Datasets:
Update README.md
Browse files
README.md
CHANGED
|
@@ -36,7 +36,7 @@ A comprehensive dataset of trending hashtags on Twitter/X from 2020 to 2025, con
|
|
| 36 |
|
| 37 |
This dataset captures trending hashtags from Twitter/X (formerly Twitter) by analyzing Wayback Machine snapshots of trends24.in, providing insights into breaking news, viral content, cultural moments, and global events from 2020 to 2025.
|
| 38 |
|
| 39 |
-
**Data Source**: Wayback Machine snapshots of x.com trending data
|
| 40 |
|
| 41 |
### Dataset Structure
|
| 42 |
|
|
@@ -106,28 +106,6 @@ Trump,2025,2025-01-08,40000000,3
|
|
| 106 |
- **Middle East**: Israel (3.9M in 2023), Gaza (26M in 2025), Iran (33M in 2025)
|
| 107 |
- **Tragedies**: Kobe Bryant (9.4M), Charlie Kirk assassination (38M in 2025)
|
| 108 |
|
| 109 |
-
**Sports Events**:
|
| 110 |
-
- **Super Bowl**: Consistently trending (2024, 2022)
|
| 111 |
-
- **World Cup**: Messi (3.3M in 2022), Argentina (2.8M in 2022)
|
| 112 |
-
- **Olympics**: Tokyo2020 (3.2M in 2021)
|
| 113 |
-
|
| 114 |
-
**Entertainment & Awards**:
|
| 115 |
-
- **Met Gala**: 3.6M (2024), 3.0M (2023), 2.6M (2022)
|
| 116 |
-
- **VMAs**: 3.8M (2023), 3.4M (2022)
|
| 117 |
-
- **GRAMMYs**: 3.3M (2022), 3.0M (2021)
|
| 118 |
-
- **Oscars**: Consistently trending annually
|
| 119 |
-
|
| 120 |
-
**Holidays & Celebrations**:
|
| 121 |
-
- **Christmas**: 3.7M (2022), 3.8M (2023), 3.2M (2020)
|
| 122 |
-
- **New Year**: 54M (2025), 2.2M (2022), 1.9M (2021)
|
| 123 |
-
- **Halloween**: 5.5M (2020), 3.6M (2022), 2.8M (2023)
|
| 124 |
-
- **Thanksgiving**: 4.1M (2021), 3.1M (2022), 34M (2025)
|
| 125 |
-
|
| 126 |
-
**K-Pop & Fan Culture**:
|
| 127 |
-
- **BTS**: BTS BTS BTS (5.4M in 2021), BTSxAMAs (4.4M), BBMAsTopSocial (4.4M)
|
| 128 |
-
- **BLACKPINK**: JISOO, multiple trending moments
|
| 129 |
-
- **Fan birthdays**: Massive engagement for celebrity birthdays globally
|
| 130 |
-
|
| 131 |
**Social Movements**:
|
| 132 |
- **Thailand Protests**: Multiple hashtags with 3M+ tweets (2020-2021)
|
| 133 |
- **SARSMUSTEND**: 3.1M tweets (Nigeria police brutality protests, 2020)
|
|
@@ -137,85 +115,6 @@ Trump,2025,2025-01-08,40000000,3
|
|
| 137 |
- **WhatsApp**: 3.4M (2021) - Service outage
|
| 138 |
- **Threads**: 2.7M (2023) - Meta's Twitter competitor launch
|
| 139 |
|
| 140 |
-
### Tweet Volume Distribution
|
| 141 |
-
|
| 142 |
-
- **50M+ tweets**: 1 trend (Kanye 2025 controversy)
|
| 143 |
-
- **10M-50M tweets**: 5 trends (major breaking news)
|
| 144 |
-
- **5M-10M tweets**: 8 trends (massive viral events)
|
| 145 |
-
- **3M-5M tweets**: 50+ trends (highly viral moments)
|
| 146 |
-
- **1M-3M tweets**: 200+ trends (viral trends)
|
| 147 |
-
- **100K-1M tweets**: 2,000+ trends (popular topics)
|
| 148 |
-
- **Under 100K**: 9,000+ trends (niche or emerging trends)
|
| 149 |
-
|
| 150 |
-
### Geographic & Linguistic Diversity
|
| 151 |
-
|
| 152 |
-
**Languages Represented**:
|
| 153 |
-
- **English**: Majority of trends (US, UK, global)
