import os import tqdm import cv2 import numpy as np import pickle # root="./cv" root="/home/chentingwei/LoFi/lofi" # 加载 YOLO 模型 net = cv2.dnn.readNet("./model/yolov3.weights", "./model/yolov3.cfg") # 获取输出层的名称 layer_names = net.getLayerNames() output_layers = [layer_names[i - 1] for i in net.getUnconnectedOutLayers()] src_points = np.array([[0, 0], [180, 0], [0, 480], [180, 480]], dtype="float32") # real world dst_points = np.array([[222, 210], [374, 209], [65, 458], [495, 451]], dtype="float32") # image world M = cv2.getPerspectiveTransform(src_points, dst_points) data=[] def get_gt(img_path,net): image = cv2.imread(img_path) # 加载图像 height, width, channels = image.shape # 准备输入图像 blob = cv2.dnn.blobFromImage(image, 0.00392, (416, 416), (0, 0, 0), True, crop=False) net.setInput(blob) outs = net.forward(output_layers) # 解析 YOLO 输出,找到人体边界框 class_ids = [] confidences = [] boxes = [] for out in outs: for detection in out: scores = detection[5:] class_id = np.argmax(scores) confidence = scores[class_id] if confidence > 0.5: # 置信度阈值 center_x = int(detection[0] * width) center_y = int(detection[1] * height) w = int(detection[2] * width) h = int(detection[3] * height) x = int(center_x - w / 2) y = int(center_y - h / 2) boxes.append([x, y, w, h]) confidences.append(float(confidence)) class_ids.append(class_id) # 如果检测到了多个框,只保留置信度最高的那个框 if len(boxes) > 0: max_confidence_idx = np.argmax(confidences) boxes = [boxes[max_confidence_idx]] x, y, w, h = boxes[0] foot_position_image = (x + w // 2, y + h) person_img_coords = np.array([[foot_position_image[0], foot_position_image[1]]], dtype="float32") actual_coords = cv2.perspectiveTransform(np.array([person_img_coords]), np.linalg.inv(M)) return actual_coords[0,0,0],actual_coords[0,0,1] people_id=0 for people in os.listdir(root): print(people) path=os.path.join(root,people) pbar = tqdm.tqdm(os.listdir(path)) x_list = [] y_list = [] img_path_list = [] time_list = [] for pic in pbar: if "color" not in pic: continue # print(pic) timestamp = pic.split("_") timestamp = timestamp[-1].split(".") timestamp = timestamp[0] timestamp = timestamp.split("-") # print(timestamp) timestamp = float(timestamp[0]) * 60 * 60 * 100 + float(timestamp[1]) * 60 * 100 + float(timestamp[2]) * 100 + float(timestamp[3]) img_path = os.path.join(path, pic) x, y = get_gt(img_path, net) x_list.append(x) y_list.append(y) img_path_list.append(img_path) time_list.append(timestamp) data.append({ 'timestamp': np.array(time_list), 'people_name': people, 'people': people_id, 'x': np.array(x_list), 'y': np.array(y_list), 'img_path': img_path_list }) people_id += 1 output_file = './gt_data.pkl' with open(output_file, 'wb') as f: pickle.dump(data, f)