Upload 687 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- Task02_Heart/._dataset.json +0 -0
- Task02_Heart/._imagesTr +0 -0
- Task02_Heart/._imagesTs +0 -0
- Task02_Heart/._labelsTr +0 -0
- Task02_Heart/.idea/.gitignore +3 -0
- Task02_Heart/.idea/.name +1 -0
- Task02_Heart/.idea/Task02_Heart.iml +8 -0
- Task02_Heart/.idea/deployment.xml +14 -0
- Task02_Heart/.idea/inspectionProfiles/profiles_settings.xml +6 -0
- Task02_Heart/.idea/misc.xml +4 -0
- Task02_Heart/.idea/modules.xml +8 -0
- Task02_Heart/.idea/workspace.xml +56 -0
- Task02_Heart/__pycache__/half_vnet.cpython-311.pyc +0 -0
- Task02_Heart/__pycache__/half_vnet.cpython-38.pyc +0 -0
- Task02_Heart/__pycache__/vnet.cpython-311.pyc +0 -0
- Task02_Heart/__pycache__/vnet.cpython-38.pyc +0 -0
- Task02_Heart/data-augment.py +95 -0
- Task02_Heart/data-show.py +171 -0
- Task02_Heart/data_proc_for_3d.py +147 -0
- Task02_Heart/dataprocess.py +253 -0
- Task02_Heart/dataset.json +19 -0
- Task02_Heart/get_3d_data.py +0 -0
- Task02_Heart/get_precise_seg_part.py +111 -0
- Task02_Heart/half_vnet.py +207 -0
- Task02_Heart/imagesTr/la_003.nii.gz +3 -0
- Task02_Heart/imagesTr/la_004.nii.gz +3 -0
- Task02_Heart/imagesTr/la_005.nii.gz +3 -0
- Task02_Heart/imagesTr/la_007.nii.gz +3 -0
- Task02_Heart/imagesTr/la_009.nii.gz +3 -0
- Task02_Heart/imagesTr/la_010.nii.gz +3 -0
- Task02_Heart/imagesTr/la_011.nii.gz +3 -0
- Task02_Heart/imagesTr/la_014.nii.gz +3 -0
- Task02_Heart/imagesTr/la_016.nii.gz +3 -0
- Task02_Heart/imagesTr/la_017.nii.gz +3 -0
- Task02_Heart/imagesTr/la_018.nii.gz +3 -0
- Task02_Heart/imagesTr/la_019.nii.gz +3 -0
- Task02_Heart/imagesTr/la_020.nii.gz +3 -0
- Task02_Heart/imagesTr/la_021.nii.gz +3 -0
- Task02_Heart/imagesTr/la_022.nii.gz +3 -0
- Task02_Heart/imagesTr/la_023.nii.gz +3 -0
- Task02_Heart/imagesTr/la_024.nii.gz +3 -0
- Task02_Heart/imagesTr/la_026.nii.gz +3 -0
- Task02_Heart/imagesTr/la_029.nii.gz +3 -0
- Task02_Heart/imagesTr/la_030.nii.gz +3 -0
- Task02_Heart/imagesTr/pos_labels.npy +3 -0
- Task02_Heart/imagesTs/la_001.nii.gz +3 -0
- Task02_Heart/imagesTs/la_002.nii.gz +3 -0
- Task02_Heart/imagesTs/la_006.nii.gz +3 -0
- Task02_Heart/imagesTs/la_008.nii.gz +3 -0
- Task02_Heart/imagesTs/la_012.nii.gz +3 -0
Task02_Heart/._dataset.json
ADDED
|
Binary file (176 Bytes). View file
|
|
|
Task02_Heart/._imagesTr
ADDED
|
Binary file (120 Bytes). View file
|
|
|
Task02_Heart/._imagesTs
ADDED
|
Binary file (120 Bytes). View file
|
|
|
Task02_Heart/._labelsTr
ADDED
|
Binary file (120 Bytes). View file
|
|
|
Task02_Heart/.idea/.gitignore
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1bfdece3645ed8ed356030f22cc2004dc3f401ff060ac3d24de811c3bcd82e16
|
| 3 |
+
size 184
|
Task02_Heart/.idea/.name
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
show_image_and_label.py
|
Task02_Heart/.idea/Task02_Heart.iml
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
| 2 |
+
<module type="PYTHON_MODULE" version="4">
|
| 3 |
+
<component name="NewModuleRootManager">
|
| 4 |
+
<content url="file://$MODULE_DIR$" />
|
| 5 |
+
<orderEntry type="inheritedJdk" />
|
| 6 |
+
<orderEntry type="sourceFolder" forTests="false" />
|
| 7 |
+
</component>
|
| 8 |
+
</module>
|
Task02_Heart/.idea/deployment.xml
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
| 2 |
+
<project version="4">
|
| 3 |
+
<component name="PublishConfigData" remoteFilesAllowedToDisappearOnAutoupload="false">
|
| 4 |
+
<serverData>
|
| 5 |
+
<paths name="root@connect.yza1.seetacloud.com:49263 password">
|
| 6 |
+
<serverdata>
|
| 7 |
+
<mappings>
|
| 8 |
+
<mapping local="$PROJECT_DIR$" web="/" />
|
| 9 |
+
</mappings>
|
| 10 |
+
</serverdata>
|
| 11 |
+
</paths>
|
| 12 |
+
</serverData>
|
| 13 |
+
</component>
|
| 14 |
+
</project>
|
Task02_Heart/.idea/inspectionProfiles/profiles_settings.xml
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<component name="InspectionProjectProfileManager">
|
| 2 |
+
<settings>
|
| 3 |
+
<option name="USE_PROJECT_PROFILE" value="false" />
|
| 4 |
+
<version value="1.0" />
|
| 5 |
+
</settings>
|
| 6 |
+
</component>
|
Task02_Heart/.idea/misc.xml
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
| 2 |
+
<project version="4">
|
| 3 |
+
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.6" project-jdk-type="Python SDK" />
|
| 4 |
+
</project>
|
Task02_Heart/.idea/modules.xml
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
| 2 |
+
<project version="4">
|
| 3 |
+
<component name="ProjectModuleManager">
|
| 4 |
+
<modules>
|
| 5 |
+
<module fileurl="file://$PROJECT_DIR$/.idea/Task02_Heart.iml" filepath="$PROJECT_DIR$/.idea/Task02_Heart.iml" />
|
| 6 |
+
</modules>
|
| 7 |
+
</component>
|
| 8 |
+
</project>
|
Task02_Heart/.idea/workspace.xml
ADDED
|
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
| 2 |
+
<project version="4">
|
| 3 |
+
<component name="AutoImportSettings">
|
| 4 |
+
<option name="autoReloadType" value="SELECTIVE" />
|
| 5 |
+
</component>
|
| 6 |
+
<component name="ChangeListManager">
|
| 7 |
+
<list default="true" id="6367f652-10e6-41bd-8155-b4eab4e93752" name="Changes" comment="" />
|
| 8 |
+
<option name="SHOW_DIALOG" value="false" />
|
| 9 |
+
<option name="HIGHLIGHT_CONFLICTS" value="true" />
|
| 10 |
+
<option name="HIGHLIGHT_NON_ACTIVE_CHANGELIST" value="false" />
|
| 11 |
+
<option name="LAST_RESOLUTION" value="IGNORE" />
|
| 12 |
+
</component>
|
| 13 |
+
<component name="ProjectColorInfo"><![CDATA[{
|
| 14 |
+
"customColor": "",
|
| 15 |
+
"associatedIndex": 4
|
| 16 |
+
}]]></component>
|
| 17 |
+
<component name="ProjectId" id="2mpPRTNPZxr7pyzWSgBrLAOiNJt" />
|
| 18 |
+
<component name="ProjectViewState">
|
| 19 |
+
<option name="hideEmptyMiddlePackages" value="true" />
|
| 20 |
+
<option name="showLibraryContents" value="true" />
|
| 21 |
+
</component>
|
| 22 |
+
<component name="PropertiesComponent"><![CDATA[{
|
| 23 |
+
"keyToString": {
|
| 24 |
+
"RunOnceActivity.OpenProjectViewOnStart": "true",
|
| 25 |
+
"RunOnceActivity.ShowReadmeOnStart": "true",
|
| 26 |
+
"node.js.detected.package.eslint": "true",
|
| 27 |
+
"node.js.detected.package.tslint": "true",
|
| 28 |
+
"node.js.selected.package.eslint": "(autodetect)",
|
| 29 |
+
"node.js.selected.package.tslint": "(autodetect)",
|
| 30 |
+
"nodejs_package_manager_path": "npm",
|
| 31 |
+
"vue.rearranger.settings.migration": "true"
|
| 32 |
+
}
|
| 33 |
+
}]]></component>
|
| 34 |
+
<component name="SharedIndexes">
|
| 35 |
+
<attachedChunks>
|
| 36 |
+
<set>
|
| 37 |
+
<option value="bundled-python-sdk-09665e90c3a7-b11f5e8da5ad-com.jetbrains.pycharm.pro.sharedIndexes.bundled-PY-233.15026.15" />
|
| 38 |
+
</set>
|
| 39 |
+
</attachedChunks>
|
| 40 |
+
</component>
|
| 41 |
+
<component name="SpellCheckerSettings" RuntimeDictionaries="0" Folders="0" CustomDictionaries="0" DefaultDictionary="application-level" UseSingleDictionary="true" transferred="true" />
|
| 42 |
+
<component name="TaskManager">
|