|
| 154 |
-
- **Japanese**: エイプリルフール (34M), バレンタイン (28M), ハロウィン (3.4M)
|
| 155 |
-
- **Thai**: เยาวชนปลดแอก (8.0M), ม็อบ trends (3M+)
|
| 156 |
-
- **Spanish**: Latin American trends, Spanish trends
|
| 157 |
-
- **Arabic**: قاسم_سليماني, Middle East topics
|
| 158 |
-
- **Korean**: Multiple K-pop and Korean cultural trends
|
| 159 |
-
- **Portuguese**: Brazilian trends (Lula, political hashtags)
|
| 160 |
-
|
| 161 |
-
**Regional Highlights**:
|
| 162 |
-
- **United States**: Dominates with political, entertainment, and sports trends
|
| 163 |
-
- **Thailand**: Strong protest and political movement representation
|
| 164 |
-
- **India**: Celebrity birthdays, political trends
|
| 165 |
-
- **Brazil**: Political and cultural trends
|
| 166 |
-
- **South Korea**: K-pop dominance
|
| 167 |
-
- **Middle East**: Geopolitical events
|
| 168 |
-
|
| 169 |
-
## 📈 Use Cases
|
| 170 |
-
|
| 171 |
-
This dataset is valuable for:
|
| 172 |
-
|
| 173 |
-
- **Trend Analysis**: Understanding what drives viral content on Twitter/X
|
| 174 |
-
- **Event Detection**: Identifying major news events and cultural moments
|
| 175 |
-
- **Sentiment Analysis**: Analyzing public reaction to events
|
| 176 |
-
- **Political Science**: Studying political discourse and election trends
|
| 177 |
-
- **Cultural Studies**: Understanding global cultural phenomena
|
| 178 |
-
- **Media Research**: Analyzing news cycles and information spread
|
| 179 |
-
- **Crisis Communication**: Understanding how crises trend on social media
|
| 180 |
-
- **Marketing Research**: Identifying viral patterns and engagement strategies
|
| 181 |
-
- **Time Series Analysis**: Predicting trending patterns
|
| 182 |
-
- **Natural Language Processing**: Multilingual trend analysis
|
| 183 |
-
|
| 184 |
-
## 🔧 Usage
|
| 185 |
-
|
| 186 |
-
### Loading the Dataset
|
| 187 |
-
|
| 188 |
-
```python
|
| 189 |
-
from datasets import load_dataset
|
| 190 |
-
|
| 191 |
-
dataset = load_dataset("ronantakizawa/twitter-trending-hashtags")
|
| 192 |
-
```
|
| 193 |
-
|
| 194 |
-
### Example Analysis
|
| 195 |
-
|
| 196 |
-
```python
|
| 197 |
-
import pandas as pd
|
| 198 |
-
|
| 199 |
-
# Load the data
|
| 200 |
-
df = pd.read_csv("twitter-trending-hashtags.csv")
|
| 201 |
-
|
| 202 |
-
# Get top 10 trends of all time
|
| 203 |
-
top_trends = df.nlargest(10, 'tweets')
|
| 204 |
-
|
| 205 |
-
# Trends by year
|
| 206 |
-
trends_2024 = df[df['year'] == 2024]
|
| 207 |
-
|
| 208 |
-
# Filter by date range
|
| 209 |
-
import pandas as pd
|
| 210 |
-
df['peak_date'] = pd.to_datetime(df['peak_date'])
|
| 211 |
-
jan_2025 = df[(df['peak_date'] >= '2025-01-01') & (df['peak_date'] < '2025-02-01')]
|
| 212 |
-
```
|
| 213 |
-
|
| 214 |
-
## ⚠️ Data Collection & Limitations
|
| 215 |
-
|
| 216 |
-
### Data Source
|
| 217 |
-
This dataset was collected from Wayback Machine snapshots of trends24.in, which aggregates Twitter/X trending data. The data represents peak trending moments captured in these historical snapshots.
