eugene702 commited on
Commit
214c7aa
ยท
verified ยท
1 Parent(s): e587e62

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -350
README.md CHANGED
@@ -1,383 +1,113 @@
1
  ---
 
 
2
  tags:
3
- - sentence-transformers
4
- - sentence-similarity
5
- - feature-extraction
6
- - generated_from_trainer
7
- - dataset_size:14740
8
- - loss:CosineSimilarityLoss
9
- base_model: indobenchmark/indobert-large-p2
10
- widget:
11
- - source_sentence: Hal tersebut bukanlah tanggung jawab langsung kepada konstituen.
12
- sentences:
13
- - Seorang wanita sedang menembakkan pistol.
14
- - Seseorang melempar kucing ke langit-langit.
15
- - Ya, tetapi mereka bertanggung jawab kepada konstituen mereka.
16
- - source_sentence: Tidak ada kemenangan bagi Obama di kalangan konservatif.
17
- sentences:
18
- - Ini sangat kaya dari seorang konservatif.
19
- - komunitas global harus bekerja sama untuk mengakhiri perdagangan gelap senjata
20
- kecil dan senjata ringan.
21
- - Bendera Amerika Serikat tertiup angin.
22
- - source_sentence: Pasukan AS Tewas dalam Serangan Orang Dalam Afghanistan
23
- sentences:
24
- - Seekor anjing cokelat berlari melintasi rerumputan.
25
- - Pasukan NATO tewas dalam 'serangan orang dalam' di Afghanistan
26
- - Sering berlatih bahasa asing
27
- - source_sentence: Pakta perbatasan tinta India dan Cina; 8 perjanjian lainnya
28
- sentences:
29
- - Sering membawa tas kecil saat jalan-jalan
30
- - Jarang menggunakan Grab untuk kirim dokumen
31
- - India dan Cina menorehkan kesepakatan tentang sungai lintas batas
32
- - source_sentence: Seorang anak laki-laki kecil bermain di salju.
33
- sentences:
34
- - Anjing berwarna cokelat dan putih sedang bermain di atas salju.
35
- - Seorang gadis sedang memainkan seruling.
36
- - Kucing domestik yang sedang berbaring di belakang kotoran kucing.
37
- pipeline_tag: sentence-similarity
38
- library_name: sentence-transformers
39
  metrics:
40
- - pearson_cosine
41
- - spearman_cosine
42
  model-index:
43
- - name: SentenceTransformer based on indobenchmark/indobert-large-p2
44
- results:
45
- - task:
46
- type: semantic-similarity
47
- name: Semantic Similarity
48
- dataset:
49
- name: sts validation
50
- type: sts-validation
51
- metrics:
52
- - type: pearson_cosine
53
- value: 0.8588187163579742
54
- name: Pearson Cosine
55
- - type: spearman_cosine
56
- value: 0.8562693942139418
57
- name: Spearman Cosine
58
  ---
59
 
60
- # SentenceTransformer based on indobenchmark/indobert-large-p2
61
-
62
- This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [indobenchmark/indobert-large-p2](https://huggingface.co/indobenchmark/indobert-large-p2). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
63
-
64
- ## Model Details
65
-
66
- ### Model Description
67
- - **Model Type:** Sentence Transformer
68
- - **Base model:** [indobenchmark/indobert-large-p2](https://huggingface.co/indobenchmark/indobert-large-p2) <!-- at revision 4b280c3bfcc1ed2d6b4589be5c876076b7d73568 -->
69
- - **Maximum Sequence Length:** 512 tokens
70
- - **Output Dimensionality:** 1024 dimensions
71
- - **Similarity Function:** Cosine Similarity
72
- <!-- - **Training Dataset:** Unknown -->
73
- <!-- - **Language:** Unknown -->
74
- <!-- - **License:** Unknown -->
75
 
76
- ### Model Sources
77
 
78
- - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
79
- - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
80
- - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
 
81
 
82
- ### Full Model Architecture
83
 
84
- ```
85
- SentenceTransformer(
86
- (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
87
- (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
88
- )
89
- ```
90
 
91
- ## Usage
 
 
 
 
 
