Datasets:

Modalities:
Text
Formats:
csv
ArXiv:
Libraries:
Datasets
pandas
License:
kwhuang commited on
Commit
58789da
·
1 Parent(s): daba496

minor updates

Browse files
README.md CHANGED
@@ -3,7 +3,7 @@ license: cc-by-4.0
3
  ---
4
  # C3: Cross-View Cross-Modality Correspondence Dataset
5
  ## Dataset for *C3Po: Cross-View Cross-Modality Correspondence with Pointmap Prediction*
6
- [Paper (coming soon)](https://c3po-correspondence.github.io/) | [Project Website](https://c3po-correspondence.github.io/) | [GitHub](https://github.com/c3po-correspondence/C3Po)
7
 
8
  **C3** contains **90K paired floor plans and photos from the Internet** across **597 scenes** with **153M pixel-level correspondences** and **85K camera poses**.
9
 
@@ -12,11 +12,11 @@ license: cc-by-4.0
12
  - `image_pairs.csv`: Each row represents a plan-photo pair, consisting of `uid`, `scene_name`, `plan_path`, and `photo_path`. `uid` is used to reference corresponding files in `correspondences/` and `camera_poses`, named using the format `{int(uid):06d}.npy`. `scene_name` is used to reference corresponding floor plans (`visual/{scene_name}/{plan_path}`) and photos (`visual/{scene_name}/{photo_path}`).
13
 
14
  ## Correspondences and Camera Poses
15
- `geometric/` has three files: `geometric_train.tar.gz`, `geometric_val.tar.gz`, and `geometric_test.tar.gz`. Each of these files (`geometric_{split}.tar.gz`) can be extracted to `{split}/correspondences/` and `{split}/caemra_poses/`.
16
 
17
  - `correspondences/`: Each `.npy` files contains an array of [plan_correspondences (M, 2), photo_correspondences (M, 2)] and are grouped in batches of 1,000.
18
 
19
- - `camera_poses/`: Each `.npy` file contains an array of [R<sub>cam-to-world</sub> (3, 3), t<sub>world</sub> (3,), K (3, 3)] and are grouped in batches of 1,000.
20
 
21
  ```
22
  geometric/
@@ -76,17 +76,17 @@ import numpy as np
76
  import pandas as pd
77
  from PIL import Image
78
 
79
- def draw_camera_frustum(ax, t_w, R_c2w, frustum_length, frustum_width, color='blue', alpha=0.3):
80
  # Camera axes
81
- forward = R_c2w[:, 2]
82
- right = R_c2w[:, 0]
83
 
84
  # Near and far plane distances
85
  near_len, far_len = frustum_length * 0.2, frustum_length
86
  near_width, far_width = frustum_width * 0.2, frustum_width
87
 
88
  # Corner points of the frustum
89
- cc = -R_c2w @ t_w
90
  points = np.array([
91
  cc + forward * near_len - right * near_width / 2, # near left
92
  cc + forward * near_len + right * near_width / 2, # near right
@@ -111,9 +111,9 @@ plan_corr, photo_corr = np.load(corr_path)
111
 
112
  # Load camera pose
113
  camera_pose_path = join(geometric_train_dir, "camera_poses", f"{int(uid) // 1000}", f"{int(uid):06d}.npy")
114
- R_c2w, t_w, _ = np.load(camera_pose_path, allow_pickle=True)
115
- R_c2w = np.array(R_c2w.tolist(), dtype=float)
116
- t_w = np.array(t_w)
117
 
118
  # Load floor plan and photo
119
  visual_dir = "visual/"
@@ -128,7 +128,7 @@ axes[0].imshow(plan)
128
  axes[0].set_title("Floor Plan")
129
  axes[0].scatter(plan_corr[:, 0], plan_corr[:, 1], c="r", s=1)
130
  scale = max(plan.size) * 0.05
131
- draw_camera_frustum(axes[0], t_w, R_c2w, frustum_length=scale, frustum_width=scale, color='blue', alpha=0.3)
132
  axes[0].axis('off')
133
 
134
  axes[1].imshow(photo)
 
3
  ---
4
  # C3: Cross-View Cross-Modality Correspondence Dataset
5
  ## Dataset for *C3Po: Cross-View Cross-Modality Correspondence with Pointmap Prediction*
6
+ [arXiv](https://arxiv.org/abs/2511.18559) | [Project Website](https://c3po-correspondence.github.io/) | [GitHub](https://github.com/c3po-correspondence/C3Po)
7
 
8
  **C3** contains **90K paired floor plans and photos from the Internet** across **597 scenes** with **153M pixel-level correspondences** and **85K camera poses**.
9
 
 
12
  - `image_pairs.csv`: Each row represents a plan-photo pair, consisting of `uid`, `scene_name`, `plan_path`, and `photo_path`. `uid` is used to reference corresponding files in `correspondences/` and `camera_poses`, named using the format `{int(uid):06d}.npy`. `scene_name` is used to reference corresponding floor plans (`visual/{scene_name}/{plan_path}`) and photos (`visual/{scene_name}/{photo_path}`).
13
 
14
  ## Correspondences and Camera Poses
15
+ `geometric/` has three files: `geometric_train.tar.gz`, `geometric_val.tar.gz`, and `geometric_test.tar.gz`. Each of these files (`geometric_{split}.tar.gz`) can be extracted to `{split}/correspondences/` and `{split}/camera_poses/`.
16
 
17
  - `correspondences/`: Each `.npy` files contains an array of [plan_correspondences (M, 2), photo_correspondences (M, 2)] and are grouped in batches of 1,000.
18
 
19
+ - `camera_poses/`: Each `.npy` file contains an array of [R<sub>plan-to-cam</sub> (3, 3), t<sub>plan</sub> (3,), K (3, 3)] and are grouped in batches of 1,000.
20
 
21
  ```
22
  geometric/
 