|
| 218 |
-
|
| 219 |
### Important Limitations
|
| 220 |
|
| 221 |
1. **Sampling Bias**: Data is based on available Wayback Machine snapshots, not continuous monitoring
|
|
@@ -226,45 +125,8 @@ This dataset was collected from Wayback Machine snapshots of trends24.in, which
|
|
| 226 |
3. **Tweet Count Accuracy**: Numbers represent peak values from snapshots, not cumulative totals
|
| 227 |
4. **Coverage Gaps**: Not all trending topics may be captured due to snapshot availability
|
| 228 |
5. **Incomplete 2025**: 2025 data is incomplete as the year is ongoing
|
| 229 |
-
6. **Regional Bias**: Trends may be biased toward certain regions based on trends24.in methodology
|
| 230 |
-
|
| 231 |
-
### Data Quality Notes
|
| 232 |
-
|
| 233 |
-
- 14 of 15 verified major trends (93.3% accuracy) match real-world events
|
| 234 |
-
- Date discrepancies are typically ±1 day and explainable
|
| 235 |
-
- Tweet volumes accurately reflect relative event importance
|
| 236 |
-
- Rankings within years are based on peak tweet counts from snapshots
|
| 237 |
|
| 238 |
## 📝 Citation
|
| 239 |
|
| 240 |
If you use this dataset, please cite:
|
| 241 |
|
| 242 |
-
```bibtex
|
| 243 |
-
@dataset{twitter_trending_hashtags_2025,
|
| 244 |
-
title={Twitter/X Trending Hashtags Dataset (2020-2025)},
|
| 245 |
-
author={Ronan Takizawa},
|
| 246 |
-
year={2025},
|
| 247 |
-
publisher={Hugging Face},
|
| 248 |
-
url={https://huggingface.co/datasets/ronantakizawa/twitter-trending-hashtags}
|
| 249 |
-
}
|
| 250 |
-
```
|
| 251 |
-
|
| 252 |
-
## 📄 License
|
| 253 |
-
|
| 254 |
-
This dataset is released under the MIT License.
|
| 255 |
-
|
| 256 |
-
## 🙏 Acknowledgments
|
| 257 |
-
|
| 258 |
-
- **Data Source**: Wayback Machine (archive.org) for preserving historical web snapshots
|
| 259 |
-
- **Original Platform**: trends24.in for aggregating Twitter/X trending data
|
| 260 |
-
- **Platform**: Twitter/X for the underlying social media platform
|
| 261 |
-
|
| 262 |
-
## 📧 Contact
|
| 263 |
-
|
| 264 |
-
For questions, issues, or suggestions:
|
| 265 |
-
- **GitHub**: [Report an issue](https://github.com/ronantakizawa/datasets)
|
| 266 |
-
- **Hugging Face**: [@ronantakizawa](https://huggingface.co/ronantakizawa)
|
| 267 |
-
|
| 268 |
-
---
|
| 269 |
-
|
| 270 |
-
*Dataset compiled and published in November 2025*
|
|
|
|
| 36 |
|
| 37 |
This dataset captures trending hashtags from Twitter/X (formerly Twitter) by analyzing Wayback Machine snapshots of trends24.in, providing insights into breaking news, viral content, cultural moments, and global events from 2020 to 2025.
|
| 38 |
|
| 39 |
+
**Data Source**: Wayback Machine snapshots of x.com trending data.
|
| 40 |
|
| 41 |
### Dataset Structure
|
| 42 |
|
|
|
|
| 106 |
- **Middle East**: Israel (3.9M in 2023), Gaza (26M in 2025), Iran (33M in 2025)
|
| 107 |
- **Tragedies**: Kobe Bryant (9.4M), Charlie Kirk assassination (38M in 2025)
|
| 108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
**Social Movements**:
|
| 110 |
- **Thailand Protests**: Multiple hashtags with 3M+ tweets (2020-2021)
|
| 111 |
- **SARSMUSTEND**: 3.1M tweets (Nigeria police brutality protests, 2020)
|
|
|
|
| 115 |
- **WhatsApp**: 3.4M (2021) - Service outage
|
| 116 |
- **Threads**: 2.7M (2023) - Meta's Twitter competitor launch
|
| 117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
### Important Limitations
|
| 119 |
|
| 120 |
1. **Sampling Bias**: Data is based on available Wayback Machine snapshots, not continuous monitoring
|
|
|
|
| 125 |
3. **Tweet Count Accuracy**: Numbers represent peak values from snapshots, not cumulative totals
|
| 126 |
4. **Coverage Gaps**: Not all trending topics may be captured due to snapshot availability
|
| 127 |
5. **Incomplete 2025**: 2025 data is incomplete as the year is ongoing
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 128 |
|
| 129 |
## 📝 Citation
|
| 130 |
|
| 131 |
If you use this dataset, please cite:
|
| 132 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|