import jax import pytest import popgym_arcade from popgym_arcade.registration import REGISTERED_ENVIRONMENTS @pytest.mark.parametrize("env_name", REGISTERED_ENVIRONMENTS) @pytest.mark.parametrize("partial", [False, True]) @pytest.mark.parametrize("obs_size", [128, 256]) def test_make(env_name, partial, obs_size): env, env_params = popgym_arcade.make( env_name, partial_obs=partial, obs_size=obs_size ) @pytest.mark.parametrize("env_name", REGISTERED_ENVIRONMENTS) @pytest.mark.parametrize("partial", [False, True]) @pytest.mark.parametrize("obs_size", [128, 256]) def test_reset_and_step_short(env_name, partial, obs_size): env, env_params = popgym_arcade.make( env_name, partial_obs=partial, obs_size=obs_size ) reset = jax.jit(jax.vmap(env.reset, in_axes=(0, None))) step = jax.jit(jax.vmap(env.step, in_axes=(0, 0, 0, None))) # Initialize four vectorized environments n_envs = 2 # Initialize PRNG keys key = jax.random.key(0) reset_keys = jax.random.split(key, n_envs) # Reset environments observation, env_state = reset(reset_keys, env_params) # Step the POMDPs for t in range(10): # Propagate some randomness action_key, step_key = jax.random.split(jax.random.key(t)) action_keys = jax.random.split(action_key, n_envs) step_keys = jax.random.split(step_key, n_envs) # Pick actions at random actions = jax.vmap(env.action_space(env_params).sample)(action_keys) # Step the env to the next state # No need to reset, gymnax automatically resets when done observation, env_state, reward, done, info = step( step_keys, env_state, actions, env_params ) # Check obs space is correct assert env.observation_space(env_params).contains( observation ), "Invalid observation space" if __name__ == "__main__": pytest.main()