| 43 |
+
<task active="true" id="Default" summary="Default task">
|
| 44 |
+
<changelist id="6367f652-10e6-41bd-8155-b4eab4e93752" name="Changes" comment="" />
|
| 45 |
+
<created>1727770539185</created>
|
| 46 |
+
<option name="number" value="Default" />
|
| 47 |
+
<option name="presentableId" value="Default" />
|
| 48 |
+
<updated>1727770539185</updated>
|
| 49 |
+
<workItem from="1727770542147" duration="660000" />
|
| 50 |
+
</task>
|
| 51 |
+
<servers />
|
| 52 |
+
</component>
|
| 53 |
+
<component name="TypeScriptGeneratedFilesManager">
|
| 54 |
+
<option name="version" value="3" />
|
| 55 |
+
</component>
|
| 56 |
+
</project>
|
Task02_Heart/__pycache__/half_vnet.cpython-311.pyc
ADDED
|
Binary file (14 kB). View file
|
|
|
Task02_Heart/__pycache__/half_vnet.cpython-38.pyc
ADDED
|
Binary file (6.89 kB). View file
|
|
|
Task02_Heart/__pycache__/vnet.cpython-311.pyc
ADDED
|
Binary file (14.6 kB). View file
|
|
|
Task02_Heart/__pycache__/vnet.cpython-38.pyc
ADDED
|
Binary file (7.07 kB). View file
|
|
|
Task02_Heart/data-augment.py
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import glob
|
| 2 |
+
import random
|
| 3 |
+
import os
|
| 4 |
+
import cv2
|
| 5 |
+
import numpy as np
|
| 6 |
+
import tqdm
|
| 7 |
+
from matplotlib import pyplot as plt
|
| 8 |
+
|
| 9 |
+
import albumentations as A
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def visualize(image, mask, original_image=None, original_mask=None):
|
| 13 |
+
fontsize = 18
|
| 14 |
+
|
| 15 |
+
if original_image is None and original_mask is None:
|
| 16 |
+
f, ax = plt.subplots(2, 1, figsize=(8, 8))
|
| 17 |
+
|
| 18 |
+
ax[0].imshow(image)
|
| 19 |
+
ax[1].imshow(mask)
|
| 20 |
+
else:
|
| 21 |
+
f, ax = plt.subplots(2, 2, figsize=(8, 8))
|
| 22 |
+
|
| 23 |
+
ax[0, 0].imshow(original_image)
|
| 24 |
+
ax[0, 0].set_title('Original image', fontsize=fontsize)
|
| 25 |
+
|
| 26 |
+
ax[1, 0].imshow(original_mask)
|
| 27 |
+
ax[1, 0].set_title('Original mask', fontsize=fontsize)
|
| 28 |
+
|
| 29 |
+
ax[0, 1].imshow(image)
|
| 30 |
+
ax[0, 1].set_title('Transformed image', fontsize=fontsize)
|
| 31 |
+
|
| 32 |
+
ax[1, 1].imshow(mask)
|
| 33 |
+
ax[1, 1].set_title('Transformed mask', fontsize=fontsize)
|
| 34 |
+
plt.show()
|
| 35 |
+
def augment_by_times():
|
| 36 |
+
image_path=r'C:\Users\zhang\PycharmProjects\mmsegmentation\data\mr-cardiac\mri_train_2d\image'
|
| 37 |
+
label_path=r'C:\Users\zhang\PycharmProjects\mmsegmentation\data\mr-cardiac\mri_train_2d\label'
|
| 38 |
+
|
| 39 |
+
image_paths=glob.glob(os.path.join(image_path,'*.png'))
|
| 40 |
+
# test=cv2.imread(r'C:\Users\zhang\PycharmProjects\mmsegmentation\data\mr-cardiac\train\label\mr_train_1001_image_100.png')
|
| 41 |
+
# print(np.unique(test))
|
| 42 |
+
times=2
|
| 43 |
+
for i in range(times):
|
| 44 |
+
for path in tqdm.tqdm(image_paths):
|
| 45 |
+
|
| 46 |
+
filename=path.split('\\')[-1]
|
| 47 |
+
# print(path,filename)
|
| 48 |
+
|
| 49 |
+
image = cv2.imread(path,0)
|
| 50 |
+
mask = cv2.imread(os.path.join(label_path,filename),0)
|
| 51 |
+
# print(image.dtype,mask.dtype,np.unique(mask))
|
| 52 |
+
# print(np.unique(mask))
|
| 53 |
+
# print(image.shape, mask.shape)
|
| 54 |
+
original_height, original_width = image.shape[:2]
|
| 55 |
+
aug = A.Compose([
|
| 56 |
+
A.PadIfNeeded(min_height=128,min_width=128,value=0,p=1),
|
| 57 |
+
# A.RandomSizedCrop(min_max_height=(128,256), height=original_height,
|
| 58 |
+
# width=original_width, p=0.5),
|
| 59 |
+
A.VerticalFlip(p=0.5),
|
| 60 |
+
A.RandomRotate90(p=0.5),
|
| 61 |
+
A.OneOf([
|
| 62 |
+
A.ElasticTransform(alpha=120, sigma=120 * 0.05,
|
| 63 |
+
alpha_affine=120 * 0.03, p=0.5),
|
| 64 |
+
A.GridDistortion(p=0.5),
|
| 65 |
+
A.OpticalDistortion(distort_limit=2, shift_limit=0.5, p=1)
|
| 66 |
+
], p=0.8),
|
| 67 |
+
A.CLAHE(p=0.8),
|
| 68 |
+
A.RandomBrightnessContrast(p=0.8),
|
| 69 |
+
A.RandomGamma(p=0.8)
|
| 70 |
+
]
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
# random.seed(11)
|
| 76 |
+
augmented = aug(image=image, mask=mask)
|
| 77 |
+
|
| 78 |
+
image_heavy = augmented['image']
|
| 79 |
+
mask_heavy = augmented['mask']
|
| 80 |
+
# print(mask_heavy.shape,np.unique(mask_heavy))
|
| 81 |
+
label_num=len(np.unique(mask_heavy))
|
| 82 |
+
# print(image_heavy.dtype,mask_heavy.dtype)
|
| 83 |
+
if label_num>=2:
|
| 84 |
+
# print(filename,np.unique(mask_heavy))
|
| 85 |
+
cv2.imwrite(os.path.join(image_path.replace('mri_train_2d','mri_aug_2d'),f'aug{i+1}_'+filename),image_heavy)
|
| 86 |
+
cv2.imwrite(os.path.join(label_path.replace('mri_train_2d', 'mri_aug_2d'),
|
| 87 |
+
f'aug{i+1}_' + filename), mask_heavy)
|
| 88 |
+
# visualize(image_heavy, mask_heavy, original_image=image,
|
| 89 |
+
# original_mask=mask)
|
| 90 |
+
# visualize(image, mask)
|
| 91 |
+
# print(type(image),image_heavy.shape)
|
| 92 |
+
|
| 93 |
+
# break
|
| 94 |
+
if __name__ == '__main__':
|
| 95 |
+
augment_by_times()
|
Task02_Heart/data-show.py
ADDED
|
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import glob
|
| 2 |
+
import random
|
| 3 |
+
import os
|
| 4 |
+
import cv2
|
| 5 |
+
import numpy as np
|
| 6 |
+
import tqdm
|
| 7 |
+
from matplotlib import pyplot as plt
|
| 8 |
+
|
| 9 |
+
import albumentations as A
|
| 10 |
+
# patient009_frame13_03.png
|
| 11 |
+
# patient030_frame01_07.png
|
| 12 |
+
# patient049_frame11_02.png
|
| 13 |
+
# patient069_frame01_00.png
|
| 14 |
+
# patient085_frame01_09.png
|
| 15 |
+
|
| 16 |
+
def visualize(image, mask, original_image=None, original_mask=None):
|
| 17 |
+
fontsize = 18
|
| 18 |
+
|
| 19 |
+
if original_image is None and original_mask is None:
|
| 20 |
+
f, ax = plt.subplots(2, 1, figsize=(8, 8))
|
| 21 |
+
|
| 22 |
+
ax[0].imshow(image)
|
| 23 |
+
ax[1].imshow(mask)
|
| 24 |
+
else:
|
| 25 |
+
f, ax = plt.subplots(2, 2, figsize=(8, 8))
|
| 26 |
+
|
| 27 |
+
ax[0, 0].imshow(original_image)
|
| 28 |
+
ax[0, 0].set_title('Original image', fontsize=fontsize)
|
| 29 |
+
|
| 30 |
+
ax[1, 0].imshow(original_mask)
|
| 31 |
+
ax[1, 0].set_title('Original mask', fontsize=fontsize)
|
| 32 |
+
|
| 33 |
+
ax[0, 1].imshow(image)
|
| 34 |
+
ax[0, 1].set_title('Transformed image', fontsize=fontsize)
|
| 35 |
+
|
| 36 |
+
ax[1, 1].imshow(mask)
|
| 37 |
+
ax[1, 1].set_title('Transformed mask', fontsize=fontsize)
|
| 38 |
+
plt.show()
|
| 39 |
+
# image_path=r'C:\Users\zhang\PycharmProjects\mmsegmentation\data\mr-cardiac\train\image'
|
| 40 |
+
# label_path=r'C:\Users\zhang\PycharmProjects\mmsegmentation\data\mr-cardiac\train\label'
|
| 41 |
+
|
| 42 |
+
# image_paths=glob.glob(os.path.join(image_path,'*.png'))
|
| 43 |
+
# test=cv2.imread(r'C:\Users\zhang\PycharmProjects\mmsegmentation\data\mr-cardiac\train\label\mr_train_1001_image_100.png')
|
| 44 |
+
# print(np.unique(test))
|
| 45 |
+
# for path in tqdm.tqdm(image_paths):
|
| 46 |
+
|
| 47 |
+
# filename=path.split('\\')[-1]
|
| 48 |
+
# print(path,filename)
|
| 49 |
+
|
| 50 |
