minor updates
Browse files- README.md +11 -11
- geometric/geometric_test.tar.gz +2 -2
- geometric/geometric_train.tar.gz +2 -2
- geometric/geometric_val.tar.gz +2 -2
README.md
CHANGED
|
@@ -3,7 +3,7 @@ license: cc-by-4.0
|
|
| 3 |
---
|
| 4 |
# C3: Cross-View Cross-Modality Correspondence Dataset
|
| 5 |
## Dataset for *C3Po: Cross-View Cross-Modality Correspondence with Pointmap Prediction*
|
| 6 |
-
[
|
| 7 |
|
| 8 |
**C3** contains **90K paired floor plans and photos from the Internet** across **597 scenes** with **153M pixel-level correspondences** and **85K camera poses**.
|
| 9 |
|
|
@@ -12,11 +12,11 @@ license: cc-by-4.0
|
|
| 12 |
- `image_pairs.csv`: Each row represents a plan-photo pair, consisting of `uid`, `scene_name`, `plan_path`, and `photo_path`. `uid` is used to reference corresponding files in `correspondences/` and `camera_poses`, named using the format `{int(uid):06d}.npy`. `scene_name` is used to reference corresponding floor plans (`visual/{scene_name}/{plan_path}`) and photos (`visual/{scene_name}/{photo_path}`).
|
| 13 |
|
| 14 |
## Correspondences and Camera Poses
|
| 15 |
-
`geometric/` has three files: `geometric_train.tar.gz`, `geometric_val.tar.gz`, and `geometric_test.tar.gz`. Each of these files (`geometric_{split}.tar.gz`) can be extracted to `{split}/correspondences/` and `{split}/
|
| 16 |
|
| 17 |
- `correspondences/`: Each `.npy` files contains an array of [plan_correspondences (M, 2), photo_correspondences (M, 2)] and are grouped in batches of 1,000.
|
| 18 |
|
| 19 |
-
- `camera_poses/`: Each `.npy` file contains an array of [R<sub>
|
| 20 |
|
| 21 |
```
|
| 22 |
geometric/
|
|
@@ -76,17 +76,17 @@ import numpy as np
|
|
| 76 |
import pandas as pd
|
| 77 |
from PIL import Image
|
| 78 |
|
| 79 |
-
def draw_camera_frustum(ax,
|
| 80 |
# Camera axes
|
| 81 |
-
forward =
|
| 82 |
-
right =
|
| 83 |
|
| 84 |
# Near and far plane distances
|
| 85 |
near_len, far_len = frustum_length * 0.2, frustum_length
|
| 86 |
near_width, far_width = frustum_width * 0.2, frustum_width
|
| 87 |
|
| 88 |
# Corner points of the frustum
|
| 89 |
-
cc = -
|
| 90 |
points = np.array([
|
| 91 |
cc + forward * near_len - right * near_width / 2, # near left
|
| 92 |
cc + forward * near_len + right * near_width / 2, # near right
|
|
@@ -111,9 +111,9 @@ plan_corr, photo_corr = np.load(corr_path)
|
|
| 111 |
|
| 112 |
# Load camera pose
|
| 113 |
camera_pose_path = join(geometric_train_dir, "camera_poses", f"{int(uid) // 1000}", f"{int(uid):06d}.npy")
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
|
| 118 |
# Load floor plan and photo
|
| 119 |
visual_dir = "visual/"
|
|
@@ -128,7 +128,7 @@ axes[0].imshow(plan)
|
|
| 128 |
axes[0].set_title("Floor Plan")
|
| 129 |
axes[0].scatter(plan_corr[:, 0], plan_corr[:, 1], c="r", s=1)
|
| 130 |
scale = max(plan.size) * 0.05
|
| 131 |
-
draw_camera_frustum(axes[0],
|
| 132 |
axes[0].axis('off')
|
| 133 |
|
| 134 |
axes[1].imshow(photo)
|
|
|
|
| 3 |
---
|
| 4 |
# C3: Cross-View Cross-Modality Correspondence Dataset
|
| 5 |
## Dataset for *C3Po: Cross-View Cross-Modality Correspondence with Pointmap Prediction*
|
| 6 |
+
[arXiv](https://arxiv.org/abs/2511.18559) | [Project Website](https://c3po-correspondence.github.io/) | [GitHub](https://github.com/c3po-correspondence/C3Po)
|
| 7 |
|
| 8 |
**C3** contains **90K paired floor plans and photos from the Internet** across **597 scenes** with **153M pixel-level correspondences** and **85K camera poses**.