 
92
 
93
- ### Direct Usage (Sentence Transformers)
94
 
95
- First install the Sentence Transformers library:
96
-
97
- ```bash
98
- pip install -U sentence-transformers
99
- ```
100
-
101
- Then you can load this model and run inference.
102
  ```python
103
- from sentence_transformers import SentenceTransformer
104
-
105
- # Download from the ๐Ÿค— Hub
106
- model = SentenceTransformer("sentence_transformers_model_id")
107
- # Run inference
108
- sentences = [
109
- 'Seorang anak laki-laki kecil bermain di salju.',
110
- 'Anjing berwarna cokelat dan putih sedang bermain di atas salju.',
111
- 'Seorang gadis sedang memainkan seruling.',
112
- ]
113
- embeddings = model.encode(sentences)
114
- print(embeddings.shape)
115
- # [3, 1024]
116
-
117
- # Get the similarity scores for the embeddings
118
- similarities = model.similarity(embeddings, embeddings)
119
- print(similarities.shape)
120
- # [3, 3]
121
- ```
122
-
123
- <!--
124
- ### Direct Usage (Transformers)
125
-
126
- <details><summary>Click to see the direct usage in Transformers</summary>
127
-
128
- </details>
129
- -->
130
-
131
- <!--
132
- ### Downstream Usage (Sentence Transformers)
133
-
134
- You can finetune this model on your own dataset.
135
 
136
- <details><summary>Click to expand</summary>
137
 
138
- </details>
139
- -->
140
-
141
- <!--
142
- ### Out-of-Scope Use
143
-
144
- *List how the model may foreseeably be misused and address what users ought not to do with the model.*
145
- -->
146
-
147
- ## Evaluation
148
-
149
- ### Metrics
150
-
151
- #### Semantic Similarity
152
-
153
- * Dataset: `sts-validation`
154
- * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
155
-
156
- | Metric | Value |
157
- |:--------------------|:-----------|
158
- | pearson_cosine | 0.8588 |
159
- | **spearman_cosine** | **0.8563** |
160
-
161
- <!--
162
- ## Bias, Risks and Limitations
163
-
164
- *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
165
- -->
166
-
167
- <!--
168
- ### Recommendations
169
-
170
- *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
171
- -->
172
-
173
- ## Training Details
174
-
175
- ### Training Dataset
176
-
177
- #### Unnamed Dataset
178
-
179
- * Size: 14,740 training samples
180
- * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
181
- * Approximate statistics based on the first 1000 samples:
182
- | | sentence_0 | sentence_1 | label |
183
- |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
184
- | type | string | string | float |
185
- | details | <ul><li>min: 5 tokens</li><li>mean: 13.13 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 12.98 tokens</li><li>max: 51 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.49</li><li>max: 1.0</li></ul> |
186
- * Samples:
187
- | sentence_0 | sentence_1 | label |
188
- |:-----------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------|
189
- | <code>Sering memesan tiket di Tiket.com</code> | <code>Pernah memesan tiket di Tiket.com</code> | <code>0.75</code> |
190
- | <code>Seorang pria memotong kentang.</code> | <code>Seorang pria mengiris kentang.</code> | <code>0.96</code> |
191
- | <code>Beberapa ribu pasukan Infanteri ke-3, termasuk Tim Tempur Brigade ke-3 yang bermarkas di Fort Benning di Columbus, mulai kembali minggu lalu.</code> | <code>Beberapa ribu tentara, sebagian besar dari Tim Tempur Brigade ke-3 divisi yang bermarkas di Fort Benning di Columbus, mulai kembali minggu lalu, dengan penerbangan yang terus berlanjut hingga hari Jumat.</code> | <code>0.8</code> |
192
- * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
193
- ```json
194
- {
195
- "loss_fct": "torch.nn.modules.loss.MSELoss"
196
- }
197
- ```
198
 
199
- ### Training Hyperparameters
200
- #### Non-Default Hyperparameters
201
 
202
- - `eval_strategy`: steps
203
- - `per_device_train_batch_size`: 16
204
- - `per_device_eval_batch_size`: 16
205
- - `num_train_epochs`: 5
206
- - `multi_dataset_batch_sampler`: round_robin
207
 
208
- #### All Hyperparameters
209
- <details><summary>Click to expand</summary>
 
 
 