+
image = cv2.imread('./mri_train_2d/image/mr_train_1011_image_100.png',0)
|
| 51 |
+
mask = cv2.imread('./mri_train_2d/label/mr_train_1011_image_100.png',0)
|
| 52 |
+
# print(image.dtype,mask.dtype,np.unique(mask))
|
| 53 |
+
# print(np.unique(mask))
|
| 54 |
+
# print(image.shape, mask.shape)
|
| 55 |
+
original_height, original_width = image.shape[:2]
|
| 56 |
+
|
| 57 |
+
f, ax = plt.subplots(2, 7, figsize=(32,8),squeeze=True)
|
| 58 |
+
plt.axis('off')
|
| 59 |
+
|
| 60 |
+
image=A.resize(image,256,256)
|
| 61 |
+
mask=A.resize(mask,256,256)
|
| 62 |
+
ax[0,0].imshow(image,cmap='gray',)
|
| 63 |
+
ax[0,0].axis('off')
|
| 64 |
+
|
| 65 |
+
ax[1,0].imshow(mask,cmap='CMRmap')
|
| 66 |
+
ax[1,0].axis('off')
|
| 67 |
+
plt.gcf().tight_layout()
|
| 68 |
+
aug=A.VerticalFlip()
|
| 69 |
+
augmented = aug(image=image, mask=mask)
|
| 70 |
+
image_heavy = augmented['image']
|
| 71 |
+
mask_heavy = augmented['mask']
|
| 72 |
+
ax[0,1].imshow(image_heavy,cmap='gray')
|
| 73 |
+
ax[0,1].axis('off')
|
| 74 |
+
ax[1,1].imshow(mask_heavy,cmap='CMRmap')
|
| 75 |
+
ax[1,1].axis('off')
|
| 76 |
+
|
| 77 |
+
aug=A.RandomRotate90()
|
| 78 |
+
augmented = aug(image=image, mask=mask)
|
| 79 |
+
image_heavy = augmented['image']
|
| 80 |
+
mask_heavy = augmented['mask']
|
| 81 |
+
ax[0,2].imshow(image_heavy,cmap='gray')
|
| 82 |
+
ax[0,2].axis('off')
|
| 83 |
+
ax[1,2].imshow(mask_heavy,cmap='CMRmap')
|
| 84 |
+
ax[1,2].axis('off')
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
aug=A.RandomSizedCrop(min_max_height=(100,200), height=256,
|
| 88 |
+
width=256)
|
| 89 |
+
augmented = aug(image=image, mask=mask)
|
| 90 |
+
image_heavy = augmented['image']
|
| 91 |
+
mask_heavy = augmented['mask']
|
| 92 |
+
ax[0,3].imshow(image_heavy,cmap='gray')
|
| 93 |
+
ax[0,3].axis('off')
|
| 94 |
+
ax[1,3].imshow(mask_heavy,cmap='CMRmap')
|
| 95 |
+
ax[1,3].axis('off')
|
| 96 |
+
|
| 97 |
+
aug=A.ElasticTransform(alpha=120, sigma=120 * 0.05,
|
| 98 |
+
alpha_affine=120 * 0.03)
|
| 99 |
+
augmented = aug(image=image, mask=mask)
|
| 100 |
+
image_heavy = augmented['image']
|
| 101 |
+
mask_heavy = augmented['mask']
|
| 102 |
+
ax[0,4].imshow(image_heavy,cmap='gray')
|
| 103 |
+
ax[0,4].axis('off')
|
| 104 |
+
ax[1,4].imshow(mask_heavy,cmap='CMRmap')
|
| 105 |
+
ax[1,4].axis('off')
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
aug=A.GridDistortion()
|
| 109 |
+
augmented = aug(image=image, mask=mask)
|
| 110 |
+
image_heavy = augmented['image']
|
| 111 |
+
mask_heavy = augmented['mask']
|
| 112 |
+
ax[0,5].imshow(image_heavy,cmap='gray')
|
| 113 |
+
ax[0,5].axis('off')
|
| 114 |
+
ax[1,5].imshow(mask_heavy,cmap='CMRmap')
|
| 115 |
+
ax[1,5].axis('off')
|
| 116 |
+
|
| 117 |
+
aug=A.OpticalDistortion(distort_limit=2, shift_limit=0.5)
|
| 118 |
+
augmented = aug(image=image, mask=mask)
|
| 119 |
+
image_heavy = augmented['image']
|
| 120 |
+
mask_heavy = augmented['mask']
|
| 121 |
+
ax[0,6].imshow(image_heavy,cmap='gray')
|
| 122 |
+
ax[0,6].axis('off')
|
| 123 |
+
|
| 124 |
+
|
| 125 |
+
ax[1,6].imshow(mask_heavy,cmap='CMRmap')
|
| 126 |
+
ax[1,6].axis('off')
|
| 127 |
+
plt.tight_layout()
|
| 128 |
+
plt.subplots_adjust(wspace=0,hspace=0)
|
| 129 |
+
plt.show()
|
| 130 |
+
# f.savefig('a.png',bbox_inches='tight')
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
# aug = A.Compose([
|
| 134 |
+
# # A.PadIfNeeded(min_height=128,min_width=128,value=0,p=1),
|
| 135 |
+
# A.RandomSizedCrop(min_max_height=(128,256), height=original_height,
|
| 136 |
+
# width=original_width, p=0.5),
|
| 137 |
+
# A.VerticalFlip(p=0.5),
|
| 138 |
+
# A.RandomRotate90(p=0.5),
|
| 139 |
+
# A.OneOf([
|
| 140 |
+
# A.ElasticTransform(alpha=120, sigma=120 * 0.05,
|
| 141 |
+
# alpha_affine=120 * 0.03, p=0.5),
|
| 142 |
+
# A.GridDistortion(p=0.5),
|
| 143 |
+
# A.OpticalDistortion(distort_limit=2, shift_limit=0.5, p=1)
|
| 144 |
+
# ], p=0.8),
|
| 145 |
+
# A.CLAHE(p=0.8),
|
| 146 |
+
# A.RandomBrightnessContrast(p=0.8),
|
| 147 |
+
# A.RandomGamma(p=0.8)
|
| 148 |
+
# ]
|
| 149 |
+
# )
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
# random.seed(11)
|
| 154 |
+
# augmented = aug(image=image, mask=mask)
|
| 155 |
+
#
|
| 156 |
+
# image_heavy = augmented['image']
|
| 157 |
+
# mask_heavy = augmented['mask']
|
| 158 |
+
# # print(mask_heavy.shape,np.unique(mask_heavy))
|
| 159 |
+
# label_num=len(np.unique(mask_heavy))
|
| 160 |
+
# # print(image_heavy.dtype,mask_heavy.dtype)
|
| 161 |
+
# # if label_num>=2:
|
| 162 |
+
# # print(filename,np.unique(mask_heavy))
|
| 163 |
+
# # cv2.imwrite(os.path.join(image_path.replace('train','aug_train'),'aug_v2'+filename),image_heavy)
|
| 164 |
+
# # cv2.imwrite(os.path.join(label_path.replace('train', 'aug_train'),
|
| 165 |
+
# # 'aug_v2' + filename), mask_heavy)
|
| 166 |
+
# visualize(image_heavy, mask_heavy, original_image=image,
|
| 167 |
+
# original_mask=mask)
|
| 168 |
+
# visualize(image, mask)
|
| 169 |
+
# print(type(image),image_heavy.shape)
|
| 170 |
+
|
| 171 |
+
# break
|
Task02_Heart/data_proc_for_3d.py
ADDED
|
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
|
| 3 |
+
import cv2
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
import nibabel as nib
|
| 6 |
+
import os
|
| 7 |
+
import glob
|
| 8 |
+
# from scipy.ndimage import zoom
|
| 9 |
+
import numpy as np
|
| 10 |
+
import skimage.transform
|
| 11 |
+
import torch.optim
|
| 12 |
+
from skimage import transform
|
| 13 |
+
from scipy.ndimage import binary_fill_holes, zoom
|
| 14 |
+
from scipy.ndimage import map_coordinates
|
| 15 |
+
from vnet import VNet
|
| 16 |
+
from half_vnet import HalfVNet
|
| 17 |
+
from torch.utils.data import Dataset, DataLoader
|
| 18 |
+
import torch.nn as nn
|
| 19 |
+
from torch.optim import AdamW
|
| 20 |
+
from torch.cuda.amp import GradScaler
|
| 21 |
+
from torch.cuda.amp import autocast
|
| 22 |
+
from tqdm import tqdm
|
| 23 |
+
def handle_image_and_label():
|
| 24 |
+
cnt = 0
|
| 25 |
+
pos_label = []
|
| 26 |
+
image_paths = glob.glob(r'C:\Users\zhang\PycharmProjects\mmsegmentation\data\Task02_Heart\labelsTr\*.nii.gz')
|
| 27 |
+
for path in image_paths:
|
| 28 |
+
folder = 'mri_train_2d1'
|
| 29 |
+
filename = path.split('\\')[-1].split('.')[0].replace('label', 'image')
|
| 30 |
+
|
| 31 |
+
print(filename)
|
| 32 |
+
# 获取image,转换成合适的维度
|
| 33 |
+
image = nib.load(path).dataobj
|
| 34 |
+
image = np.array(image, dtype=np.int8)
|
| 35 |
+
image = np.swapaxes(image, 1, 2)
|
| 36 |
+
image = np.swapaxes(image, 0, 1)
|
| 37 |
+
D, H, W = image.shape
|
| 38 |
+
plt.subplot(1, 3, 1)
|
| 39 |
+
plt.imshow(image[60, :, :])
|
| 40 |
+
image = transform.resize(image, (128, 320, 320))
|
| 41 |
+
plt.subplot(1, 3, 2)
|
| 42 |
+
plt.imshow(image[60, :, :])
|
| 43 |
+
|
| 44 |
+
# 获取归一化的坐标
|
| 45 |
+
z_min, z_max = get_min_and_max_by_axis(image, 0)
|
| 46 |
+
x_min, x_max = get_min_and_max_by_axis(image, 1)
|
| 47 |
+
y_min, y_max = get_min_and_max_by_axis(image, 2)
