Datasets:
Upload openvivqa.py with huggingface_hub
Browse files- openvivqa.py +162 -0
openvivqa.py
ADDED
|
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
import json
|
| 3 |
+
import os
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
from typing import Dict, List, Tuple
|
| 6 |
+
|
| 7 |
+
import datasets
|
| 8 |
+
|
| 9 |
+
from seacrowd.utils import schemas
|
| 10 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
| 11 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
| 12 |
+
|
| 13 |
+
_CITATION = """\
|
| 14 |
+
@inproceedings{tran2021vivqa,
|
| 15 |
+
title={ViVQA: Vietnamese visual question answering},
|
| 16 |
+
author={Tran, Khanh Quoc and Nguyen, An Trong and Le, An Tran-Hoai and Van Nguyen, Kiet},
|
| 17 |
+
booktitle={Proceedings of the 35th Pacific Asia Conference on Language, Information and Computation},
|
| 18 |
+
pages={683--691},
|
| 19 |
+
year={2021}
|
| 20 |
+
}
|
| 21 |
+
"""
|
| 22 |
+
_DATASETNAME = "openvivqa"
|
| 23 |
+
_DESCRIPTION = """\
|
| 24 |
+
OpenViVQA (Open-domain Vietnamese Visual Question Answering) is a dataset for VQA (Visual Question Answering) with
|
| 25 |
+
open-ended answers in Vietnamese. It consisted of 11199 images associated with 37914 question-answer pairs (QAs).
|
| 26 |
+
Images in the OpenViVQA dataset are captured in Vietnam and question-answer pairs are created manually by Vietnamese
|
| 27 |
+
crowd workers.
|
| 28 |
+
"""
|
| 29 |
+
_HOMEPAGE = "https://huggingface.co/datasets/uitnlp/OpenViVQA-dataset"
|
| 30 |
+
_LANGUAGES = ["vie"]
|
| 31 |
+
_LICENSE = Licenses.MIT.value
|
| 32 |
+
_LOCAL = False
|
| 33 |
+
_HF_URL = "https://huggingface.co/datasets/uitnlp/OpenViVQA-dataset"
|
| 34 |
+
_URLS = {
|
| 35 |
+
"dataset": {
|
| 36 |
+
"train": "https://huggingface.co/datasets/uitnlp/OpenViVQA-dataset/raw/main/vlsp2023_train_data.json",
|
| 37 |
+
"test": "https://huggingface.co/datasets/uitnlp/OpenViVQA-dataset/raw/main/vlsp2023_test_data.json",
|
| 38 |
+
"dev": "https://huggingface.co/datasets/uitnlp/OpenViVQA-dataset/raw/main/vlsp2023_dev_data.json",
|
| 39 |
+
},
|
| 40 |
+
"images": {
|
| 41 |
+
"train": "https://huggingface.co/datasets/uitnlp/OpenViVQA-dataset/resolve/main/train-images.zip?download=true",
|
| 42 |
+
"test": "https://huggingface.co/datasets/uitnlp/OpenViVQA-dataset/resolve/main/test-images.zip?download=true",
|
| 43 |
+
"dev": "https://huggingface.co/datasets/uitnlp/OpenViVQA-dataset/resolve/main/dev-images.zip?download=true",
|
| 44 |
+
},
|
| 45 |
+
}
|
| 46 |
+
_SUPPORTED_TASKS = [Tasks.VISUAL_QUESTION_ANSWERING]
|
| 47 |
+
_SOURCE_VERSION = "1.0.0"
|
| 48 |
+
_SEACROWD_VERSION = "2024.06.20"
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
class OpenViVQADataset(datasets.GeneratorBasedBuilder):
|
| 52 |
+
|
| 53 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
| 54 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
| 55 |
+
|
| 56 |
+
BUILDER_CONFIGS = [
|
| 57 |
+
SEACrowdConfig(
|
| 58 |
+
name=f"{_DATASETNAME}_source",
|
| 59 |
+
version=SOURCE_VERSION,
|
| 60 |
+
description=f"{_DATASETNAME} source schema",
|
| 61 |
+
schema="source",
|
| 62 |
+
subset_id=f"{_DATASETNAME}",
|
| 63 |
+
),
|
| 64 |
+
SEACrowdConfig(
|
| 65 |
+
name=f"{_DATASETNAME}_seacrowd_imqa",
|
| 66 |
+
version=SEACROWD_VERSION,
|
| 67 |
+
description=f"{_DATASETNAME} SEACrowd schema",
|
| 68 |
+
schema="seacrowd_imqa",
|
| 69 |
+
subset_id=f"{_DATASETNAME}",
|
| 70 |
+
),
|
| 71 |
+
]
|
| 72 |
+
|
| 73 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
|
| 74 |
+
|
| 75 |
+
def _info(self) -> datasets.DatasetInfo:
|
| 76 |
+
|
| 77 |
+
if self.config.schema == "source":
|
| 78 |
+
features = datasets.Features({"img_path": datasets.Value("string"),
|
| 79 |
+
"question": datasets.Value("string"),
|
| 80 |
+
"answer": datasets.Value("string"),
|
| 81 |
+
"id": datasets.Value("string")})
|
| 82 |
+
elif self.config.schema == "seacrowd_imqa":
|
| 83 |
+
features = schemas.imqa_features
|
| 84 |
+
# features["meta"] = {"image_path": datasets.Value("string")}
|
| 85 |
+
else:
|
| 86 |
+
raise ValueError(f"No schema matched for {self.config.schema}")
|
| 87 |
+
|
| 88 |
+
return datasets.DatasetInfo(
|
| 89 |
+
description=_DESCRIPTION,
|
| 90 |
+
features=features,
|
| 91 |
+
homepage=_HOMEPAGE,
|
| 92 |
+
license=_LICENSE,
|
| 93 |
+
citation=_CITATION,
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
| 97 |
+
"""Returns SplitGenerators."""
