Datasets:
fix for ver2 dataset (#3)
Browse files- tests/wrime_test.py +25 -0
- wrime.py +79 -102
tests/wrime_test.py
CHANGED
|
@@ -27,3 +27,28 @@ def test_load_dataset(
|
|
| 27 |
assert dataset["train"].num_rows == expected_train_num_rows # type: ignore
|
| 28 |
assert dataset["validation"].num_rows == expected_val_num_rows # type: ignore
|
| 29 |
assert dataset["test"].num_rows == expected_test_num_rows # type: ignore
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
assert dataset["train"].num_rows == expected_train_num_rows # type: ignore
|
| 28 |
assert dataset["validation"].num_rows == expected_val_num_rows # type: ignore
|
| 29 |
assert dataset["test"].num_rows == expected_test_num_rows # type: ignore
|
| 30 |
+
|
| 31 |
+
writer_readers = [
|
| 32 |
+
"writer",
|
| 33 |
+
"reader1",
|
| 34 |
+
"reader2",
|
| 35 |
+
"reader3",
|
| 36 |
+
"avg_readers",
|
| 37 |
+
]
|
| 38 |
+
expected_keys = ["sentence", "user_id", "datetime"] + writer_readers
|
| 39 |
+
|
| 40 |
+
for split in ["train", "validation", "test"]:
|
| 41 |
+
split_dataset = dataset[split] # type: ignore
|
| 42 |
+
|
| 43 |
+
for data in split_dataset:
|
| 44 |
+
assert len(data.keys()) == len(expected_keys)
|
| 45 |
+
for expected_key in expected_keys:
|
| 46 |
+
assert expected_key in data.keys()
|
| 47 |
+
|
| 48 |
+
for k in writer_readers:
|
| 49 |
+
if dataset_name == "ver1":
|
| 50 |
+
assert len(data[k]) == 8 # 8 感情強度
|
| 51 |
+
elif dataset_name == "ver2":
|
| 52 |
+
assert len(data[k]) == 8 + 1 # 8 感情強度 + 1 感情極性
|
| 53 |
+
else:
|
| 54 |
+
raise ValueError(f"Invalid dataset version: {dataset_name}")
|
wrime.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
import logging
|
| 2 |
-
from typing import TypedDict
|
| 3 |
|
| 4 |
import datasets as ds
|
| 5 |
import pandas as pd
|
|
@@ -60,15 +60,42 @@ def _fix_typo_in_dataset(df: pd.DataFrame) -> pd.DataFrame:
|
|
| 60 |
return df
|
| 61 |
|
| 62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
def _load_tsv(tsv_path: str) -> pd.DataFrame:
|
| 64 |
logger.info(f"Load TSV file from {tsv_path}")
|
| 65 |
df = pd.read_csv(tsv_path, delimiter="\t")
|
| 66 |
|
|
|
|
| 67 |
df = _fix_typo_in_dataset(df)
|
|
|
|
| 68 |
|
| 69 |
return df
|
| 70 |
|
| 71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
class WrimeDataset(ds.GeneratorBasedBuilder):
|
| 73 |
BUILDER_CONFIGS = [
|
| 74 |
ds.BuilderConfig(
|
|
@@ -83,64 +110,18 @@ class WrimeDataset(ds.GeneratorBasedBuilder):
|
|
| 83 |
),
|
| 84 |
]
|
| 85 |
|
| 86 |
-
def
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
"fear": ds.Value("uint8"),
|
| 99 |
-
"disgust": ds.Value("uint8"),
|
| 100 |
-
"trust": ds.Value("uint8"),
|
| 101 |
-
},
|
| 102 |
-
"reader1": {
|
| 103 |
-
"joy": ds.Value("uint8"),
|
| 104 |
-
"sadness": ds.Value("uint8"),
|
| 105 |
-
"anticipation": ds.Value("uint8"),
|
| 106 |
-
"surprise": ds.Value("uint8"),
|
| 107 |
-
