embed-andegpt-H384
This is a sentence-transformers model finetuned from nreimers/MiniLM-L6-H384-uncased. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: nreimers/MiniLM-L6-H384-uncased
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Language: es
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("enpaiva/embed-andegpt-H384")
# Run inference
sentences = [
'¿Cuál es el nombre del reglamento que se menciona en la información proporcionada?',
'Reglamento de Baja Tensión de la ANDE: El 10- trata sobre Partes de que se compone una instalación eléctrica: y tiene las siguientes sub-secciones: <sub-section>10.1</sub-section>',
'Reglamento de Baja Tensión de la ANDE: El 37- trata sobre Soldadura eléctrica: y tiene las siguientes sub-secciones: <sub-section>37.1</sub-section>, <sub-section>37.2</sub-section>, <sub-section>37.3</sub-section>, <sub-section>37.4</sub-section>',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset:
andegpt-dev - Evaluated with
TripletEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy | 0.9983 |
| dot_accuracy | 0.0022 |
| manhattan_accuracy | 0.9985 |
| euclidean_accuracy | 0.9983 |
| max_accuracy | 0.9985 |
Triplet
- Dataset:
andegpt-test - Evaluated with
TripletEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy | 0.9973 |
| dot_accuracy | 0.0024 |
| manhattan_accuracy | 0.9971 |
| euclidean_accuracy | 0.9973 |
| max_accuracy | 0.9973 |
Training Details
Training Hyperparameters
Non-Default Hyperparameters
prediction_loss_only: Falseper_device_train_batch_size: 32learning_rate: 2e-05lr_scheduler_type: cosinelog_level_replica: passivelog_on_each_node: Falselogging_nan_inf_filter: Falsebf16: Truebatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseprediction_loss_only: Falseper_device_train_batch_size: 32per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 3max_steps: -1lr_scheduler_type: cosinelr_scheduler_kwargs: {}warmup_ratio: 0warmup_steps: 0log_level: passivelog_level_replica: passivelog_on_each_node: Falselogging_nan_inf_filter: Falsesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falsefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | loss | andegpt-dev_max_accuracy | andegpt-test_max_accuracy |
|---|---|---|---|---|---|
| 0 | 0 | - | - | 0.5920 | - |
| 0.1079 | 250 | 2.3094 | 0.7200 | 0.9597 | - |
| 0.2158 | 500 | 0.7952 | 0.3598 | 0.9813 | - |
| 0.3237 | 750 | 0.4862 | 0.2162 | 0.9910 | - |
| 0.4316 | 1000 | 0.3304 | 0.1558 | 0.9927 | - |
| 0.5395 | 1250 | 0.2527 | 0.1140 | 0.9961 | - |
| 0.6474 | 1500 | 0.1987 | 0.0859 | 0.9964 | - |
| 0.7553 | 1750 | 0.1617 | 0.0729 | 0.9959 | - |
| 0.8632 | 2000 | 0.1419 | 0.0562 | 0.9966 | - |
| 0.9711 | 2250 | 0.1132 | 0.0495 | 0.9968 | - |
| 1.0790 | 2500 | 0.1043 | 0.0429 | 0.9971 | - |
| 1.1869 | 2750 | 0.0947 | 0.0368 | 0.9978 | - |
| 1.2948 | 3000 | 0.0736 | 0.0367 | 0.9976 | - |
| 1.4027 | 3250 | 0.0661 | 0.0296 | 0.9978 | - |
| 1.5106 | 3500 | 0.0613 | 0.0279 | 0.9985 | - |
| 1.6185 | 3750 | 0.0607 | 0.0264 | 0.9983 | - |
| 1.7264 | 4000 | 0.0521 | 0.0238 | 0.9985 | - |
| 1.8343 | 4250 | 0.0495 | 0.0216 | 0.9985 | - |
| 1.9422 | 4500 | 0.0425 | 0.0211 | 0.9983 | - |
| 2.0501 | 4750 | 0.0428 | 0.0200 | 0.9983 | - |
| 2.1580 | 5000 | 0.0435 | 0.0190 | 0.9985 | - |
| 2.2659 | 5250 | 0.0393 | 0.0188 | 0.9983 | - |
| 2.3738 | 5500 | 0.0356 | 0.0182 | 0.9983 | - |
| 2.4817 | 5750 | 0.0351 | 0.0180 | 0.9988 | - |
| 2.5896 | 6000 | 0.0394 | 0.0181 | 0.9985 | - |
| 2.5973 | 6018 | - | - | - | 0.9973 |
Framework Versions
- Python: 3.11.0
- Sentence Transformers: 3.0.1
- Transformers: 4.39.3
- PyTorch: 2.2.0+cu121
- Accelerate: 0.28.0
- Datasets: 2.20.0
- Tokenizers: 0.15.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 7
Model tree for enpaiva/embed-andegpt-H384
Base model
nreimers/MiniLM-L6-H384-uncasedEvaluation results
- Cosine Accuracy on andegpt devself-reported0.998
- Dot Accuracy on andegpt devself-reported0.002
- Manhattan Accuracy on andegpt devself-reported0.999
- Euclidean Accuracy on andegpt devself-reported0.998
- Max Accuracy on andegpt devself-reported0.999
- Cosine Accuracy on andegpt testself-reported0.997
- Dot Accuracy on andegpt testself-reported0.002
- Manhattan Accuracy on andegpt testself-reported0.997
- Euclidean Accuracy on andegpt testself-reported0.997
- Max Accuracy on andegpt testself-reported0.997