|
| 48 |
+
label = [z_min, z_max, x_min, x_max, y_min, y_max]
|
| 49 |
+
print(image.shape, label)
|
| 50 |
+
pos_label.append(label)
|
| 51 |
+
|
| 52 |
+
image = transform.resize(image, (D, 320, 320))
|
| 53 |
+
plt.subplot(1, 3, 3)
|
| 54 |
+
plt.imshow(image[60, :, :])
|
| 55 |
+
plt.show()
|
| 56 |
+
pos_label = np.array(pos_label)
|
| 57 |
+
print(pos_label.shape)
|
| 58 |
+
np.save('./imagesTr/pos_labels.npy', pos_label)
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def get_min_and_max_by_axis(image, axis, eps=1e-2):
|
| 62 |
+
label_list = []
|
| 63 |
+
length = image.shape[axis]
|
| 64 |
+
if axis == 0:
|
| 65 |
+
for i in range(length):
|
| 66 |
+
if len(np.unique(image[i, :, :])) != 1:
|
| 67 |
+
label_list.append(i)
|
| 68 |
+
elif axis == 1:
|
| 69 |
+
for i in range(length):
|
| 70 |
+
if len(np.unique(image[:, i, :])) != 1:
|
| 71 |
+
label_list.append(i)
|
| 72 |
+
elif axis == 2:
|
| 73 |
+
for i in range(length):
|
| 74 |
+
if len(np.unique(image[:, :, i])) != 1:
|
| 75 |
+
label_list.append(i)
|
| 76 |
+
norm_min, norm_max = min(label_list) / length - eps, max(label_list) / length + eps
|
| 77 |
+
print(min(label_list), int(norm_min * length), max(label_list), int(norm_max * length))
|
| 78 |
+
return norm_min, norm_max
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
class NIIDataset(Dataset):
|
| 82 |
+
def __init__(self, path,resize_shape):
|
| 83 |
+
super().__init__()
|
| 84 |
+
self.image_paths = glob.glob(path)
|
| 85 |
+
label_path=path[:-8]+'pos_labels.npy'
|
| 86 |
+
self.labels=np.load(label_path)
|
| 87 |
+
self.resize_shape=resize_shape
|
| 88 |
+
def __len__(self):
|
| 89 |
+
return len(self.image_paths)
|
| 90 |
+
def __getitem__(self, index):
|
| 91 |
+
image=np.array(nib.load(self.image_paths[index]).dataobj)
|
| 92 |
+
image=transform.resize(image,output_shape=self.resize_shape)[np.newaxis,:]
|
| 93 |
+
label=self.labels[index]
|
| 94 |
+
return image,label
|
| 95 |
+
|
| 96 |
+
if __name__ == '__main__':
|
| 97 |
+
# handle_image_and_label()
|
| 98 |
+
dataset = NIIDataset(path='./imagesTr/*.nii.gz',resize_shape=(128,320,320))
|
| 99 |
+
dataloader=DataLoader(dataset,batch_size=2,shuffle=True)
|
| 100 |
+
test_dataloader=DataLoader(dataset,batch_size=1)
|
| 101 |
+
device="cuda" if torch.cuda.is_available() else "cpu"
|
| 102 |
+
print(device)
|
| 103 |
+
model=HalfVNet().to(device)
|
| 104 |
+
criterion=torch.nn.L1Loss(reduction='sum').to(device)
|
| 105 |
+
optimizer=torch.optim.AdamW(model.parameters(),lr=0.001)
|
| 106 |
+
scaler=GradScaler()
|
| 107 |
+
EPOCHS=100
|
| 108 |
+
|
| 109 |
+
# weights=torch.load('./weights/vnet_100.pth')
|
| 110 |
+
# model.load_state_dict(weights)
|
| 111 |
+
|
| 112 |
+
TRAIN=True
|
| 113 |
+
TEST=True
|
| 114 |
+
if TRAIN:
|
| 115 |
+
for epoch in range(1,EPOCHS+1):
|
| 116 |
+
model.train()
|
| 117 |
+
losses=[]
|
| 118 |
+
train_bar=tqdm(dataloader,file=sys.stdout)
|
| 119 |
+
for step,(images,labels) in enumerate(train_bar):
|
| 120 |
+
with autocast():
|
| 121 |
+
images=images.to(device)
|
| 122 |
+
labels=labels.to(torch.float32).to(device)
|
| 123 |
+
output=model(images)
|
| 124 |
+
|
| 125 |
+
optimizer.zero_grad()
|
| 126 |
+
loss=criterion(output,labels)
|
| 127 |
+
# loss.backward()
|
| 128 |
+
# optimizer.step()
|
| 129 |
+
scaler.scale(loss).backward()
|
| 130 |
+
scaler.step(optimizer)
|
| 131 |
+
scaler.update()
|
| 132 |
+
losses.append(loss.item())
|
| 133 |
+
# print(f"epoch:{epoch},mean loss:{sum(losses)/len(losses)}")
|
| 134 |
+
train_bar.set_postfix(epoch=epoch,step=step,step_loss=loss.item(),mean_loss=sum(losses)/len(losses))
|
| 135 |
+
if epoch%10==0:
|
| 136 |
+
torch.save(model.state_dict(),f'./weights/vnet_{epoch}.pth')
|
| 137 |
+
if TEST:
|
| 138 |
+
weights=torch.load('./weights/vnet_100.pth')
|
| 139 |
+
model.load_state_dict(weights)
|
| 140 |
+
model.eval()
|
| 141 |
+
for step,(images,labels) in enumerate(dataloader):
|
| 142 |
+
with autocast():
|
| 143 |
+
images = images.to(device)
|
| 144 |
+
labels = labels.to(torch.float32).to(device)
|
| 145 |
+
output = model(images)
|
| 146 |
+
print("labels:",labels)
|
| 147 |
+
print("predicts:",output)
|
Task02_Heart/dataprocess.py
ADDED
|
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import matplotlib.pyplot as plt
|
| 3 |
+
import nibabel as nib
|
| 4 |
+
import os
|
| 5 |
+
import glob
|
| 6 |
+
# from scipy.ndimage import zoom
|
| 7 |
+
import numpy as np
|
| 8 |
+
import skimage.transform
|
| 9 |
+
import torch.optim
|
| 10 |
+
from skimage import transform
|
| 11 |
+
from scipy.ndimage import binary_fill_holes,zoom
|
| 12 |
+
from scipy.ndimage import map_coordinates
|
| 13 |
+
#todo:先裁剪出bounding box,在resize成统一大小
|
| 14 |
+
# from imblearn.over_sampling import SMOTE
|
| 15 |
+
|
| 16 |
+
# image_paths=glob.glob('./train/label/*.png')
|
| 17 |
+
# cnt_mp={0:0,1:0,2:0,3:0,4:0,5:0,6:0,7:0}
|
| 18 |
+
# for path in image_paths:
|
| 19 |
+
# image=cv2.imread(path)[:,:,0]
|
| 20 |
+
# for i in cnt_mp:
|
| 21 |
+
# cnt_mp[i]+=np.sum(image==i)
|
| 22 |
+
#
|
| 23 |
+
# # break
|
| 24 |
+
# print(cnt_mp)
|
| 25 |
+
# cnt_mp.pop(0)
|
| 26 |
+
# cnt=0
|
| 27 |
+
# for i in cnt_mp:
|
| 28 |
+
# cnt+=cnt_mp[i]
|
| 29 |
+
# for i in cnt_mp:
|
| 30 |
+
# print(i,(cnt/len(cnt_mp)/cnt_mp[i]))
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
# image_paths=glob.glob('./mr_train/*_image.nii.gz')
|
| 34 |
+
# for path in image_paths:
|
| 35 |
+
# # print(path)
|
| 36 |
+
#
|
| 37 |
+
# filename=path.split('\\')[-1].split('.')[0]
|
| 38 |
+
#
|
| 39 |
+
# print(filename)
|
| 40 |
+
# image=nib.load(path).dataobj
|
| 41 |
+
# image=np.floor((image-np.min(image))/(np.max(image)-np.min(image))*255)
|
| 42 |
+
# # image=zoom(image,[256/image.shape[0],256/image.shape[1],128/image.shape[2]],order=0)
|
| 43 |
+
# # print(image.dtype)
|
| 44 |
+
#
|
| 45 |
+
# for i in range(image.shape[-1]):
|
| 46 |
+
#
|
| 47 |
+
# cv2.imwrite(os.path.join('train/image',f'{filename}_{i}.png'),image[:,:,i])
|
| 48 |
+
#
|
| 49 |
+
# # break
|
| 50 |
+
# #
|
| 51 |
+
|
| 52 |
+
# os.path.join('')
|
| 53 |
+
# image_paths=glob.glob('./ct_train/*_image.nii.gz')
|
| 54 |
+
# for path in image_paths:
|
| 55 |
+
# data_info=nib.load(path)
|
| 56 |
+
# h_,w_,d_=data_info.header['pixdim'][1:4]
|
| 57 |
+
# h,w,d=data_info.shape
|
| 58 |
+
# data=data_info.get_fdata()
|
| 59 |
+
#
|
| 60 |
+
# print(data.shape)
|
| 61 |
+
# print('实际大小',int(h*h_),int(w*w_),int(d*d_))
|
| 62 |
+
# # part_image=data[data!=-1024]
|
| 63 |
+
# # data=(data-np.mean(data))/np.std(data)
|
| 64 |
+
# # data=cv2.imread('../xm12/train_image/01001.png')
|
| 65 |
+
# # data=(data-np.mean(part_image))/np.std(part_image)
|
| 66 |
+
# print('取值范围', data.min(), data.max())
|
| 67 |
+
# # plt.imshow(data[:, :, 0],cmap='gray')
|
| 68 |
+
# # plt.show()
|
| 69 |
+
#
|
| 70 |
+
# # nonzero_mask = np.zeros(data.shape[1:], dtype=bool)
|
| 71 |
+