"anger": ds.Value("uint8"),
|
| 108 |
-
"fear": ds.Value("uint8"),
|
| 109 |
-
"disgust": ds.Value("uint8"),
|
| 110 |
-
"trust": ds.Value("uint8"),
|
| 111 |
-
},
|
| 112 |
-
"reader2": {
|
| 113 |
-
"joy": ds.Value("uint8"),
|
| 114 |
-
"sadness": ds.Value("uint8"),
|
| 115 |
-
"anticipation": ds.Value("uint8"),
|
| 116 |
-
"surprise": ds.Value("uint8"),
|
| 117 |
-
"anger": ds.Value("uint8"),
|
| 118 |
-
"fear": ds.Value("uint8"),
|
| 119 |
-
"disgust": ds.Value("uint8"),
|
| 120 |
-
"trust": ds.Value("uint8"),
|
| 121 |
-
},
|
| 122 |
-
"reader3": {
|
| 123 |
-
"joy": ds.Value("uint8"),
|
| 124 |
-
"sadness": ds.Value("uint8"),
|
| 125 |
-
"anticipation": ds.Value("uint8"),
|
| 126 |
-
"surprise": ds.Value("uint8"),
|
| 127 |
-
"anger": ds.Value("uint8"),
|
| 128 |
-
"fear": ds.Value("uint8"),
|
| 129 |
-
"disgust": ds.Value("uint8"),
|
| 130 |
-
"trust": ds.Value("uint8"),
|
| 131 |
-
},
|
| 132 |
-
"avg_readers": {
|
| 133 |
-
"joy": ds.Value("uint8"),
|
| 134 |
-
"sadness": ds.Value("uint8"),
|
| 135 |
-
"anticipation": ds.Value("uint8"),
|
| 136 |
-
"surprise": ds.Value("uint8"),
|
| 137 |
-
"anger": ds.Value("uint8"),
|
| 138 |
-
"fear": ds.Value("uint8"),
|
| 139 |
-
"disgust": ds.Value("uint8"),
|
| 140 |
-
"trust": ds.Value("uint8"),
|
| 141 |
-
},
|
| 142 |
-
}
|
| 143 |
-
)
|
| 144 |
return ds.DatasetInfo(
|
| 145 |
description=_DESCRIPTION,
|
| 146 |
features=features,
|
|
@@ -149,14 +130,27 @@ class WrimeDataset(ds.GeneratorBasedBuilder):
|
|
| 149 |
citation=_CITATION,
|
| 150 |
)
|
| 151 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
def _split_generators(self, dl_manager: ds.DownloadManager):
|
| 153 |
wrime_datasets = dl_manager.download_and_extract(_URLS)
|
| 154 |
major_version_name = f"ver{self.config.version.major}" # type: ignore
|
| 155 |
|
| 156 |
wrime_df = _load_tsv(tsv_path=wrime_datasets[major_version_name])
|
| 157 |
-
tng_wrime_df = wrime_df[wrime_df["
|
| 158 |
-
dev_wrime_df = wrime_df[wrime_df["
|
| 159 |
-
tst_wrime_df = wrime_df[wrime_df["
|
| 160 |
|
| 161 |
return [
|
| 162 |
ds.SplitGenerator(
|
|
@@ -173,51 +167,34 @@ class WrimeDataset(ds.GeneratorBasedBuilder):
|
|
| 173 |
),
|
| 174 |
]
|
| 175 |
|
| 176 |
-
def
|
| 177 |
-
self,
|
| 178 |
-
df: pd.DataFrame,
|
| 179 |
-
):
|
| 180 |
for i in range(len(df)):
|
| 181 |
row_df = df.iloc[i]
|
| 182 |
|
| 183 |
example_dict = {
|
| 184 |
-
"sentence": row_df["
|
| 185 |
-
"user_id": row_df["
|
| 186 |
-
"datetime": row_df["
|
| 187 |
}
|
| 188 |
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
"surprise": row_df["Writer_Surprise"],
|
| 194 |
-
"anger": row_df["Writer_Anger"],
|
| 195 |
-
"fear": row_df["Writer_Fear"],
|
| 196 |
-
"disgust": row_df["Writer_Disgust"],
|
| 197 |
-
"trust": row_df["Writer_Trust"],
|
| 198 |
-
}
|
| 199 |
-
|
| 200 |
-
for reader_num in range(1, 4):
|
| 201 |
-
example_dict[f"reader{reader_num}"] = {
|
