#!/usr/bin/env python # -*- coding: utf-8 -*- import argparse import os import equinox as eqx import jax import jax.numpy as jnp import numpy as np import pandas as pd from popgym_arcade.baselines.model.builder import QNetworkRNN from popgym_arcade.baselines.utils import get_terminal_saliency_maps def run_multiple_seeds_and_save_csv(config, seeds, max_steps=200, output_csv=None): """ Run saliency analysis on multiple seeds and save the results in a CSV file. Args: config: Configuration dictionary seeds: List of seeds to run max_steps: Maximum number of steps for each episode output_csv: Path to save the CSV file (default: auto-generated based on config) Returns: Path to the saved CSV file """ # Create a default output path if none provided if output_csv is None: output_csv = f'saliency_results_{config["MEMORY_TYPE"]}_{config["ENV_NAME"]}_Partial={config["PARTIAL"]}.csv' # List to store results all_results = [] # Store saliency distributions for each seed for seed_value in seeds: print(f"Processing seed {seed_value}...") # Update config with current seed config["SEED"] = seed_value # Create the model path for this seed model_path = f"pkls_gradients/PQN_RNN_{config['MEMORY_TYPE']}_{config['ENV_NAME']}_model_Partial={config['PARTIAL']}_SEED={config['MODEL_SEED']}.pkl" # Initialize random key for this seed rng = jax.random.PRNGKey(seed_value) # Initialize and load the model network = QNetworkRNN( rng, rnn_type=config["MEMORY_TYPE"], obs_size=config["OBS_SIZE"] ) # try: model = eqx.tree_deserialise_leaves(model_path, network) # Define path for saving the distribution for this seed dist_save_path = f'dist_{config["MEMORY_TYPE"]}_{config["ENV_NAME"]}_Partial={config["PARTIAL"]}_SEED={seed_value}.npy' # Run terminal saliency analysis grads_obs = get_terminal_saliency_maps( rng, model, config, ) # print(grads_obs.shape) # grads_obs = grads_obs.squeeze(1) grads_obs = jnp.abs(grads_obs).sum(axis=(1, 2, 3)) dist = grads_obs / grads_obs.sum() print(dist.sum()) # Convert JAX array to numpy for DataFrame dist_np = np.array(dist) # Create result dictionary result = { "seed": seed_value, "distribution": dist_np, "length": len(dist_np), "dist_path": dist_save_path, } all_results.append(result) print(f"Seed {seed_value} completed. Distribution length: {len(dist_np)}") # except Exception as e: # raise e # # print(f"Error processing seed {seed_value}: {e}") # Process results for CSV format csv_data = [] max_length = max([r["length"] for r in all_results]) if all_results else 0 for result in all_results: # Pad distribution to max length if needed padded_dist = np.zeros(max_length) padded_dist[: result["length"]] = result["distribution"] # Create row data row = { "seed": result["seed"], "length": result["length"], "dist_path": result["dist_path"], } # Add each position value as a separate column for i in range(max_length): norm_pos = i / max_length if max_length > 0 else 0 row[f"pos_{norm_pos:.3f}"] = padded_dist[i] csv_data.append(row) # Create DataFrame and save to CSV df = pd.DataFrame(csv_data) df.to_csv(output_csv, index=False) print(f"Results saved to {output_csv}") return output_csv