j in range(num): current_magnitude.append(pad) current_phase.append(pad) current_timestamp.append(current_timestamp[-1] + delta) global_timestamp.append(global_timestamp[-1]+delta_glob) current_magnitude.append(magnitude[i]) current_phase.append(phase[i]) current_timestamp.append(local) global_timestamp.append(glob) last_local = local last_glob = glob current_magnitude = np.array(current_magnitude) current_magnitude[current_magnitude == -1000] = np.nan current_magnitude = interpolate_data(current_magnitude) print(len(current_magnitude)) result.append({ 'time': np.array(current_timestamp), 'global_time': np.array(global_timestamp), 'people': people, 'magnitude': current_magnitude, 'phase': np.array(current_phase) }) output_file = './data_sequence_linear.pkl' with open(output_file, 'wb') as f: pickle.dump(result, f)