|
|
import equinox as eqx |
|
|
import jax |
|
|
import jax.numpy as jnp |
|
|
|
|
|
import popgym_arcade |
|
|
from popgym_arcade.baselines.model.builder import QNetworkRNN |
|
|
from popgym_arcade.baselines.utils import get_saliency_maps, vis_fn |
|
|
from popgym_arcade.wrappers import LogWrapper |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config = { |
|
|
"ENV_NAME": "MineSweeperEasy", |
|
|
"PARTIAL": False, |
|
|
"MEMORY_TYPE": "lru", |
|
|
"SEED": 0, |
|
|
"OBS_SIZE": 128, |
|
|
} |
|
|
|
|
|
config["MODEL_PATH"] = ( |
|
|
f"nips_analysis_128/PQN_RNN_{config['MEMORY_TYPE']}_{config['ENV_NAME']}_model_Partial={config['PARTIAL']}_SEED=0.pkl" |
|
|
) |
|
|
|
|
|
|
|
|
rng = jax.random.PRNGKey(config["SEED"]) |
|
|
|
|
|
|
|
|
network = QNetworkRNN(rng, rnn_type=config["MEMORY_TYPE"], obs_size=config["OBS_SIZE"]) |
|
|
|
|
|
model = eqx.tree_deserialise_leaves(config["MODEL_PATH"], network) |
|
|
|
|
|
grads, obs_seq, grad_accumulator = get_saliency_maps(rng, model, config, max_steps=30) |
|
|
|
|
|
vis_fn(grads, obs_seq, config, use_latex=True) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config = { |
|
|
"ENV_NAME": "NavigatorEasy", |
|
|
"PARTIAL": True, |
|
|
"MEMORY_TYPE": "lru", |
|
|
"SEED": 0, |
|
|
"OBS_SIZE": 128, |
|
|
} |
|
|
config["MODEL_PATH"] = ( |
|
|
f"nips_analysis_128/PQN_RNN_{config['MEMORY_TYPE']}_{config['ENV_NAME']}_model_Partial={config['PARTIAL']}_SEED=0.pkl" |
|
|
) |
|
|
|
|
|
|
|
|
rng = jax.random.PRNGKey(config["SEED"]) |
|
|
|
|
|
network = QNetworkRNN(rng, rnn_type=config["MEMORY_TYPE"], obs_size=config["OBS_SIZE"]) |
|
|
|
|
|
model = eqx.tree_deserialise_leaves(config["MODEL_PATH"], network) |
|
|
|
|
|
|
|
|
seed, _rng = jax.random.split(jax.random.key(config["SEED"])) |
|
|
env, env_params = popgym_arcade.make( |
|
|
config["ENV_NAME"], partial_obs=config["PARTIAL"], obs_size=config["OBS_SIZE"] |
|
|
) |
|
|
env = LogWrapper(env) |
|
|
n_envs = 1 |
|
|
vmap_reset = lambda n_envs: lambda rng: jax.vmap(env.reset, in_axes=(0, None))( |
|
|
jax.random.split(rng, n_envs), env_params |
|
|
) |
|
|
vmap_step = lambda n_envs: lambda rng, env_state, action: jax.vmap( |
|
|
env.step, in_axes=(0, 0, 0, None) |
|
|
)(jax.random.split(rng, n_envs), env_state, action, env_params) |
|
|
init_obs, init_state = vmap_reset(n_envs)(_rng) |
|
|
|
|
|
|
|
|
new_init_state = eqx.tree_at( |
|
|
lambda x: x.env_state.action_x, init_state, replace=jnp.array([6]) |
|
|
) |
|
|
new_init_state = eqx.tree_at( |
|
|
lambda x: x.env_state.action_y, new_init_state, replace=jnp.array([6]) |
|
|
) |
|
|
board = ( |
|
|
new_init_state.env_state.board.at[jnp.where(new_init_state.env_state.board == 2)] |
|
|
.set(0) |
|
|
.at[:, 1, 1] |
|
|
.set(2) |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
new_init_state = eqx.tree_at(lambda x: x.env_state.board, new_init_state, replace=board) |
|
|
new_init_obs = jax.vmap(env.get_obs)(new_init_state.env_state) |
|
|
|
|
|
|
|
|
|
|
|
grads, obs_seq, grad_accumulator = get_saliency_maps( |
|
|
rng, |
|
|
model, |
|
|
config, |
|
|
max_steps=10, |
|
|
initial_state_and_obs=(new_init_state, new_init_obs), |
|
|
) |
|
|
|
|
|
vis_fn(grads, obs_seq, config, use_latex=True) |
|
|
|