210
 
211
- - `overwrite_output_dir`: False
212
- - `do_predict`: False
213
- - `eval_strategy`: steps
214
- - `prediction_loss_only`: True
215
- - `per_device_train_batch_size`: 16
216
- - `per_device_eval_batch_size`: 16
217
- - `per_gpu_train_batch_size`: None
218
- - `per_gpu_eval_batch_size`: None
219
- - `gradient_accumulation_steps`: 1
220
- - `eval_accumulation_steps`: None
221
- - `torch_empty_cache_steps`: None
222
- - `learning_rate`: 5e-05
223
- - `weight_decay`: 0.0
224
- - `adam_beta1`: 0.9
225
- - `adam_beta2`: 0.999
226
- - `adam_epsilon`: 1e-08
227
- - `max_grad_norm`: 1
228
- - `num_train_epochs`: 5
229
- - `max_steps`: -1
230
- - `lr_scheduler_type`: linear
231
- - `lr_scheduler_kwargs`: {}
232
- - `warmup_ratio`: 0.0
233
- - `warmup_steps`: 0
234
- - `log_level`: passive
235
- - `log_level_replica`: warning
236
- - `log_on_each_node`: True
237
- - `logging_nan_inf_filter`: True
238
- - `save_safetensors`: True
239
- - `save_on_each_node`: False
240
- - `save_only_model`: False
241
- - `restore_callback_states_from_checkpoint`: False
242
- - `no_cuda`: False
243
- - `use_cpu`: False
244
- - `use_mps_device`: False
245
- - `seed`: 42
246
- - `data_seed`: None
247
- - `jit_mode_eval`: False
248
- - `use_ipex`: False
249
- - `bf16`: False
250
- - `fp16`: False
251
- - `fp16_opt_level`: O1
252
- - `half_precision_backend`: auto
253
- - `bf16_full_eval`: False
254
- - `fp16_full_eval`: False
255
- - `tf32`: None
256
- - `local_rank`: 0
257
- - `ddp_backend`: None
258
- - `tpu_num_cores`: None
259
- - `tpu_metrics_debug`: False
260
- - `debug`: []
261
- - `dataloader_drop_last`: False
262
- - `dataloader_num_workers`: 0
263
- - `dataloader_prefetch_factor`: None
264
- - `past_index`: -1
265
- - `disable_tqdm`: False
266
- - `remove_unused_columns`: True
267
- - `label_names`: None
268
- - `load_best_model_at_end`: False
269
- - `ignore_data_skip`: False
270
- - `fsdp`: []
271
- - `fsdp_min_num_params`: 0
272
- - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
273
- - `fsdp_transformer_layer_cls_to_wrap`: None
274
- - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
275
- - `deepspeed`: None
276
- - `label_smoothing_factor`: 0.0
277
- - `optim`: adamw_torch
278
- - `optim_args`: None
279
- - `adafactor`: False
280
- - `group_by_length`: False
281
- - `length_column_name`: length
282
- - `ddp_find_unused_parameters`: None
283
- - `ddp_bucket_cap_mb`: None
284
- - `ddp_broadcast_buffers`: False
285
- - `dataloader_pin_memory`: True
286
- - `dataloader_persistent_workers`: False
287
- - `skip_memory_metrics`: True
288
- - `use_legacy_prediction_loop`: False
289
- - `push_to_hub`: False
290
- - `resume_from_checkpoint`: None
291
- - `hub_model_id`: None
292
- - `hub_strategy`: every_save
293
- - `hub_private_repo`: None
294
- - `hub_always_push`: False
295
- - `gradient_checkpointing`: False
296
- - `gradient_checkpointing_kwargs`: None
297
- - `include_inputs_for_metrics`: False
298
- - `include_for_metrics`: []
299
- - `eval_do_concat_batches`: True
300
- - `fp16_backend`: auto
301
- - `push_to_hub_model_id`: None
302
- - `push_to_hub_organization`: None
303
- - `mp_parameters`:
304
- - `auto_find_batch_size`: False
305
- - `full_determinism`: False
306
- - `torchdynamo`: None
307
- - `ray_scope`: last
308
- - `ddp_timeout`: 1800
309
- - `torch_compile`: False
310
- - `torch_compile_backend`: None
311
- - `torch_compile_mode`: None
312
- - `include_tokens_per_second`: False
313
- - `include_num_input_tokens_seen`: False
314
- - `neftune_noise_alpha`: None
315
- - `optim_target_modules`: None
316
- - `batch_eval_metrics`: False
317
- - `eval_on_start`: False
318
- - `use_liger_kernel`: False
319
- - `eval_use_gather_object`: False
320
- - `average_tokens_across_devices`: False
321
- - `prompts`: None
322
- - `batch_sampler`: batch_sampler
323
- - `multi_dataset_batch_sampler`: round_robin
324
 
