ronantakizawa commited on
Commit
da857a1
·
verified ·
1 Parent(s): a775926

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +1 -139
README.md CHANGED
@@ -36,7 +36,7 @@ A comprehensive dataset of trending hashtags on Twitter/X from 2020 to 2025, con
36
 
37
  This dataset captures trending hashtags from Twitter/X (formerly Twitter) by analyzing Wayback Machine snapshots of trends24.in, providing insights into breaking news, viral content, cultural moments, and global events from 2020 to 2025.
38
 
39
- **Data Source**: Wayback Machine snapshots of x.com trending data via trends24.in
40
 
41
  ### Dataset Structure
42
 
@@ -106,28 +106,6 @@ Trump,2025,2025-01-08,40000000,3
106
  - **Middle East**: Israel (3.9M in 2023), Gaza (26M in 2025), Iran (33M in 2025)
107
  - **Tragedies**: Kobe Bryant (9.4M), Charlie Kirk assassination (38M in 2025)
108
 
109
- **Sports Events**:
110
- - **Super Bowl**: Consistently trending (2024, 2022)
111
- - **World Cup**: Messi (3.3M in 2022), Argentina (2.8M in 2022)
112
- - **Olympics**: Tokyo2020 (3.2M in 2021)
113
-
114
- **Entertainment & Awards**:
115
- - **Met Gala**: 3.6M (2024), 3.0M (2023), 2.6M (2022)
116
- - **VMAs**: 3.8M (2023), 3.4M (2022)
117
- - **GRAMMYs**: 3.3M (2022), 3.0M (2021)
118
- - **Oscars**: Consistently trending annually
119
-
120
- **Holidays & Celebrations**:
121
- - **Christmas**: 3.7M (2022), 3.8M (2023), 3.2M (2020)
122
- - **New Year**: 54M (2025), 2.2M (2022), 1.9M (2021)
123
- - **Halloween**: 5.5M (2020), 3.6M (2022), 2.8M (2023)
124
- - **Thanksgiving**: 4.1M (2021), 3.1M (2022), 34M (2025)
125
-
126
- **K-Pop & Fan Culture**:
127
- - **BTS**: BTS BTS BTS (5.4M in 2021), BTSxAMAs (4.4M), BBMAsTopSocial (4.4M)
128
- - **BLACKPINK**: JISOO, multiple trending moments
129
- - **Fan birthdays**: Massive engagement for celebrity birthdays globally
130
-
131
  **Social Movements**:
132
  - **Thailand Protests**: Multiple hashtags with 3M+ tweets (2020-2021)
133
  - **SARSMUSTEND**: 3.1M tweets (Nigeria police brutality protests, 2020)
@@ -137,85 +115,6 @@ Trump,2025,2025-01-08,40000000,3
137
  - **WhatsApp**: 3.4M (2021) - Service outage
138
  - **Threads**: 2.7M (2023) - Meta's Twitter competitor launch
139
 
140
- ### Tweet Volume Distribution
141
-
142
- - **50M+ tweets**: 1 trend (Kanye 2025 controversy)
143
- - **10M-50M tweets**: 5 trends (major breaking news)
144
- - **5M-10M tweets**: 8 trends (massive viral events)
145
- - **3M-5M tweets**: 50+ trends (highly viral moments)
146
- - **1M-3M tweets**: 200+ trends (viral trends)
147
- - **100K-1M tweets**: 2,000+ trends (popular topics)
148
- - **Under 100K**: 9,000+ trends (niche or emerging trends)
149
-
150
- ### Geographic & Linguistic Diversity
151
-
152
- **Languages Represented**:
153
- - **English**: Majority of trends (US, UK, global)
154
- - **Japanese**: エイプリルフール (34M), バレンタイン (28M), ハロウィン (3.4M)
155
- - **Thai**: เยาวชนปลดแอก (8.0M), ม็อบ trends (3M+)
156
- - **Spanish**: Latin American trends, Spanish trends
157
- - **Arabic**: قاسم_سليماني, Middle East topics
158
- - **Korean**: Multiple K-pop and Korean cultural trends
159
- - **Portuguese**: Brazilian trends (Lula, political hashtags)
160
-
161
- **Regional Highlights**:
162
- - **United States**: Dominates with political, entertainment, and sports trends
163
- - **Thailand**: Strong protest and political movement representation
164
- - **India**: Celebrity birthdays, political trends
165
- - **Brazil**: Political and cultural trends
166
- - **South Korea**: K-pop dominance
167
- - **Middle East**: Geopolitical events
168
-
169
- ## 📈 Use Cases
170
-
171
- This dataset is valuable for:
172
-
173
- - **Trend Analysis**: Understanding what drives viral content on Twitter/X
174
- - **Event Detection**: Identifying major news events and cultural moments
175
- - **Sentiment Analysis**: Analyzing public reaction to events
176
- - **Political Science**: Studying political discourse and election trends
177
- - **Cultural Studies**: Understanding global cultural phenomena
178
- - **Media Research**: Analyzing news cycles and information spread
179
- - **Crisis Communication**: Understanding how crises trend on social media
180
- - **Marketing Research**: Identifying viral patterns and engagement strategies
181
- - **Time Series Analysis**: Predicting trending patterns
182
- - **Natural Language Processing**: Multilingual trend analysis
183
-
184
- ## 🔧 Usage
185
-
186
- ### Loading the Dataset
187
-
188
- ```python
189
- from datasets import load_dataset
190
-
191
- dataset = load_dataset("ronantakizawa/twitter-trending-hashtags")
192
- ```
193
-
194
- ### Example Analysis
195
-
196
- ```python
197
- import pandas as pd
198
-
199
- # Load the data
200
- df = pd.read_csv("twitter-trending-hashtags.csv")
201
-
202
- # Get top 10 trends of all time
203
- top_trends = df.nlargest(10, 'tweets')
204
-
205
- # Trends by year
206
- trends_2024 = df[df['year'] == 2024]
207
-
208
- # Filter by date range
209
- import pandas as pd
210
- df['peak_date'] = pd.to_datetime(df['peak_date'])
211
- jan_2025 = df[(df['peak_date'] >= '2025-01-01') & (df['peak_date'] < '2025-02-01')]
212
- ```
213
-
214
- ## ⚠️ Data Collection & Limitations
215
-
216
- ### Data Source
217
- This dataset was collected from Wayback Machine snapshots of trends24.in, which aggregates Twitter/X trending data. The data represents peak trending moments captured in these historical snapshots.
218
-
219
  ### Important Limitations
220
 
