mytcl commited on
Commit
11cdc0b
·
verified ·
1 Parent(s): d2d5965

Upload 7 files

Browse files
mmwhs_best/20240918_112019/20240918_112019.log ADDED
The diff for this file is too large to render. See raw diff
 
mmwhs_best/20240918_112019/iter_25000.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4363bec6553e5fa1cdf8df59f569672f75a77f146342948240e76d4f52a47a69
3
+ size 562107400
mmwhs_best/20240918_112019/last_checkpoint ADDED
@@ -0,0 +1 @@
 
 
1
+ /home/zhangxingyu/mmlab/mmsegmentation/work_dirs/fcn_psvt_256x256_25k_cardiac/iter_25000.pth
mmwhs_best/20240918_112019/vis_data/20240918_112019.json ADDED
The diff for this file is too large to render. See raw diff
 
mmwhs_best/20240918_112019/vis_data/config.py ADDED
@@ -0,0 +1,264 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ checkpoint_file = './work_dirs/fcn_psvt_256x256_80k_cardiac/20240916_112410/iter_80000.pth'
2
+ crop_size = (
3
+ 256,
4
+ 256,
5
+ )
6
+ data_preprocessor = dict(
7
+ bgr_to_rgb=True,
8
+ mean=[
9
+ 123.675,
10
+ 116.28,
11
+ 103.53,
12
+ ],
13
+ pad_val=0,
14
+ seg_pad_val=255,
15
+ size=(
16
+ 256,
17
+ 256,
18
+ ),
19
+ std=[
20
+ 58.395,
21
+ 57.12,
22
+ 57.375,
23
+ ],
24
+ type='SegDataPreProcessor')
25
+ data_root = 'data/mr-cardiac'
26
+ dataset_type = 'CardiacDataset'
27
+ default_hooks = dict(
28
+ checkpoint=dict(by_epoch=False, interval=2000, type='CheckpointHook'),
29
+ logger=dict(interval=50, log_metric_by_epoch=False, type='LoggerHook'),
30
+ param_scheduler=dict(type='ParamSchedulerHook'),
31
+ sampler_seed=dict(type='DistSamplerSeedHook'),
32
+ timer=dict(type='IterTimerHook'),
33
+ visualization=dict(type='SegVisualizationHook'))
34
+ default_scope = 'mmseg'
35
+ env_cfg = dict(
36
+ cudnn_benchmark=True,
37
+ dist_cfg=dict(backend='nccl'),
38
+ mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0))
39
+ find_unused_parameters = True
40
+ img_norm_cfg = dict(
41
+ mean=[
42
+ 123.675,
43
+ 116.28,
44
+ 103.53,
45
+ ],
46
+ std=[
47
+ 58.395,
48
+ 57.12,
49
+ 57.375,
50
+ ],
51
+ to_rgb=True)
52
+ img_scale = (
53
+ 300,
54
+ 300,
55
+ )
56
+ launcher = 'pytorch'
57
+ load_from = None
58
+ log_level = 'INFO'
59
+ log_processor = dict(by_epoch=False)
60
+ model = dict(
61
+ backbone=dict(
62
+ ape=False,
63
+ depths=[
64
+ 2,
65
+ 2,
66
+ 6,
67
+ 2,
68
+ ],
69
+ drop_path_rate=0.2,
70
+ img_size=256,
71
+ in_channels=3,
72
+ type='PSVT',
73
+ window_size=[
74
+ 8,
75
+ 8,
76
+ 8,
77
+ 8,
78
+ ]),
79
+ data_preprocessor=dict(
80
+ bgr_to_rgb=True,
81
+ mean=[
82
+ 123.675,
83
+ 116.28,
84
+ 103.53,
85
+ ],
86
+ pad_val=0,
87
+ seg_pad_val=255,
88
+ size=(
89
+ 256,
90
+ 256,
91
+ ),
92
+ std=[
93
+ 58.395,
94
+ 57.12,
95
+ 57.375,
96
+ ],
97
+ type='SegDataPreProcessor'),
98
+ decode_head=dict(
99
+ channels=96,
100
+ in_channels=96,
101
+ in_index=-1,
102
+ loss_decode=[
103
+ dict(
104
+ loss_name='loss_ce', loss_weight=1.0, type='CrossEntropyLoss'),
105
+ dict(loss_name='loss_dice', loss_weight=1.0, type='DiceLoss'),
106
+ ],
107
+ norm_cfg=dict(requires_grad=True, type='SyncBN'),
108
+ num_classes=8,
109
+ type='FCNHead'),
110
+ test_cfg=dict(crop_size=(
111
+ 512,
112
+ 512,
113
+ ), mode='whole', stride=(
114
+ 85,
115
+ 85,
116
+ )),
117
+ train_cfg=dict(),
118
+ type='EncoderDecoder')
119
+ norm_cfg = dict(requires_grad=True, type='SyncBN')
120
+ optim_wrapper = dict(
121
+ clip_grad=None,
122
+ optimizer=dict(lr=0.01, type='AdamW', weight_decay=0.1),
123
+ type='OptimWrapper')
124
+ optimizer = dict(lr=0.01, type='AdamW', weight_decay=0.1)
125
+ param_scheduler = [
126
+ dict(
127
+ begin=0, by_epoch=False, end=12000, start_factor=0.03,
128
+ type='LinearLR'),
129
+ dict(
130
+ begin=12000,
131
+ by_epoch=False,
132
+ end=24000,
133
+ eta_min_ratio=0.03,
134
+ power=0.9,
135
+ type='PolyLRRatio'),
136