|
| 9 |
|
|
|
|
| 12 |
- `image_pairs.csv`: Each row represents a plan-photo pair, consisting of `uid`, `scene_name`, `plan_path`, and `photo_path`. `uid` is used to reference corresponding files in `correspondences/` and `camera_poses`, named using the format `{int(uid):06d}.npy`. `scene_name` is used to reference corresponding floor plans (`visual/{scene_name}/{plan_path}`) and photos (`visual/{scene_name}/{photo_path}`).
|
| 13 |
|
| 14 |
## Correspondences and Camera Poses
|
| 15 |
+
`geometric/` has three files: `geometric_train.tar.gz`, `geometric_val.tar.gz`, and `geometric_test.tar.gz`. Each of these files (`geometric_{split}.tar.gz`) can be extracted to `{split}/correspondences/` and `{split}/camera_poses/`.
|
| 16 |
|
| 17 |
- `correspondences/`: Each `.npy` files contains an array of [plan_correspondences (M, 2), photo_correspondences (M, 2)] and are grouped in batches of 1,000.
|
| 18 |
|
| 19 |
+
- `camera_poses/`: Each `.npy` file contains an array of [R<sub>plan-to-cam</sub> (3, 3), t<sub>plan</sub> (3,), K (3, 3)] and are grouped in batches of 1,000.
|
| 20 |
|
| 21 |
```
|
| 22 |
geometric/
|
|
|
|
| 76 |
import pandas as pd
|
| 77 |
from PIL import Image
|
| 78 |
|
| 79 |
+
def draw_camera_frustum(ax, t_p, R_p2c, frustum_length, frustum_width, color='blue', alpha=0.3):
|
| 80 |
# Camera axes
|
| 81 |
+
forward = R_p2c[:, 2]
|
| 82 |
+
right = R_p2c[:, 0]
|
| 83 |
|
| 84 |
# Near and far plane distances
|
| 85 |
near_len, far_len = frustum_length * 0.2, frustum_length
|
| 86 |
near_width, far_width = frustum_width * 0.2, frustum_width
|
| 87 |
|
| 88 |
# Corner points of the frustum
|
| 89 |
+
cc = -R_p2c.T @ t_p
|
| 90 |
points = np.array([
|
| 91 |
cc + forward * near_len - right * near_width / 2, # near left
|
| 92 |
cc + forward * near_len + right * near_width / 2, # near right
|
|
|
|
| 111 |
|
| 112 |
# Load camera pose
|
| 113 |
camera_pose_path = join(geometric_train_dir, "camera_poses", f"{int(uid) // 1000}", f"{int(uid):06d}.npy")
|
| 114 |
+
R_p2c, t_p, _ = np.load(camera_pose_path, allow_pickle=True)
|
| 115 |
+
R_p2c = np.array(R_p2c.tolist(), dtype=float)
|
| 116 |
+
t_p = np.array(t_p)
|
| 117 |
|
| 118 |
# Load floor plan and photo
|
| 119 |
visual_dir = "visual/"
|
|
|
|
| 128 |
axes[0].set_title("Floor Plan")
|
| 129 |
axes[0].scatter(plan_corr[:, 0], plan_corr[:, 1], c="r", s=1)
|
| 130 |
scale = max(plan.size) * 0.05
|
| 131 |
+
draw_camera_frustum(axes[0], t_p, R_p2c, frustum_length=scale, frustum_width=scale, color='blue', alpha=0.3)
|
| 132 |
axes[0].axis('off')
|
| 133 |
|
| 134 |
axes[1].imshow(photo)
|
geometric/geometric_test.tar.gz
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d86e3da2cc8466eb5faafb12e327702a5028966f03f7f458a83fc34a29119711
|
| 3 |
+
size 243057920
|
geometric/geometric_train.tar.gz
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f3e6bfa03dd3ec64649d0292e33d125aa62e90d9cf551caa27ed0246156ff79a
|
| 3 |
+
size 814650033
|
geometric/geometric_val.tar.gz
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fcdae17e2eb7003563f0ce825b0a1624a3c12e5ea2152310cb55bd6dd3b73fcb
|
| 3 |
+
size 56871460
|