# # for c in range(data.shape[0]):
|
| 72 |
+
# # this_mask = data[c] != 0
|
| 73 |
+
# # nonzero_mask = nonzero_mask | this_mask
|
| 74 |
+
# # nonzero_mask = binary_fill_holes(nonzero_mask)
|
| 75 |
+
# break
|
| 76 |
+
def handle_image_and_label():
|
| 77 |
+
cnt=0
|
| 78 |
+
image_paths=glob.glob(r'C:\Users\zhang\PycharmProjects\mmsegmentation\data\Task02_Heart\labelsTr\*.nii.gz')
|
| 79 |
+
for path in image_paths:
|
| 80 |
+
# print(path)
|
| 81 |
+
# if cnt<16:
|
| 82 |
+
# folder='mri_train_2d'
|
| 83 |
+
# else:
|
| 84 |
+
# folder='mri_test_2d'
|
| 85 |
+
folder='mri_train_2d'
|
| 86 |
+
filename=path.split('\\')[-1].split('.')[0].replace('label','image')
|
| 87 |
+
|
| 88 |
+
print(filename)
|
| 89 |
+
|
| 90 |
+
image=nib.load(path).dataobj
|
| 91 |
+
image=np.array(image,dtype=np.int8)
|
| 92 |
+
# print(image.shape)
|
| 93 |
+
# print(np.unique(image))
|
| 94 |
+
'''
|
| 95 |
+
label_map = [0, 1]
|
| 96 |
+
|
| 97 |
+
for i, v in enumerate(label_map):
|
| 98 |
+
image = np.where(image == v, i, image)
|
| 99 |
+
image = np.where(image == 421, 2, image)
|
| 100 |
+
|
| 101 |
+
# 能用的label-resize
|
| 102 |
+
rows, cols, dim = 256,256,image.shape[-1]
|
| 103 |
+
orig_rows, orig_cols, orig_dim = image.shape
|
| 104 |
+
|
| 105 |
+
row_scale = float(orig_rows) / rows
|
| 106 |
+
col_scale = float(orig_cols) / cols
|
| 107 |
+
dim_scale = float(orig_dim) / dim
|
| 108 |
+
|
| 109 |
+
map_rows, map_cols, map_dims = np.mgrid[:rows, :cols, :dim]
|
| 110 |
+
map_rows = row_scale * (map_rows + 0.5) - 0.5
|
| 111 |
+
map_cols = col_scale * (map_cols + 0.5) - 0.5
|
| 112 |
+
map_dims = dim_scale * (map_dims + 0.5) - 0.5
|
| 113 |
+
|
| 114 |
+
coord_map = np.array([map_rows, map_cols, map_dims])
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
image=map_coordinates(image, coord_map, order=1)
|
| 118 |
+
'''
|
| 119 |
+
# 自己写的label-resize
|
| 120 |
+
# print(image.shape,type(image),image.dtype,np.unique(image))
|
| 121 |
+
# break
|
| 122 |
+
# print(np.unique(image))
|
| 123 |
+
|
| 124 |
+
# final_index=[]
|
| 125 |
+
# # print(np.unique(image,axis=0).shape)
|
| 126 |
+
# # print(np.unique(image, axis=1).shape)
|
| 127 |
+
# # print(np.unique(image, axis=2).shape)
|
| 128 |
+
# temp_index=[]
|
| 129 |
+
# for i in range(0,image.shape[0]):
|
| 130 |
+
# if len(np.unique(image[i,:,:]))!=1:
|
| 131 |
+
# temp_index.append(i)
|
| 132 |
+
# break
|
| 133 |
+
# for i in range(image.shape[0]-1,0,-1):
|
| 134 |
+
# if len(np.unique(image[i,:,:])) != 1:
|
| 135 |
+
# temp_index.append(i)
|
| 136 |
+
# break
|
| 137 |
+
# final_index.append(temp_index)
|
| 138 |
+
#
|
| 139 |
+
# temp_index = []
|
| 140 |
+
# for i in range(0,image.shape[1]):
|
| 141 |
+
# if len(np.unique(image[:, i, :])) != 1:
|
| 142 |
+
# temp_index.append(i)
|
| 143 |
+
# break
|
| 144 |
+
# for i in range(image.shape[1] - 1, 0, -1):
|
| 145 |
+
# if len(np.unique(image[:, i, :])) != 1:
|
| 146 |
+
# temp_index.append(i)
|
| 147 |
+
# break
|
| 148 |
+
# final_index.append(temp_index)
|
| 149 |
+
#
|
| 150 |
+
# temp_index = []
|
| 151 |
+
# for i in range(0,image.shape[2]):
|
| 152 |
+
# if len(np.unique(image[:, :, i])) != 1:
|
| 153 |
+
# temp_index.append(i)
|
| 154 |
+
# break
|
| 155 |
+
# for i in range(image.shape[2] - 1, 0, -1):
|
| 156 |
+
# if len(np.unique(image[:, :, i])) != 1:
|
| 157 |
+
# temp_index.append(i)
|
| 158 |
+
# break
|
| 159 |
+
# final_index.append(temp_index)
|
| 160 |
+
#
|
| 161 |
+
# print(final_index)
|
| 162 |
+
|
| 163 |
+
# image=image[final_index[0][0]:final_index[0][1],
|
| 164 |
+
# final_index[1][0]:final_index[1][1],
|
| 165 |
+
# final_index[2][0]:final_index[2][1]]
|
| 166 |
+
|
| 167 |
+
# 1 2 3
|
| 168 |
+
|
| 169 |
+
# 注意用保存为图片时,数值类型不要unsigned
|
| 170 |
+
image=image.astype(np.int8)
|
| 171 |
+
print(np.unique(image),type(image),image.shape,image.dtype)
|
| 172 |
+
# print(np.unique(image[:,:,60]))
|
| 173 |
+
for i in range(image.shape[-1]):
|
| 174 |
+
cv2.imwrite(os.path.join(f'{folder}/label',f'{filename}_{i}.png'),image[:,:,i])
|
| 175 |
+
|
| 176 |
+
# np.save(os.path.join('./train-3d/label',filename),image)
|
| 177 |
+
|
| 178 |
+
# if len(np.unique(image>=3)):
|
| 179 |
+
# print(image.shape)
|
| 180 |
+
# for i in range(image.shape[-1]):
|
| 181 |
+
# cv2.imwrite(os.path.join('train/label',f'{filename}_{i}.png'),image[:,:,i])
|
| 182 |
+
# filename=filename.replace('label','image')
|
| 183 |
+
|
| 184 |
+
image = np.array(nib.load(os.path.join('imagesTr', filename + '.nii.gz')).dataobj)
|
| 185 |
+
print(np.unique(image))
|
| 186 |
+
|
| 187 |
+
# f,ax=plt.subplots(2,1)
|
| 188 |
+
# ax[0].imshow(image[:,:,0])
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
# ct处理方式
|
| 192 |
+
# image=((image+1024)/4095)*255
|
| 193 |
+
# mri处理方式
|
| 194 |
+
image=((image-np.min(image))/(np.max(image)-np.min(image)))*255
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
# print(np.unique(image))
|
| 198 |
+
# ax[1].imshow(image[:,:,0])
|
| 199 |
+
# plt.show()
|
| 200 |
+
# print(image[:,:,0][128])
|
| 201 |
+
# image = np.floor(
|
| 202 |
+
# (image - np.min(image)) / (np.max(image) - np.min(image)) * 255)
|
| 203 |
+
# image = image[final_index[0][0]:final_index[0][1],
|
| 204 |
+
# final_index[1][0]:final_index[1][1],
|
| 205 |
+
# final_index[2][0]:final_index[2][1]]
|
| 206 |
+
# image=(image-np.min(image))/(np.max(image)-np.min(image))*255
|
| 207 |
+
|
| 208 |
+
# 能用的image-resize
|
| 209 |
+
'''
|
| 210 |
+
image=skimage.transform.resize(image,(256,256,image.shape[-1]),order=3)
|
| 211 |
+
'''
|
| 212 |
+
# image=image.astype(np.float32)
|
| 213 |
+
# np.save(os.path.join('./train-3d/image',filename),image)
|
| 214 |
+
print(image.dtype)
|
| 215 |
+
# print(np.unique(image[:,:,60]))
|
| 216 |
+
for i in range(image.shape[-1]):
|
| 217 |
+
cv2.imwrite(os.path.join(f'{folder}/image',f'{filename}_{i}.png'),image[:,:,i])
|
| 218 |
+
cnt+=1
|
| 219 |
+
# break
|
| 220 |
+
if __name__ == '__main__':
|
| 221 |
+
|
| 222 |
+
# paths=glob.glob(r'C:\Users\zhang\PycharmProjects\mmsegmentation\data\Task02_Heart\imagesTr\*.nii.gz')
|
| 223 |
+
# for p in paths:
|
| 224 |
+
#
|
| 225 |
+
# img=nib.load(p).dataobj
|
| 226 |
+
# print(np.min(img),np.max(img))
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
handle_image_and_label()
|
| 230 |
+
|
| 231 |
+
img=cv2.imread('./mri_train_2d/image/la_003_60.png',0)
|
| 232 |
+
label=cv2.imread('./mri_train_2d/label/la_003_60.png',0)
|
| 233 |
+
print(np.unique(label))
|
| 234 |
+
plt.subplot(1,2,1)
|
| 235 |
+
plt.imshow(img)
|
| 236 |
+
plt.subplot(1,2,2)
|
| 237 |
+
plt.imshow(label,cmap='gray',interpolation='none')
|
| 238 |
+
plt.show()
|
| 239 |
+
|
| 240 |
+
# img_3d=nib.load('./mr_train/mr_train_1011_image.nii.gz').dataobj
|
| 241 |
+
# label_3d=nib.load('./mr_train/mr_train_1011_label.nii.gz').dataobj
|
| 242 |
+
#
|
| 243 |
+
# # print(img_3d.shape)
|
| 244 |
+
# img_slice=img_3d[:,:,90]
|
| 245 |