+ dict(begin=24000, by_epoch=False, end=25000, factor=1, type='ConstantLR'),
137
+ ]
138
+ resume = False
139
+ step = 's1'
140
+ test_cfg = dict(type='TestLoop')
141
+ test_dataloader = dict(
142
+ batch_size=16,
143
+ dataset=dict(
144
+ data_prefix=dict(img_path='test/image', seg_map_path='test/label'),
145
+ data_root='data/mr-cardiac',
146
+ pipeline=[
147
+ dict(type='LoadImageFromFile'),
148
+ dict(keep_ratio=False, scale=(
149
+ 256,
150
+ 256,
151
+ ), type='Resize'),
152
+ dict(type='LoadAnnotations'),
153
+ dict(type='PackSegInputs'),
154
+ ],
155
+ type='CardiacDataset'),
156
+ drop_last=False,
157
+ num_workers=16,
158
+ persistent_workers=True,
159
+ sampler=dict(shuffle=False, type='DefaultSampler'))
160
+ test_evaluator = dict(
161
+ iou_metrics=[
162
+ 'mIoU',
163
+ ], type='IoUMetric')
164
+ test_pipeline = [
165
+ dict(type='LoadImageFromFile'),
166
+ dict(keep_ratio=False, scale=(
167
+ 256,
168
+ 256,
169
+ ), type='Resize'),
170
+ dict(type='LoadAnnotations'),
171
+ dict(type='PackSegInputs'),
172
+ ]
173
+ train_cfg = dict(max_iters=25000, type='IterBasedTrainLoop', val_interval=1000)
174
+ train_dataloader = dict(
175
+ batch_size=16,
176
+ dataset=dict(
177
+ data_prefix=dict(img_path='train/image', seg_map_path='train/label'),
178
+ data_root='data/mr-cardiac',
179
+ pipeline=[
180
+ dict(type='LoadImageFromFile'),
181
+ dict(type='LoadAnnotations'),
182
+ dict(
183
+ keep_ratio=True,
184
+ ratio_range=(
185
+ 0.5,
186
+ 2.0,
187
+ ),
188
+ scale=(
189
+ 300,
190
+ 300,
191
+ ),
192
+ type='RandomResize'),
193
+ dict(
194
+ cat_max_ratio=0.75, crop_size=(
195
+ 256,
196
+ 256,
197
+ ), type='RandomCrop'),
198
+ dict(prob=0.5, type='RandomFlip'),
199
+ dict(type='PhotoMetricDistortion'),
200
+ dict(type='PackSegInputs'),
201
+ ],
202
+ type='CardiacDataset'),
203
+ num_workers=16,
204
+ persistent_workers=True,
205
+ sampler=dict(shuffle=True, type='InfiniteSampler'))
206
+ train_pipeline = [
207
+ dict(type='LoadImageFromFile'),
208
+ dict(type='LoadAnnotations'),
209
+ dict(
210
+ keep_ratio=True,
211
+ ratio_range=(
212
+ 0.5,
213
+ 2.0,
214
+ ),
215
+ scale=(
216
+ 300,
217
+ 300,
218
+ ),
219
+ type='RandomResize'),
220
+ dict(cat_max_ratio=0.75, crop_size=(
221
+ 256,
222
+ 256,
223
+ ), type='RandomCrop'),
224
+ dict(prob=0.5, type='RandomFlip'),
225
+ dict(type='PhotoMetricDistortion'),
226
+ dict(type='PackSegInputs'),
227
+ ]
228
+ tta_model = dict(type='SegTTAModel')
229
+ val_cfg = dict(type='ValLoop')
230
+ val_dataloader = dict(
231
+ batch_size=16,
232
+ dataset=dict(
233
+ data_prefix=dict(img_path='test/image', seg_map_path='test/label'),
234
+ data_root='data/mr-cardiac',
235
+ pipeline=[
236
+ dict(type='LoadImageFromFile'),
237
+ dict(keep_ratio=False, scale=(
238
+ 256,
239
+ 256,
240
+ ), type='Resize'),
241
+ dict(type='LoadAnnotations'),
242
+ dict(type='PackSegInputs'),
243
+ ],
244
+ type='CardiacDataset'),
245
+ drop_last=False,
246
+ num_workers=16,
247
+ persistent_workers=True,
248
+ sampler=dict(shuffle=False, type='DefaultSampler'))
249
+ val_evaluator = dict(
250
+ iou_metrics=[
251
+ 'mIoU',
252
+ ], type='IoUMetric')
253
+ vis_backends = [
254
+ dict(type='LocalVisBackend'),
255
+ dict(type='TensorboardVisBackend'),
256
+ ]
257
+ visualizer = dict(
258
+ name='visualizer',
259
+ type='SegLocalVisualizer',
260
+ vis_backends=[
261
+ dict(type='LocalVisBackend'),
262
+ dict(type='TensorboardVisBackend'),
263
+ ])
264
+ work_dir = './work_dirs/fcn_psvt_256x256_25k_cardiac'
mmwhs_best/20240918_112019/vis_data/events.out.tfevents.1726629622.localhost.localdomain.208731.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83d42b7a3a813272768f7847e54db176c8657a8e5b5fdf038dba145f0f4e4fc3
3
+ size 226034
mmwhs_best/20240918_112019/vis_data/scalars.json ADDED
The diff for this file is too large to render. See raw diff