| 202 |
-
"joy": row_df[f"Reader{reader_num}_Joy"],
|
| 203 |
-
"sadness": row_df[f"Reader{reader_num}_Sadness"],
|
| 204 |
-
"anticipation": row_df[f"Reader{reader_num}_Anticipation"],
|
| 205 |
-
"surprise": row_df[f"Reader{reader_num}_Surprise"],
|
| 206 |
-
"anger": row_df[f"Reader{reader_num}_Anger"],
|
| 207 |
-
"fear": row_df[f"Reader{reader_num}_Fear"],
|
| 208 |
-
"disgust": row_df[f"Reader{reader_num}_Disgust"],
|
| 209 |
-
"trust": row_df[f"Reader{reader_num}_Trust"],
|
| 210 |
}
|
| 211 |
-
|
| 212 |
-
example_dict["avg_readers"] = {
|
| 213 |
-
"joy": row_df["Avg. Readers_Joy"],
|
| 214 |
-
"sadness": row_df["Avg. Readers_Sadness"],
|
| 215 |
-
"anticipation": row_df["Avg. Readers_Anticipation"],
|
| 216 |
-
"surprise": row_df["Avg. Readers_Surprise"],
|
| 217 |
-
"anger": row_df["Avg. Readers_Anger"],
|
| 218 |
-
"fear": row_df["Avg. Readers_Fear"],
|
| 219 |
-
"disgust": row_df["Avg. Readers_Disgust"],
|
| 220 |
-
"trust": row_df["Avg. Readers_Trust"],
|
| 221 |
-
}
|
| 222 |
-
|
| 223 |
yield i, example_dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import logging
|
| 2 |
+
from typing import Final, List, TypedDict
|
| 3 |
|
| 4 |
import datasets as ds
|
| 5 |
import pandas as pd
|
|
|
|
| 60 |
return df
|
| 61 |
|
| 62 |
|
| 63 |
+
def _convert_column_name(df: pd.DataFrame) -> pd.DataFrame:
|
| 64 |
+
|
| 65 |
+
# ['Sentence', 'UserID', 'Datetime', 'Train/Dev/Test', 'Writer_Joy', ...]
|
| 66 |
+
# -> ['sentence', 'userid', 'datetime', 'train/dev/test', 'writer_joy', ...]
|
| 67 |
+
df.columns = df.columns.str.lower()
|
| 68 |
+
|
| 69 |
+
# ['avg. readers_joy', 'avg. readers_sadness', 'avg. readers_anticipation', ...]
|
| 70 |
+
# -> ['avg_readers_joy', 'avg_readers_sadness', 'avg_readers_anticipation', ...]
|
| 71 |
+
df.columns = df.columns.str.replace(". ", "_")
|
| 72 |
+
|
| 73 |
+
return df
|
| 74 |
+
|
| 75 |
+
|
| 76 |
def _load_tsv(tsv_path: str) -> pd.DataFrame:
|
| 77 |
logger.info(f"Load TSV file from {tsv_path}")
|
| 78 |
df = pd.read_csv(tsv_path, delimiter="\t")
|
| 79 |
|
| 80 |
+
# some preprocessing
|
| 81 |
df = _fix_typo_in_dataset(df)
|
| 82 |
+
df = _convert_column_name(df)
|
| 83 |
|
| 84 |
return df
|
| 85 |
|
| 86 |
|
| 87 |
+
EIGHT_EMOTIONS: Final[List[str]] = [
|
| 88 |
+
"joy",
|
| 89 |
+
"sadness",
|
| 90 |
+
"anticipation",
|
| 91 |
+
"surprise",
|
| 92 |
+
"anger",
|
| 93 |
+
"fear",
|
| 94 |
+
"disgust",
|
| 95 |
+
"trust",
|
| 96 |
+
]
|
| 97 |
+
|
| 98 |
+
|
| 99 |
class WrimeDataset(ds.GeneratorBasedBuilder):
|
| 100 |
BUILDER_CONFIGS = [
|
| 101 |
ds.BuilderConfig(
|
|
|
|
| 110 |
),
|
| 111 |
]
|
| 112 |
|
| 113 |
+
def __info(self, emotions: List[str]) -> ds.DatasetInfo:
|
| 114 |
+
features_dict = {
|
| 115 |
+
"sentence": ds.Value("string"),
|
| 116 |
+
"user_id": ds.Value("string"),
|
| 117 |
+
"datetime": ds.Value("string"),
|
| 118 |
+
}
|
| 119 |
+
|
| 120 |
+
