--- annotations_creators: [] language_creators: - crowdsourced - expert-generated language: - code license: - apache-2.0 multilinguality: - multilingual size_categories: - unknown source_datasets: [] task_categories: - text-generation task_ids: - language-modeling pretty_name: HumanEval-X dataset_info: - config_name: cpp features: - name: task_id dtype: string - name: prompt dtype: string - name: declaration dtype: string - name: canonical_solution dtype: string - name: test dtype: string - name: example_test dtype: string splits: - name: test num_bytes: 276141 num_examples: 164 download_size: 101881 dataset_size: 276141 - config_name: go features: - name: task_id dtype: string - name: prompt dtype: string - name: declaration dtype: string - name: canonical_solution dtype: string - name: test dtype: string - name: example_test dtype: string splits: - name: test num_bytes: 250979 num_examples: 164 download_size: 102355 dataset_size: 250979 - config_name: java features: - name: task_id dtype: string - name: prompt dtype: string - name: declaration dtype: string - name: canonical_solution dtype: string - name: test dtype: string - name: example_test dtype: string splits: - name: test num_bytes: 376189 num_examples: 164 download_size: 111925 dataset_size: 376189 - config_name: js features: - name: task_id dtype: string - name: prompt dtype: string - name: declaration dtype: string - name: canonical_solution dtype: string - name: test dtype: string - name: example_test dtype: string splits: - name: test num_bytes: 249916 num_examples: 164 download_size: 102493 dataset_size: 249916 - config_name: python features: - name: task_id dtype: string - name: prompt dtype: string - name: declaration dtype: string - name: canonical_solution dtype: string - name: test dtype: string - name: example_test dtype: string splits: - name: test num_bytes: 249240 num_examples: 164 download_size: 101470 dataset_size: 249240 configs: - config_name: cpp data_files: - split: test path: cpp/test-* - config_name: go data_files: - split: test path: go/test-* - config_name: java data_files: - split: test path: java/test-* - config_name: js data_files: - split: test path: js/test-* - config_name: python data_files: - split: test path: python/test-* default: true --- # HumanEval-X ## Dataset Description [HumanEval-X](https://github.com/THUDM/CodeGeeX) is a benchmark for evaluating the multilingual ability of code generative models. It consists of 820 high-quality human-crafted data samples (each with test cases) in Python, C++, Java, JavaScript, and Go, and can be used for various tasks, such as code generation and translation. ## Languages The dataset contains coding problems in 5 programming languages: Python, C++, Java, JavaScript, and Go. ## Dataset Structure To load the dataset you need to specify a subset among the 5 exiting languages `[python, cpp, go, java, js]`. By default `python` is loaded. ```python from datasets import load_dataset load_dataset("THUDM/humaneval-x", "js") DatasetDict({ test: Dataset({ features: ['task_id', 'prompt', 'declaration', 'canonical_solution', 'test', 'example_test'], num_rows: 164 }) }) ``` ```python next(iter(data["test"])) {'task_id': 'JavaScript/0', 'prompt': '/* Check if in given list of numbers, are any two numbers closer to each other than\n given threshold.\n >>> hasCloseElements([1.0, 2.0, 3.0], 0.5)\n false\n >>> hasCloseElements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)\n true\n */\nconst hasCloseElements = (numbers, threshold) => {\n', 'declaration': '\nconst hasCloseElements = (numbers, threshold) => {\n', 'canonical_solution': ' for (let i = 0; i < numbers.length; i++) {\n for (let j = 0; j < numbers.length; j++) {\n if (i != j) {\n let distance = Math.abs(numbers[i] - numbers[j]);\n if (distance < threshold) {\n return true;\n }\n }\n }\n }\n return false;\n}\n\n', 'test': 'const testHasCloseElements = () => {\n console.assert(hasCloseElements([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) === true)\n console.assert(\n hasCloseElements([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) === false\n )\n console.assert(hasCloseElements([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) === true)\n console.assert(hasCloseElements([1.0, 2.0, 5.9, 4.0, 5.0], 0.8) === false)\n console.assert(hasCloseElements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0], 0.1) === true)\n console.assert(hasCloseElements([1.1, 2.2, 3.1, 4.1, 5.1], 1.0) === true)\n console.assert(hasCloseElements([1.1, 2.2, 3.1, 4.1, 5.1], 0.5) === false)\n}\n\ntestHasCloseElements()\n', 'example_test': 'const testHasCloseElements = () => {\n console.assert(hasCloseElements([1.0, 2.0, 3.0], 0.5) === false)\n console.assert(\n hasCloseElements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) === true\n )\n}\ntestHasCloseElements()\n'} ``` ## Data Fields * ``task_id``: indicates the target language and ID of the problem. Language is one of ["Python", "Java", "JavaScript", "CPP", "Go"]. * ``prompt``: the function declaration and docstring, used for code generation. * ``declaration``: only the function declaration, used for code translation. * ``canonical_solution``: human-crafted example solutions. * ``test``: hidden test samples, used for evaluation. * ``example_test``: public test samples (appeared in prompt), used for evaluation. ## Data Splits Each subset has one split: test. ## Citation Information Refer to https://github.com/THUDM/CodeGeeX.