| """ | |
| __init__.py | |
| Enables dynamic loading of datasets, depending on an argument. | |
| """ | |
| import importlib | |
| import torch.utils.data | |
| from data.base_dataset import BaseDataset | |
| def find_dataset_using_name(dataset_name): | |
| """Import the module "data/[dataset_name]_dataset.py". | |
| In the file, the class called DatasetNameDataset() will | |
| be instantiated. It has to be a subclass of BaseDataset, | |
| and it is case-insensitive. | |
| """ | |
| dataset_filename = "data." + dataset_name + "_dataset" | |
| datasetlib = importlib.import_module(dataset_filename) | |
| dataset = None | |
| target_dataset_name = dataset_name.replace('_', '') + 'dataset' | |
| for name, cls in datasetlib.__dict__.items(): | |
| if name.lower() == target_dataset_name.lower() \ | |
| and issubclass(cls, BaseDataset): | |
| dataset = cls | |
| if dataset is None: | |
| raise NotImplementedError("In %s.py, there should be a subclass of BaseDataset with class name that matches %s in lowercase." % (dataset_filename, target_dataset_name)) | |
| return dataset | |
| def create_dataset(opt): | |
| """Create a dataset given the option. | |
| This function wraps the class CustomDatasetDataLoader. | |
| This is the main interface between this package and 'train.py'/'test.py' | |
| Example: | |
| >>> from data import create_dataset | |
| >>> dataset = create_dataset(opt) | |
| """ | |
| data_loader = CustomDatasetDataLoader(opt) | |
| dataset = data_loader.load_data() | |
| return dataset | |
| def get_dataset_options(dataset_name): | |
| dataset_filename = "data." + dataset_name + "_dataset" | |
| datalib = importlib.import_module(dataset_filename) | |
| for name, cls in datalib.__dict__.items(): | |
| if name.lower() == 'datasetoptions': | |
| return cls | |
| return None | |
| class CustomDatasetDataLoader(): | |
| """Wrapper class of Dataset class that performs multi-threaded data loading""" | |
| def __init__(self, opt): | |
| """Initialize this class | |
| Step 1: create a dataset instance given the name [dataset_mode] | |
| Step 2: create a multi-threaded data loader. | |
| """ | |
| self.opt = opt | |
| dataset_class = find_dataset_using_name(opt.dataset_mode) | |
| self.dataset = dataset_class(opt) | |
| self.dataloader = torch.utils.data.DataLoader( | |
| self.dataset, | |
| batch_size=opt.batch_size, | |
| shuffle=not opt.serial_batches, | |
| num_workers=int(opt.num_threads)) | |
| def load_data(self): | |
| return self | |
| def __len__(self): | |
| """Return the number of data in the dataset""" | |
| return min(len(self.dataset), self.opt.max_dataset_size) | |
| def __iter__(self): | |
| """Return a batch of data""" | |
| for i, data in enumerate(self.dataloader): | |
| if i * self.opt.batch_size >= self.opt.max_dataset_size: | |
| break | |
| yield data | |