readers = [f"reader{i}" for i in range(1, 4)] + ["avg_readers"]
|
| 121 |
+
for k in ["writer"] + readers:
|
| 122 |
+
features_dict[k] = {emotion: ds.Value("int8") for emotion in emotions} # type: ignore
|
| 123 |
+
features = ds.Features(features_dict)
|
| 124 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
return ds.DatasetInfo(
|
| 126 |
description=_DESCRIPTION,
|
| 127 |
features=features,
|
|
|
|
| 130 |
citation=_CITATION,
|
| 131 |
)
|
| 132 |
|
| 133 |
+
def _info(self) -> ds.DatasetInfo:
|
| 134 |
+
|
| 135 |
+
if self.config.version.major == 1: # type: ignore
|
| 136 |
+
# Ver.1: 80人の筆者から収集した43,200件の投稿に感情強度をラベル付け
|
| 137 |
+
return self.__info(emotions=EIGHT_EMOTIONS)
|
| 138 |
+
|
| 139 |
+
elif self.config.version.major == 2: # type: ignore
|
| 140 |
+
# Ver.2: 60人の筆者から収集した35,000件の投稿(Ver.1のサブセット)に感情極性を追加でラベル付け
|
| 141 |
+
return self.__info(emotions=EIGHT_EMOTIONS + ["sentiment"])
|
| 142 |
+
|
| 143 |
+
else:
|
| 144 |
+
raise ValueError(f"Invalid dataset version: {self.config.version}")
|
| 145 |
+
|
| 146 |
def _split_generators(self, dl_manager: ds.DownloadManager):
|
| 147 |
wrime_datasets = dl_manager.download_and_extract(_URLS)
|
| 148 |
major_version_name = f"ver{self.config.version.major}" # type: ignore
|
| 149 |
|
| 150 |
wrime_df = _load_tsv(tsv_path=wrime_datasets[major_version_name])
|
| 151 |
+
tng_wrime_df = wrime_df[wrime_df["train/dev/test"] == "train"]
|
| 152 |
+
dev_wrime_df = wrime_df[wrime_df["train/dev/test"] == "dev"]
|
| 153 |
+
tst_wrime_df = wrime_df[wrime_df["train/dev/test"] == "test"]
|
| 154 |
|
| 155 |
return [
|
| 156 |
ds.SplitGenerator(
|
|
|
|
| 167 |
),
|
| 168 |
]
|
| 169 |
|
| 170 |
+
def __generate_examples(self, df: pd.DataFrame, emotions: List[str]):
|
|
|
|
|
|
|
|
|
|
| 171 |
for i in range(len(df)):
|
| 172 |
row_df = df.iloc[i]
|
| 173 |
|
| 174 |
example_dict = {
|
| 175 |
+
"sentence": row_df["sentence"],
|
| 176 |
+
"user_id": row_df["userid"],
|
| 177 |
+
"datetime": row_df["datetime"],
|
| 178 |
}
|
| 179 |
|
| 180 |
+
readers = [f"reader{i}" for i in range(1, 4)] + ["avg_readers"]
|
| 181 |
+
for k in ["writer"] + readers:
|
| 182 |
+
example_dict[k] = {
|
| 183 |
+
emotion: row_df[f"{k}_{emotion}"] for emotion in emotions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
yield i, example_dict
|
| 186 |
+
|
| 187 |
+
def _generate_examples(self, df: pd.DataFrame): # type: ignore[override]
|
| 188 |
+
|
| 189 |
+
if self.config.version.major == 1: # type: ignore
|
| 190 |
+
yield from self.__generate_examples(
|
| 191 |
+
df,
|
| 192 |
+
emotions=EIGHT_EMOTIONS,
|
| 193 |
+
)
|
| 194 |
+
elif self.config.version.major == 2: # type: ignore
|
| 195 |
+
yield from self.__generate_examples(
|
| 196 |
+
df,
|
| 197 |
+
emotions=EIGHT_EMOTIONS + ["sentiment"],
|
| 198 |
+
)
|
| 199 |
+
else:
|
| 200 |
+
raise ValueError(f"Invalid dataset version: {self.config.version}")
|