+
#
|
| 246 |
+
# label_slice=label_3d[:,:,90]
|
| 247 |
+
# # label_slice=np.where(label_slice==420,2,label_slice)
|
| 248 |
+
# # label_slice = np.where(label_slice == 850, 7, label_slice)
|
| 249 |
+
# print(np.unique(label_slice))
|
| 250 |
+
# fig,ax=plt.subplots(1,2)
|
| 251 |
+
# ax[0].imshow(img_slice,cmap='gray')
|
| 252 |
+
# ax[1].imshow(label_slice,cmap='CMRmap')
|
| 253 |
+
# plt.show()
|
Task02_Heart/dataset.json
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"name": "LeftAtrium",
|
| 3 |
+
"description": "Left atrium segmentation",
|
| 4 |
+
"tensorImageSize": "3D",
|
| 5 |
+
"reference": "King’s College London",
|
| 6 |
+
"licence":"CC-BY-SA 4.0",
|
| 7 |
+
"relase":"1.0 04/05/2018",
|
| 8 |
+
"modality": {
|
| 9 |
+
"0": "MRI"
|
| 10 |
+
},
|
| 11 |
+
"labels": {
|
| 12 |
+
"0": "background",
|
| 13 |
+
"1": "left atrium"
|
| 14 |
+
},
|
| 15 |
+
"numTraining": 20,
|
| 16 |
+
"numTest": 10,
|
| 17 |
+
"training":[{"image":"./imagesTr/la_007.nii.gz","label":"./labelsTr/la_007.nii.gz"},{"image":"./imagesTr/la_019.nii.gz","label":"./labelsTr/la_019.nii.gz"},{"image":"./imagesTr/la_023.nii.gz","label":"./labelsTr/la_023.nii.gz"},{"image":"./imagesTr/la_005.nii.gz","label":"./labelsTr/la_005.nii.gz"},{"image":"./imagesTr/la_009.nii.gz","label":"./labelsTr/la_009.nii.gz"},{"image":"./imagesTr/la_017.nii.gz","label":"./labelsTr/la_017.nii.gz"},{"image":"./imagesTr/la_021.nii.gz","label":"./labelsTr/la_021.nii.gz"},{"image":"./imagesTr/la_029.nii.gz","label":"./labelsTr/la_029.nii.gz"},{"image":"./imagesTr/la_003.nii.gz","label":"./labelsTr/la_003.nii.gz"},{"image":"./imagesTr/la_011.nii.gz","label":"./labelsTr/la_011.nii.gz"},{"image":"./imagesTr/la_030.nii.gz","label":"./labelsTr/la_030.nii.gz"},{"image":"./imagesTr/la_022.nii.gz","label":"./labelsTr/la_022.nii.gz"},{"image":"./imagesTr/la_014.nii.gz","label":"./labelsTr/la_014.nii.gz"},{"image":"./imagesTr/la_018.nii.gz","label":"./labelsTr/la_018.nii.gz"},{"image":"./imagesTr/la_020.nii.gz","label":"./labelsTr/la_020.nii.gz"},{"image":"./imagesTr/la_004.nii.gz","label":"./labelsTr/la_004.nii.gz"},{"image":"./imagesTr/la_016.nii.gz","label":"./labelsTr/la_016.nii.gz"},{"image":"./imagesTr/la_024.nii.gz","label":"./labelsTr/la_024.nii.gz"},{"image":"./imagesTr/la_010.nii.gz","label":"./labelsTr/la_010.nii.gz"},{"image":"./imagesTr/la_026.nii.gz","label":"./labelsTr/la_026.nii.gz"}],
|
| 18 |
+
"test":["./imagesTs/la_015.nii.gz","./imagesTs/la_025.nii.gz","./imagesTs/la_013.nii.gz","./imagesTs/la_001.nii.gz","./imagesTs/la_027.nii.gz","./imagesTs/la_006.nii.gz","./imagesTs/la_008.nii.gz","./imagesTs/la_012.nii.gz","./imagesTs/la_028.nii.gz","./imagesTs/la_002.nii.gz"]
|
| 19 |
+
}
|
Task02_Heart/get_3d_data.py
ADDED
|
File without changes
|
Task02_Heart/get_precise_seg_part.py
ADDED
|
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
|
| 3 |
+
import cv2
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
import nibabel as nib
|
| 6 |
+
import os
|
| 7 |
+
import glob
|
| 8 |
+
# from scipy.ndimage import zoom
|
| 9 |
+
import numpy as np
|
| 10 |
+
import skimage.transform
|
| 11 |
+
import torch.optim
|
| 12 |
+
from skimage import transform
|
| 13 |
+
from scipy.ndimage import binary_fill_holes, zoom
|
| 14 |
+
from scipy.ndimage import map_coordinates
|
| 15 |
+
from vnet import VNet
|
| 16 |
+
from half_vnet import HalfVNet
|
| 17 |
+
from torch.utils.data import Dataset, DataLoader
|
| 18 |
+
import torch.nn as nn
|
| 19 |
+
from torch.optim import AdamW
|
| 20 |
+
from torch.cuda.amp import GradScaler
|
| 21 |
+
from torch.cuda.amp import autocast
|
| 22 |
+
from tqdm import tqdm
|
| 23 |
+
def handle_image_and_label():
|
| 24 |
+
cnt = 0
|
| 25 |
+
pos_label = []
|
| 26 |
+
image_paths = glob.glob(r'C:\Users\zhang\PycharmProjects\mmsegmentation\data\Task02_Heart\labelsTr\*.nii.gz')
|
| 27 |
+
data_paths=glob.glob(r'C:\Users\zhang\PycharmProjects\mmsegmentation\data\Task02_Heart\imagesTr\*.nii.gz')
|
| 28 |
+
for i,path in enumerate(image_paths):
|
| 29 |
+
folder = 'mri_z_precise_train_2d'
|
| 30 |
+
filename = path.split('\\')[-1].split('.')[0].replace('label', 'image')
|
| 31 |
+
|
| 32 |
+
print(filename)
|
| 33 |
+
# 获取image,转换成合适的维度
|
| 34 |
+
image = nib.load(path).dataobj
|
| 35 |
+
data=nib.load(data_paths[i]).dataobj
|
| 36 |
+
image = np.array(image, dtype=np.int8)
|
| 37 |
+
image = np.swapaxes(image, 1, 2)
|
| 38 |
+
image = np.swapaxes(image, 0, 1)
|
| 39 |
+
data = np.swapaxes(data, 1, 2)
|
| 40 |
+
data = np.swapaxes(data, 0, 1)
|
| 41 |
+
print(np.min(data),np.max(data))
|
| 42 |
+
data=((data-np.min(data))/(np.max(data)-np.min(data)))*255
|
| 43 |
+
data=np.array(data,dtype=int)
|
| 44 |
+
D, H, W = image.shape
|
| 45 |
+
plt.subplot(1, 3, 1)
|
| 46 |
+
plt.imshow(image[60, :, :])
|
| 47 |
+
image = transform.resize(image, (128, 320, 320))
|
| 48 |
+
plt.subplot(1, 3, 2)
|
| 49 |
+
plt.imshow(image[60, :, :])
|
| 50 |
+
# 获取归一化的坐标
|
| 51 |
+
z_min, z_max = get_min_and_max_by_axis(image, 0)
|
| 52 |
+
x_min, x_max = get_min_and_max_by_axis(image, 1)
|
| 53 |
+
y_min, y_max = get_min_and_max_by_axis(image, 2)
|
| 54 |
+
label = [z_min, z_max, x_min, x_max, y_min, y_max]
|
| 55 |
+
print(image.shape, label)
|
| 56 |
+
pos_label.append(label)
|
| 57 |
+
|
| 58 |
+
image = transform.resize(image, (D, 320, 320))
|
| 59 |
+
plt.subplot(1, 3, 3)
|
| 60 |
+
plt.imshow(image[60, :, :])
|
| 61 |
+
plt.show()
|
| 62 |
+
|
| 63 |
+
indices=[]
|
| 64 |
+
ranges=[128,128,320,320,320,320]
|
| 65 |
+
for i in range(len(label)):
|
| 66 |
+
indices.append(int(label[i]*ranges[i]))
|
| 67 |
+
print(indices)
|
| 68 |
+
|
| 69 |
+
image = nib.load(path).dataobj
|
| 70 |
+
image = np.array(image, dtype=np.int8)
|
| 71 |
+
image = np.swapaxes(image, 1, 2)
|
| 72 |
+
image = np.swapaxes(image, 0, 1)
|
| 73 |
+
|
| 74 |
+
# label_nii=image[indices[0]:indices[1],indices[2]:indices[3],indices[4]:indices[5]]
|
| 75 |
+
# print(np.unique(label_nii))
|
| 76 |
+
# data_nii=data[indices[0]:indices[1],indices[2]:indices[3],indices[4]:indices[5]]
|
| 77 |
+
label_nii=image[indices[0]:indices[1],:]
|
| 78 |
+
# print(np.unique(label_nii))
|
| 79 |
+
data_nii=data[indices[0]:indices[1],:]
|
| 80 |
+
|
| 81 |
+
for i in range(label_nii.shape[0]):
|
| 82 |
+
cv2.imwrite(os.path.join(f'{folder}/label', f'{filename}_{i}.png'), label_nii[i,:, :])
|
| 83 |
+
# print(np.unique(label_nii[i, :, :]))
|
| 84 |
+
for i in range(len(data_nii)):
|
| 85 |
+
cv2.imwrite(os.path.join(f'{folder}/image', f'{filename}_{i}.png'), data_nii[i,:, :])
|
| 86 |
+
|
| 87 |
+
pos_label = np.array(pos_label)
|
| 88 |
+
print(pos_label.shape)
|
| 89 |
+
# np.save('./imagesTr/pos_labels.npy', pos_label)
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def get_min_and_max_by_axis(image, axis, eps=1e-2):
|
| 93 |
+
label_list = []
|
| 94 |
+
length = image.shape[axis]
|
| 95 |
+
if axis == 0:
|
| 96 |
+
for i in range(length):