76
  import pandas as pd
77
  from PIL import Image
78
 
79
+ def draw_camera_frustum(ax, t_p, R_p2c, frustum_length, frustum_width, color='blue', alpha=0.3):
80
  # Camera axes
81
+ forward = R_p2c[:, 2]
82
+ right = R_p2c[:, 0]
83
 
84
  # Near and far plane distances
85
  near_len, far_len = frustum_length * 0.2, frustum_length
86
  near_width, far_width = frustum_width * 0.2, frustum_width
87
 
88
  # Corner points of the frustum
89
+ cc = -R_p2c.T @ t_p
90
  points = np.array([
91
  cc + forward * near_len - right * near_width / 2, # near left
92
  cc + forward * near_len + right * near_width / 2, # near right
 
111
 
112
  # Load camera pose
113
  camera_pose_path = join(geometric_train_dir, "camera_poses", f"{int(uid) // 1000}", f"{int(uid):06d}.npy")
114
+ R_p2c, t_p, _ = np.load(camera_pose_path, allow_pickle=True)
115
+ R_p2c = np.array(R_p2c.tolist(), dtype=float)
116
+ t_p = np.array(t_p)
117
 
118
  # Load floor plan and photo
119
  visual_dir = "visual/"
 
128
  axes[0].set_title("Floor Plan")
129
  axes[0].scatter(plan_corr[:, 0], plan_corr[:, 1], c="r", s=1)
130
  scale = max(plan.size) * 0.05
131
+ draw_camera_frustum(axes[0], t_p, R_p2c, frustum_length=scale, frustum_width=scale, color='blue', alpha=0.3)
132
  axes[0].axis('off')
133
 
134
  axes[1].imshow(photo)
geometric/geometric_test.tar.gz CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c052401eab225fa3e640a02ebfa8e1f0bff1b81b3d71eaa8ec1d6709d2e3fe26
3
- size 243092440
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d86e3da2cc8466eb5faafb12e327702a5028966f03f7f458a83fc34a29119711
3
+ size 243057920
geometric/geometric_train.tar.gz CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b0cc17f1c84b5d46dab255cf36bfd0de18b301f7b24b4fd0e4c035e9d3e2e169
3
- size 814760273
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3e6bfa03dd3ec64649d0292e33d125aa62e90d9cf551caa27ed0246156ff79a
3
+ size 814650033
geometric/geometric_val.tar.gz CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:46f34492e49a1102854a601f8d2092775070498cdfe2b3bc5e8cd755c781bc58
3
- size 56871306
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fcdae17e2eb7003563f0ce825b0a1624a3c12e5ea2152310cb55bd6dd3b73fcb
3
+ size 56871460