import json from pathlib import Path import math import torch import torch.distributed as dist from torch.nn.utils.rnn import pad_sequence from torch.utils.data import Dataset, DataLoader, Sampler, WeightedRandomSampler from torch.utils.data.distributed import DistributedSampler from torchcodec.decoders import AudioDecoder MELD_LABELS = ["anger", "disgust", "fear", "joy", "neutral", "sadness", "surprise"] lab2id = {l: i for i, l in enumerate(MELD_LABELS)} def load_audio_with_torchcodec(path: Path): """ TorchCodec-native audio load: returns mono [T] and sample rate. """ dec = AudioDecoder(str(path)) samples = dec.get_all_samples() # TorchCodec AudioSamples object if hasattr(samples, "data") and hasattr(samples, "sample_rate"): waveform = samples.data sr = int(samples.sample_rate) # Fallback: (waveform, sr) elif isinstance(samples, (tuple, list)) and len(samples) == 2: waveform, sr = samples else: waveform = samples sr = getattr(dec, "sample_rate", None) if sr is None and hasattr(dec, "metadata"): sr = getattr(dec.metadata, "sample_rate", None) if sr is None: raise RuntimeError("Could not determine sample rate from TorchCodec AudioDecoder.") if not isinstance(waveform, torch.Tensor): waveform = torch.as_tensor(waveform) waveform = waveform.to(torch.float32).cpu() # [C, T] if waveform.ndim == 1: waveform = waveform.unsqueeze(0) # mono [T] mono = waveform.mean(dim=0).contiguous() return mono, int(sr) class AudioDataset(Dataset): def __init__(self, root, split: str = "train"): self.root = Path(root) self.split = split candidate_dirs = [ self.root / "data" / split, self.root / split, ] self.split_dir = None for cand in candidate_dirs: meta_candidate = cand / "meta.jsonl" if meta_candidate.exists(): self.split_dir = cand break if self.split_dir is None: locations = ", ".join(str(c / "meta.jsonl") for c in candidate_dirs) raise FileNotFoundError( f"Could not locate meta.jsonl for split '{split}'. Checked: {locations}." ) meta_file = self.split_dir / "meta.jsonl" with open(meta_file, "r", encoding="utf-8") as f: self.meta = [json.loads(line) for line in f if line.strip()] # Per-sample weights for class balancing: inverse frequency label_counts = {l: 0 for l in MELD_LABELS} for item in self.meta: label = item["Emotion"].lower() if label in lab2id: label_counts[label] += 1 total = len(self.meta) weights = [] for item in self.meta: label = item["Emotion"].lower() if label in lab2id and label_counts[label] > 0: weights.append(float(total) / float(label_counts[label])) else: weights.append(1.0) self.weights = torch.as_tensor(weights, dtype=torch.float) def __len__(self): return len(self.meta) def __getitem__(self, idx): item = self.meta[idx] audio_path = self.split_dir / item["audio"] mono, sr = load_audio_with_torchcodec(audio_path) text = item["Utterance"] label = item["Emotion"].lower() if label not in lab2id: raise ValueError(f"Unknown label {label}; expected one of {MELD_LABELS}") return { "audio": mono, "sr": int(sr), "text": text, "label_id": lab2id[label], "id": item.get("id"), "dialogue_id": item.get("Dialogue_ID"), "utterance_id": item.get("Utterance_ID"), } class DistributedWeightedSampler(Sampler): """ Weighted sampler that works with DDP. - Uses global `weights` to sample `total_size = num_replicas * num_samples_per_replica`. - Then shards indices by rank (same pattern as DistributedSampler). - Call `set_epoch(epoch)` in your training loop so each epoch changes. """ def __init__( self, dataset, weights, num_replicas=None, rank=None, replacement=True, drop_last=False, ): if num_replicas is None: if not (dist.is_available() and dist.is_initialized()): raise RuntimeError( "DistributedWeightedSampler requires DDP initialized or explicit num_replicas." ) num_replicas = dist.get_world_size() if rank is None: if not (dist.is_available() and dist.is_initialized()): raise