221
  1. **Sampling Bias**: Data is based on available Wayback Machine snapshots, not continuous monitoring
@@ -226,45 +125,8 @@ This dataset was collected from Wayback Machine snapshots of trends24.in, which
226
  3. **Tweet Count Accuracy**: Numbers represent peak values from snapshots, not cumulative totals
227
  4. **Coverage Gaps**: Not all trending topics may be captured due to snapshot availability
228
  5. **Incomplete 2025**: 2025 data is incomplete as the year is ongoing
229
- 6. **Regional Bias**: Trends may be biased toward certain regions based on trends24.in methodology
230
-
231
- ### Data Quality Notes
232
-
233
- - 14 of 15 verified major trends (93.3% accuracy) match real-world events
234
- - Date discrepancies are typically ±1 day and explainable
235
- - Tweet volumes accurately reflect relative event importance
236
- - Rankings within years are based on peak tweet counts from snapshots
237
 
238
  ## 📝 Citation
239
 
240
  If you use this dataset, please cite:
241
 
242
- ```bibtex
243
- @dataset{twitter_trending_hashtags_2025,
244
- title={Twitter/X Trending Hashtags Dataset (2020-2025)},
245
- author={Ronan Takizawa},
246
- year={2025},
247
- publisher={Hugging Face},
248
- url={https://huggingface.co/datasets/ronantakizawa/twitter-trending-hashtags}
249
- }
250
- ```
251
-
252
- ## 📄 License
253
-
254
- This dataset is released under the MIT License.
255
-
256
- ## 🙏 Acknowledgments
257
-
258
- - **Data Source**: Wayback Machine (archive.org) for preserving historical web snapshots
259
- - **Original Platform**: trends24.in for aggregating Twitter/X trending data
260
- - **Platform**: Twitter/X for the underlying social media platform
261
-
262
- ## 📧 Contact
263
-
264
- For questions, issues, or suggestions:
265
- - **GitHub**: [Report an issue](https://github.com/ronantakizawa/datasets)
266
- - **Hugging Face**: [@ronantakizawa](https://huggingface.co/ronantakizawa)
267
-
268
- ---
269
-
270
- *Dataset compiled and published in November 2025*
 
36
 
37
  This dataset captures trending hashtags from Twitter/X (formerly Twitter) by analyzing Wayback Machine snapshots of trends24.in, providing insights into breaking news, viral content, cultural moments, and global events from 2020 to 2025.
38
 
39
+ **Data Source**: Wayback Machine snapshots of x.com trending data.
40
 
41
  ### Dataset Structure
42
 
 
106
  - **Middle East**: Israel (3.9M in 2023), Gaza (26M in 2025), Iran (33M in 2025)
107
  - **Tragedies**: Kobe Bryant (9.4M), Charlie Kirk assassination (38M in 2025)
108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
109
  **Social Movements**:
110
  - **Thailand Protests**: Multiple hashtags with 3M+ tweets (2020-2021)
111
  - **SARSMUSTEND**: 3.1M tweets (Nigeria police brutality protests, 2020)
 
115
  - **WhatsApp**: 3.4M (2021) - Service outage
116
  - **Threads**: 2.7M (2023) - Meta's Twitter competitor launch
117
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118
  ### Important Limitations
119
 
120
  1. **Sampling Bias**: Data is based on available Wayback Machine snapshots, not continuous monitoring
 
125
  3. **Tweet Count Accuracy**: Numbers represent peak values from snapshots, not cumulative totals
126
  4. **Coverage Gaps**: Not all trending topics may be captured due to snapshot availability
127
  5. **Incomplete 2025**: 2025 data is incomplete as the year is ongoing
 
 
 
 
 
 
 
 
128
 
129
  ## 📝 Citation
130
 
131
  If you use this dataset, please cite:
132