|
| 97 |
+
if len(np.unique(image[i, :, :])) != 1:
|
| 98 |
+
label_list.append(i)
|
| 99 |
+
elif axis == 1:
|
| 100 |
+
for i in range(length):
|
| 101 |
+
if len(np.unique(image[:, i, :])) != 1:
|
| 102 |
+
label_list.append(i)
|
| 103 |
+
elif axis == 2:
|
| 104 |
+
for i in range(length):
|
| 105 |
+
if len(np.unique(image[:, :, i])) != 1:
|
| 106 |
+
label_list.append(i)
|
| 107 |
+
norm_min, norm_max = min(label_list) / length - eps, max(label_list) / length + eps
|
| 108 |
+
print(min(label_list), int(norm_min * length), max(label_list), int(norm_max * length))
|
| 109 |
+
return norm_min, norm_max
|
| 110 |
+
if __name__ == '__main__':
|
| 111 |
+
handle_image_and_label()
|
Task02_Heart/half_vnet.py
ADDED
|
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def passthrough(x, **kwargs):
|
| 7 |
+
return x
|
| 8 |
+
|
| 9 |
+
def ELUCons(elu, nchan):
|
| 10 |
+
if elu:
|
| 11 |
+
return nn.ELU(inplace=True)
|
| 12 |
+
else:
|
| 13 |
+
return nn.PReLU(nchan)
|
| 14 |
+
|
| 15 |
+
# normalization between sub-volumes is necessary
|
| 16 |
+
# for good performance
|
| 17 |
+
class ContBatchNorm3d(nn.modules.batchnorm._BatchNorm):
|
| 18 |
+
def _check_input_dim(self, input):
|
| 19 |
+
if input.dim() != 5:
|
| 20 |
+
raise ValueError('expected 5D input (got {}D input)'
|
| 21 |
+
.format(input.dim()))
|
| 22 |
+
super(ContBatchNorm3d, self)._check_input_dim(input)
|
| 23 |
+
|
| 24 |
+
def forward(self, input):
|
| 25 |
+
self._check_input_dim(input)
|
| 26 |
+
return F.batch_norm(
|
| 27 |
+
input, self.running_mean, self.running_var, self.weight, self.bias,
|
| 28 |
+
True, self.momentum, self.eps)
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
class LUConv(nn.Module):
|
| 32 |
+
def __init__(self, nchan, elu):
|
| 33 |
+
super(LUConv, self).__init__()
|
| 34 |
+
self.relu1 = ELUCons(elu, nchan)
|
| 35 |
+
self.conv1 = nn.Conv3d(nchan, nchan, kernel_size=5, padding=2)
|
| 36 |
+
self.bn1 = nn.BatchNorm3d(nchan)
|
| 37 |
+
|
| 38 |
+
def forward(self, x):
|
| 39 |
+
out = self.relu1(self.bn1(self.conv1(x)))
|
| 40 |
+
return out
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def _make_nConv(nchan, depth, elu):
|
| 44 |
+
layers = []
|
| 45 |
+
for _ in range(depth):
|
| 46 |
+
layers.append(LUConv(nchan, elu))
|
| 47 |
+
return nn.Sequential(*layers)
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
class InputTransition(nn.Module):
|
| 51 |
+
def __init__(self, outChans, elu):
|
| 52 |
+
super(InputTransition, self).__init__()
|
| 53 |
+
self.conv1 = nn.Conv3d(1, 16, kernel_size=5, padding=2)
|
| 54 |
+
self.bn1 = nn.BatchNorm3d(16)
|
| 55 |
+
self.relu1 = ELUCons(elu, 16)
|
| 56 |
+
|
| 57 |
+
def forward(self, x):
|
| 58 |
+
# do we want a PRELU here as well?
|
| 59 |
+
out=self.conv1(x)
|
| 60 |
+
out = self.bn1(out)
|
| 61 |
+
# split input in to 16 channels
|
| 62 |
+
x16 = torch.cat((x, x, x, x, x, x, x, x,
|
| 63 |
+
x, x, x, x, x, x, x, x), 1)
|
| 64 |
+
out = self.relu1(torch.add(out, x16))
|
| 65 |
+
return out
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
class DownTransition(nn.Module):
|
| 69 |
+
def __init__(self, inChans, nConvs, elu, dropout=False):
|
| 70 |
+
super(DownTransition, self).__init__()
|
| 71 |
+
outChans = 2*inChans
|
| 72 |
+
self.down_conv = nn.Conv3d(inChans, outChans, kernel_size=2, stride=2)
|
| 73 |
+
self.bn1 = nn.BatchNorm3d(outChans)
|
| 74 |
+
self.do1 = passthrough
|
| 75 |
+
self.relu1 = ELUCons(elu, outChans)
|
| 76 |
+
self.relu2 = ELUCons(elu, outChans)
|
| 77 |
+
if dropout:
|
| 78 |
+
self.do1 = nn.Dropout3d()
|
| 79 |
+
self.ops = _make_nConv(outChans, nConvs, elu)
|
| 80 |
+
|
| 81 |
+
def forward(self, x):
|
| 82 |
+
down = self.relu1(self.bn1(self.down_conv(x)))
|
| 83 |
+
out = self.do1(down)
|
| 84 |
+
out = self.ops(out)
|
| 85 |
+
out = self.relu2(torch.add(out, down))
|
| 86 |
+
return out
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
class UpTransition(nn.Module):
|
| 90 |
+
def __init__(self, inChans, outChans, nConvs, elu, dropout=False):
|
| 91 |
+
super(UpTransition, self).__init__()
|
| 92 |
+
self.up_conv = nn.ConvTranspose3d(inChans, outChans // 2, kernel_size=2, stride=2)
|
| 93 |
+
self.bn1 = nn.BatchNorm3d(outChans // 2)
|
| 94 |
+
self.do1 = passthrough
|
| 95 |
+
self.do2 = nn.Dropout3d()
|
| 96 |
+
self.relu1 = ELUCons(elu, outChans // 2)
|
| 97 |
+
self.relu2 = ELUCons(elu, outChans)
|
| 98 |
+
if dropout:
|
| 99 |
+
self.do1 = nn.Dropout3d()
|
| 100 |
+
self.ops = _make_nConv(outChans, nConvs, elu)
|
| 101 |
+
|
| 102 |
+
def forward(self, x, skipx):
|
| 103 |
+
out = self.do1(x)
|
| 104 |
+
skipxdo = self.do2(skipx)
|
| 105 |
+
out = self.relu1(self.bn1(self.up_conv(out)))
|
| 106 |
+
xcat = torch.cat((out, skipxdo), 1)
|
| 107 |
+
out = self.ops(xcat)
|
| 108 |
+
out = self.relu2(torch.add(out, xcat))
|
| 109 |
+
return out
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
class OutputTransition(nn.Module):
|
| 113 |
+
def __init__(self, inChans, elu, nll):
|
| 114 |
+
super(OutputTransition, self).__init__()
|
| 115 |
+
self.conv1 = nn.Conv3d(inChans, 2, kernel_size=5, padding=2)
|
| 116 |
+
self.bn1 = nn.BatchNorm3d(2)
|
| 117 |
+
self.conv2 = nn.Conv3d(2, 2, kernel_size=1)
|
| 118 |
+
self.relu1 = ELUCons(elu, 2)
|
| 119 |
+
if nll:
|
| 120 |
+
self.softmax = F.log_softmax
|
| 121 |
+
else:
|
| 122 |
+
self.softmax = F.softmax
|
| 123 |
+
|
| 124 |
+
def forward(self, x):
|
| 125 |
+
# convolve 32 down to 2 channels
|
| 126 |
+
out = self.relu1(self.bn1(self.conv1(x)))
|
| 127 |
+
out = self.conv2(out)
|
| 128 |
+
print(out.shape)
|
| 129 |
+
# make channels the last axis
|
| 130 |
+
out = out.permute(0, 2, 3, 4, 1).contiguous()
|
| 131 |
+
# flatten
|
| 132 |
+
out = out.view(out.numel() // 2, 2)
|
| 133 |
+
out = self.softmax(out)
|
| 134 |
+
# treat channel 0 as the predicted output
|
| 135 |
+
return out
|
| 136 |
+
class AdaptivePoolTransition(nn.Module):
|
| 137 |
+
def __init__(self,in_channels,out_channels):
|
| 138 |
+
super().__init__()
|
| 139 |
+
self.pool=nn.AdaptiveAvgPool3d(1)
|
| 140 |
+
self.ops=nn.Sequential(
|
| 141 |
+
nn.Linear(in_channels,in_channels//2),
|
| 142 |
+
ELUCons(elu=True,nchan=0),
|
| 143 |
+
nn.Linear(in_channels // 2,out_channels),
|
| 144 |
+
nn.Sigmoid()
|
| 145 |
+
)
|
| 146 |
+
def forward(self,x):
|
| 147 |
+
B,C,D,H,W=x.shape
|
| 148 |
+
out=self.pool(x).view(B,C)
|
| 149 |
+
return self.ops(out)
|
| 150 |
+
|
| 151 |
+
class HalfVNet(nn.Module):
|
| 152 |
+
# the number of convolutions in each layer corresponds
|
| 153 |
+
# to what is in the actual prototxt, not the intent
|
| 154 |
+
def __init__(self, elu=True, nll=False):
|
| 155 |
+
super(HalfVNet, self).__init__()
|
| 156 |
+
self.in_tr = InputTransition(16, elu)
|
| 157 |
+
self.down_tr32 = DownTransition(16, 1, elu)
|
| 158 |
+
self.down_tr64 = DownTransition(32, 2, elu)
|
| 159 |
+
self.down_tr128 = DownTransition(64, 3, elu, dropout=True)