RuntimeError( "DistributedWeightedSampler requires DDP initialized or explicit rank." ) rank = dist.get_rank() self.dataset = dataset self.weights = torch.as_tensor(weights, dtype=torch.float) if self.weights.numel() != len(self.dataset): raise ValueError("weights length must match dataset length") self.num_replicas = int(num_replicas) self.rank = int(rank) self.replacement = bool(replacement) self.drop_last = bool(drop_last) if self.drop_last: self.num_samples = len(self.dataset) // self.num_replicas else: self.num_samples = int(math.ceil(len(self.dataset) / self.num_replicas)) self.total_size = self.num_samples * self.num_replicas self.epoch = 0 def __iter__(self): # Same seed on all ranks, different shard per rank. g = torch.Generator() g.manual_seed(self.epoch) if self.replacement: # Sample with replacement (recommended for rebalancing) indices = torch.multinomial( self.weights, self.total_size, replacement=True, generator=g, ).tolist() else: # Strict no-replacement: ensure we have enough data. if self.total_size > len(self.dataset): raise ValueError( "DistributedWeightedSampler: total_size > dataset size with " "replacement=False. Use replacement=True or drop_last=True." ) indices = torch.multinomial( self.weights, self.total_size, replacement=False, generator=g, ).tolist() # Shard like DistributedSampler indices = indices[self.rank:self.total_size:self.num_replicas] assert len(indices) == self.num_samples return iter(indices) def __len__(self): return self.num_samples def set_epoch(self, epoch: int): self.epoch = int(epoch) def meld_collate(batch): if not batch: raise ValueError("meld_collate received an empty batch") audio_tensors = [sample["audio"].to(dtype=torch.float32) for sample in batch] padded_audio = pad_sequence(audio_tensors, batch_first=True) audio_lengths = torch.tensor([tensor.size(-1) for tensor in audio_tensors], dtype=torch.long) sr_values = torch.tensor([int(sample["sr"]) for sample in batch], dtype=torch.long) labels = torch.tensor([int(sample["label_id"]) for sample in batch], dtype=torch.long) texts = [str(sample["text"]) for sample in batch] return { "audio": padded_audio, "audio_lengths": audio_lengths, "sr": sr_values, "text": texts, "label_id": labels, "id": [sample.get("id") for sample in batch], "dialogue_id": [sample.get("dialogue_id") for sample in batch], "utterance_id": [sample.get("utterance_id") for sample in batch], } def build_dataloader( root, split: str = "train", batch_size: int = 8, num_workers: int = 0, collate_fn=None, shuffle=None, prefetch_factor: int = 4, ): ds = AudioDataset(root, split) if shuffle is None: shuffle = (split == "train") drop_last = (split == "train") is_distributed = dist.is_available() and dist.is_initialized() sampler = None if split == "train": if is_distributed: # Global class-balanced sampling across ranks sampler = DistributedWeightedSampler( dataset=ds, weights=ds.weights, replacement=True, drop_last=drop_last, ) shuffle = False else: # Single-process balanced sampling sampler = WeightedRandomSampler( weights=ds.weights.tolist(), num_samples=len(ds), replacement=False, ) shuffle = False else: if is_distributed: sampler = DistributedSampler( ds, shuffle=False, drop_last=drop_last, ) shuffle = False else: sampler = None loader_kwargs = { "dataset": ds, "batch_size": batch_size, "num_workers": num_workers, "collate_fn": collate_fn, "pin_memory": True, "drop_last": drop_last, } if sampler is not None: loader_kwargs["sampler"] = sampler loader_kwargs["shuffle"] = False # sampler controls ordering else: loader_kwargs["shuffle"] = shuffle if num_workers > 0: loader_kwargs["persistent_workers"] = True loader_kwargs["prefetch_factor"] = prefetch_factor if loader_kwargs.get("collate_fn") is None: loader_kwargs["collate_fn"] = meld_collate loader = DataLoader(**loader_kwargs) return loader, sampler