Shaltiel commited on
Commit
f3cd38e
·
verified ·
1 Parent(s): 5989764

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +74 -0
README.md ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ pipeline_tag: text-generation
4
+ language:
5
+ - en
6
+ - he
7
+ tags:
8
+ - pretrained
9
+ inference:
10
+ parameters:
11
+ temperature: 0.6
12
+ ---
13
+
14
+ [<img src="https://i.ibb.co/5Lbwyr1/dicta-logo.jpg" width="300px"/>](https://dicta.org.il)
15
+
16
+ # Dicta-LM 3.0: Advancing The Frontier of Hebrew Sovereign LLMs
17
+
18
+ Dicta-LM 3.0 is a powerful open-weight collection of LLMs, trained on extensive corpora of Hebrew and English texts. The models are available for download and for unlimited use. The models set a new SOTA for their weight-class for Hebrew, both as base models and chat models.
19
+
20
+ This is the 1.7-billion-parameter instruct model, originally initialized from [Qwen3-1.7B-Base](https://huggingface.co/Qwen/Qwen3-1.7B-Base).
21
+
22
+ This version of the model is dynamically quantized to FP8, utilizing the Hopper and Blackwell architectures for faster inference with a lower memory footprint. This model can run with <4GB of VRAM.
23
+
24
+ For full details of this model please read our [release blog post](https://dicta.org.il/dicta-lm-3) or the [technical report](https://www.dicta.org.il/publications/DictaLM_3_0___Techincal_Report.pdf).
25
+
26
+ You can view and access the full collection of base/instruct unquantized/quantized versions of `DictaLM 3.0` [here](https://huggingface.co/collections/dicta-il/dictalm-30-collection).
27
+
28
+ ## Instruction format
29
+
30
+ In order to leverage instruction fine-tuning, your prompt should be rendered using the chat template specified for this model. Most libraries deal with this automatically, so you can just let them do it.
31
+
32
+ ## Usage
33
+
34
+ ### vLLM
35
+
36
+ ```bash
37
+ vllm serve dicta-il/DictaLM-3.0-1.7B-Instruct-FP8 --enable-auto-tool-choice --tool-call-parser hermes
38
+ ```
39
+
40
+ And then you can access it via the openai library:
41
+
42
+ ```python
43
+ from openai import OpenAI
44
+
45
+ client = OpenAI(
46
+ base_url="http://localhost:8000/v1",
47
+ api_key="sk-no-key-required"
48
+ )
49
+
50
+ response = client.chat.completions.create(
51
+ model="dicta-il/DictaLM-3.0-1.7B-Instruct-FP8",
52
+ messages=[
53
+ {"role": "user", "content": "Hello, how are you?"}
54
+ ],
55
+ )
56
+
57
+ print(response.choices[0].message.content)
58
+ ```
59
+
60
+ The model supports tool-calling, enabling integration with external tools and APIs. For example how to use the tool calling, see the [vLLM documentation](https://docs.vllm.ai/en/stable/features/tool_calling/#tool-calling).
61
+
62
+ ## Citation
63
+
64
+ If you use this model, please cite:
65
+
66
+ ```bibtex
67
+ @article{Shmidman2025DictaLM3,
68
+ title={{Dicta-LM 3.0: Advancing The Frontier of Hebrew Sovereign LLMs}},
69
+ author={Shaltiel Shmidman and Avi Shmidman and Amir DN Cohen and Moshe Koppel},
70
+ year={2025},
71
+ publisher={{DICTA / Jerusalem, Israel}},
72
+ note={https://www.dicta.org.il/publications/DictaLM_3_0___Techincal_Report.pdf}
73
+ }
74
+ ```