|
| 160 |
+
self.down_tr256 = DownTransition(128, 2, elu, dropout=True)
|
| 161 |
+
# self.up_tr256 = UpTransition(256, 256, 2, elu, dropout=True)
|
| 162 |
+
# self.up_tr128 = UpTransition(256, 128, 2, elu, dropout=True)
|
| 163 |
+
# self.up_tr64 = UpTransition(128, 64, 1, elu)
|
| 164 |
+
# self.up_tr32 = UpTransition(64, 32, 1, elu)
|
| 165 |
+
# self.out_tr = OutputTransition(32, elu, nll)
|
| 166 |
+
self.pool=AdaptivePoolTransition(256,6)
|
| 167 |
+
# The network topology as described in the diagram
|
| 168 |
+
# in the VNet paper
|
| 169 |
+
# def __init__(self):
|
| 170 |
+
# super(VNet, self).__init__()
|
| 171 |
+
# self.in_tr = InputTransition(16)
|
| 172 |
+
# # the number of convolutions in each layer corresponds
|
| 173 |
+
# # to what is in the actual prototxt, not the intent
|
| 174 |
+
# self.down_tr32 = DownTransition(16, 2)
|
| 175 |
+
# self.down_tr64 = DownTransition(32, 3)
|
| 176 |
+
# self.down_tr128 = DownTransition(64, 3)
|
| 177 |
+
# self.down_tr256 = DownTransition(128, 3)
|
| 178 |
+
# self.up_tr256 = UpTransition(256, 3)
|
| 179 |
+
# self.up_tr128 = UpTransition(128, 3)
|
| 180 |
+
# self.up_tr64 = UpTransition(64, 2)
|
| 181 |
+
# self.up_tr32 = UpTransition(32, 1)
|
| 182 |
+
# self.out_tr = OutputTransition(16)
|
| 183 |
+
def forward(self, x):
|
| 184 |
+
out16 = self.in_tr(x)
|
| 185 |
+
out32 = self.down_tr32(out16)
|
| 186 |
+
out64 = self.down_tr64(out32)
|
| 187 |
+
out128 = self.down_tr128(out64)
|
| 188 |
+
out256 = self.down_tr256(out128)
|
| 189 |
+
# out = self.up_tr256(out256, out128)
|
| 190 |
+
# out = self.up_tr128(out, out64)
|
| 191 |
+
# out = self.up_tr64(out, out32)
|
| 192 |
+
# out = self.up_tr32(out, out16)
|
| 193 |
+
# out = self.out_tr(out)
|
| 194 |
+
out=self.pool(out256)
|
| 195 |
+
return out
|
| 196 |
+
if __name__ == '__main__':
|
| 197 |
+
device='cuda' if torch.cuda.is_available() else 'cpu'
|
| 198 |
+
print(device)
|
| 199 |
+
net=HalfVNet().to(device)
|
| 200 |
+
image=torch.randn((1,1,128,320,320)).to(device)
|
| 201 |
+
with torch.no_grad():
|
| 202 |
+
out=net(image)
|
| 203 |
+
print(out.shape)
|
| 204 |
+
# m = nn.AdaptiveAvgPool3d((1))
|
| 205 |
+
# input = torch.randn(1, 64, 8, 9, 10)
|
| 206 |
+
# output = m(input)
|
| 207 |
+
# print(output.shape)
|
Task02_Heart/imagesTr/la_003.nii.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:035de3923ffe7a8bd5e1d8ad8eefb57eeaf9a98074a8f70825aab88464e4e098
|
| 3 |
+
size 14914026
|
Task02_Heart/imagesTr/la_004.nii.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a451b2a9c72fafe5385590dd6feadca4f5233ef158c655628c8de86e755ee7d5
|
| 3 |
+
size 12341450
|
Task02_Heart/imagesTr/la_005.nii.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b7788f025ddce3b1d44c50f18f6fa7cc8299c507d46e251b7245e17b361864d0
|
| 3 |
+
size 13909546
|
Task02_Heart/imagesTr/la_007.nii.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4ab0c2f2e1697b77a390660b4f647f4cc3b40a02532b55ce355f3736f911eff2
|
| 3 |
+
size 15468510
|
Task02_Heart/imagesTr/la_009.nii.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0f8606cd46ab9c46d22278c9b772c6e6678a3a94d80a41096ed92229cb82616d
|
| 3 |
+
size 11266306
|
Task02_Heart/imagesTr/la_010.nii.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9f7271b12dd9475470726efd96506d0b21cdba48eee31bab50123e30bc164775
|
| 3 |
+
size 13957912
|
Task02_Heart/imagesTr/la_011.nii.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f74304a7601d7178a8ab21553e152427f2da076c7ac8883e6c7338c589939131
|
| 3 |
+
size 13892390
|
Task02_Heart/imagesTr/la_014.nii.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:478c4347fa0dd5432ceb06674b411543b7ab65d44e76cf7ddc5421d495f98486
|
| 3 |
+
size 15509650
|
Task02_Heart/imagesTr/la_016.nii.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e1a76714f01fc683ab4294a573aa2fb40639a7fe94baa15c7099ff7de604952b
|
| 3 |
+
size 9021827
|
Task02_Heart/imagesTr/la_017.nii.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:981d220f34111b6bd252c002debd54098a532f36ea26db02707a9db2287cc41b
|
| 3 |
+
size 13953197
|
Task02_Heart/imagesTr/la_018.nii.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:435ef9afe456b9adb25897f5cd6629151c367b72de6ecb49bb3a1211e169b075
|
| 3 |
+
size 13421517
|
Task02_Heart/imagesTr/la_019.nii.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c095979fb70cf26432467266de5a973b0bbe010e5dc3818d9505ba9e276aa15f
|
| 3 |
+
size 10917661
|
Task02_Heart/imagesTr/la_020.nii.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d09261de17cd568e82bce71c9fc9dd1b15ebd191e29e312e729f5d0dae1b5364
|
| 3 |
+
size 11430083
|
Task02_Heart/imagesTr/la_021.nii.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:7f77e09d51e4343465b860b041790df3d56af8df507aa365f18a53a67173ca94
|
| 3 |
+
size 11672526
|
Task02_Heart/imagesTr/la_022.nii.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:28ea9f402890502fe59dd284e3345fae70ba8a893ddae018dfdf75ff47c863d7
|
| 3 |
+
size 12547674
|
Task02_Heart/imagesTr/la_023.nii.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3e23b9a8b24eaa1eef6367da1a1f8ea66ae09037169ee1be8c25fd681e97520b
|
| 3 |
+
size 13117432
|
Task02_Heart/imagesTr/la_024.nii.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8e6254499e52730b57b4a04345e8708f7c46c7284987c25c72288ec278ec0f72
|
| 3 |
+
size 13727279
|
Task02_Heart/imagesTr/la_026.nii.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b7788f025ddce3b1d44c50f18f6fa7cc8299c507d46e251b7245e17b361864d0
|
| 3 |
+
size 13909546
|
Task02_Heart/imagesTr/la_029.nii.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a5ef5bd7ebf3cf04036f4a654ecd4875ab25833fab211d1fcf3bf279d4294d79
|
| 3 |
+
size 13163134
|
Task02_Heart/imagesTr/la_030.nii.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2fddf07fe1e6ce51ea70a4fcaf47662f454a7e0c9f0995bc2f63ccc4c24cf2a1
|
| 3 |
+
size 12222499
|
Task02_Heart/imagesTr/pos_labels.npy
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0e694b1c70c9f19cc8517b0747d4642b1d2bfdd93f9ffcc80b54d3bcff24bddd
|
| 3 |
+
size 1088
|
Task02_Heart/imagesTs/la_001.nii.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2acedfb7b525563814ca53d49288c562edb67f2381075301cb945c7aff35aed3
|
| 3 |
+
size 44506035
|
Task02_Heart/imagesTs/la_002.nii.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:05477be1b339567c8b304dafa737ad22be268024140197eeae9f14172a76e0c4
|
| 3 |
+
size 16059519
|
Task02_Heart/imagesTs/la_006.nii.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dece42503044a926984a0d9903ef5ededf53708d478545e769fa7849a4f93083
|
| 3 |
+
size 41361304
|
Task02_Heart/imagesTs/la_008.nii.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:71180fbe9e1c87c0229aac1818c3f0012282d584e422a6c497fe6f117155d7a0
|
| 3 |
+
size 13323685
|
Task02_Heart/imagesTs/la_012.nii.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d307861e0e77d205ab0b5d9f7b11befc9820e0f11b2c371ff8e7babf732fc488
|
| 3 |
+
size 16816197
|