|
| 98 |
+
data_dir = dl_manager.download_and_extract(_URLS["dataset"])
|
| 99 |
+
image_dir = dl_manager.download_and_extract(_URLS["images"])
|
| 100 |
+
|
| 101 |
+
return [
|
| 102 |
+
datasets.SplitGenerator(
|
| 103 |
+
name=datasets.Split.TRAIN,
|
| 104 |
+
gen_kwargs={
|
| 105 |
+
"filepath": data_dir["train"],
|
| 106 |
+
"imagepath": os.path.join(image_dir["train"], "training-images"),
|
| 107 |
+
"split": "train",
|
| 108 |
+
},
|
| 109 |
+
),
|
| 110 |
+
datasets.SplitGenerator(
|
| 111 |
+
name=datasets.Split.TEST,
|
| 112 |
+
gen_kwargs={
|
| 113 |
+
"filepath": data_dir["test"],
|
| 114 |
+
"imagepath": os.path.join(image_dir["test"], "test-images"),
|
| 115 |
+
"split": "test",
|
| 116 |
+
},
|
| 117 |
+
),
|
| 118 |
+
datasets.SplitGenerator(
|
| 119 |
+
name=datasets.Split.VALIDATION,
|
| 120 |
+
gen_kwargs={
|
| 121 |
+
"filepath": data_dir["dev"],
|
| 122 |
+
"imagepath": os.path.join(image_dir["dev"], "dev-images"),
|
| 123 |
+
"split": "validation",
|
| 124 |
+
},
|
| 125 |
+
),
|
| 126 |
+
]
|
| 127 |
+
|
| 128 |
+
def _generate_examples(self, filepath: Path, imagepath: Path, split: str) -> Tuple[int, Dict]:
|
| 129 |
+
"""Yields examples as (key, example) tuples."""
|
| 130 |
+
|
| 131 |
+
raw_examples = json.load(open(filepath, "r"))
|
| 132 |
+
images = raw_examples["images"]
|
| 133 |
+
data_annotations = raw_examples["annotations"]
|
| 134 |
+
for sample_id, q_key in enumerate(list(data_annotations.keys())):
|
| 135 |
+
quest_id = q_key
|
| 136 |
+
sample = data_annotations[q_key]
|
| 137 |
+
sample_img_id = sample["image_id"]
|
| 138 |
+
sample_img_name = images[str(sample_img_id)]
|
| 139 |
+
sample_img_path = os.path.join(imagepath, sample_img_name)
|
| 140 |
+
sample_question = sample["question"]
|
| 141 |
+
sample_answer = sample["answer"]
|
| 142 |
+
if self.config.schema == "source":
|
| 143 |
+
example = {
|
| 144 |
+
"img_path": sample_img_path,
|
| 145 |
+
"question": sample_question,
|
| 146 |
+
"answer": sample_answer,
|
| 147 |
+
"id": quest_id,
|
| 148 |
+
}
|
| 149 |
+
elif self.config.schema == "seacrowd_imqa":
|
| 150 |
+
example = {
|
| 151 |
+
"id": q_key,
|
| 152 |
+
"question_id": q_key,
|
| 153 |
+
"document_id": q_key,
|
| 154 |
+
"questions": [sample_question],
|
| 155 |
+
"type": None,
|
| 156 |
+
"choices": None,
|
| 157 |
+
"context": sample_img_id,
|
| 158 |
+
"answer": [sample_answer],
|
| 159 |
+
"image_paths": [sample_img_path],
|
| 160 |
+
"meta": {},
|
| 161 |
+
}
|
| 162 |
+
yield sample_id, example
|