325
- </details>
326
 
327
- ### Training Logs
328
- | Epoch | Step | Training Loss | sts-validation_spearman_cosine |
329
- |:------:|:----:|:-------------:|:------------------------------:|
330
- | 1.0 | 461 | - | 0.8410 |
331
- | 1.0846 | 500 | 0.0736 | 0.8391 |
332
- | 2.0 | 922 | - | 0.8502 |
333
- | 2.1692 | 1000 | 0.0172 | 0.8524 |
334
- | 3.0 | 1383 | - | 0.8545 |
335
- | 3.2538 | 1500 | 0.0095 | 0.8551 |
336
- | 4.0 | 1844 | - | 0.8543 |
337
- | 4.3384 | 2000 | 0.0067 | 0.8551 |
338
- | 5.0 | 2305 | - | 0.8563 |
339
 
 
340
 
341
- ### Framework Versions
342
- - Python: 3.11.13
343
- - Sentence Transformers: 4.1.0
344
- - Transformers: 4.52.4
345
- - PyTorch: 2.6.0+cu124
346
- - Accelerate: 1.8.1
347
- - Datasets: 3.6.0
348
- - Tokenizers: 0.21.2
349
 
350
- ## Citation
351
 
352
- ### BibTeX
 
353
 
354
- #### Sentence Transformers
355
- ```bibtex
356
- @inproceedings{reimers-2019-sentence-bert,
357
- title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
358
- author = "Reimers, Nils and Gurevych, Iryna",
359
- booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
360
- month = "11",
361
- year = "2019",
362
- publisher = "Association for Computational Linguistics",
363
- url = "https://arxiv.org/abs/1908.10084",
364
- }
365
- ```
366
 
367
- <!--
368
- ## Glossary
 
369
 
370
- *Clearly define terms in order to be accessible across audiences.*
371
- -->
372
 
373
- <!--
374
- ## Model Card Authors
375
 
376
- *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
377
- -->
 
 
378
 
379
- <!--
380
- ## Model Card Contact
381
 
382
- *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
383
- -->
 
1
  ---
2
+ language: "id"
3
+ license: "apache-2.0"
4
  tags:
5
+ - sentence-transformers
6
+ - indonesian
7
+ - semantic-similarity
8
+ - stsb
9
+ - embedding
10
+ - fine-tuned
11
+ - education
12
+ datasets:
13
+ - rzkamalia/stsb-indo-mt-modified
14
+ - quarkss/stsb-indo-mt
15
+ - AkshitaS/semrel_2024_plus
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
  metrics:
17
+ - cosine-similarity
18
+ pipeline_tag: sentence-similarity
19
  model-index:
20
+ - name: Automatic Scoring (IndoBERT STS)
21
+ results:
22
+ - task:
23
+ name: Semantic Textual Similarity
24
+ type: sentence-similarity
25
+ dataset:
26
+ name: STSB Indo + SemRel 2024
27
+ type: multiple
28
+ metrics:
29
+ - name: Cosine Similarity
30
+ type: cosine-similarity
31
+ value: Evaluated on test set (see below)
 
 
 
32
  ---
33
 
34
+ # Automatic Scoring for Indonesian Semantic Similarity โœจ
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35
 
36
+ Model ini merupakan hasil fine-tuning dari [`indobenchmark/indobert-large-p2`](https://huggingface.co/indobenchmark/indobert-large-p2) menggunakan Sentence Transformers untuk tugas **Semantic Textual Similarity** (STS) dalam bahasa Indonesia.
37
 
38
+ Model ini dilatih secara **multi-dataset** menggunakan gabungan dari:
39
+ - ๐ŸŸข `rzkamalia/stsb-indo-mt-modified`
40
+ - ๐ŸŸข `quarkss/stsb-indo-mt`
41
+ - ๐ŸŸข `AkshitaS/semrel_2024_plus` (split `ind_Latn`)
42
 
43
+ Tujuan utama dari model ini adalah untuk mendukung **penilaian otomatis jawaban siswa** atau sistem pembelajaran berbasis teks dalam bahasa Indonesia.
44
 
45
+ ## ๐Ÿง  Model Details
 
 
 
 
 
46
 
47
+ - **Base Model**: [`indobenchmark/indobert-large-p2`](https://huggingface.co/indobenchmark/indobert-large-p2)
48
+ - **Framework**: `sentence-transformers`
49
+ - **Loss Function**: `CosineSimilarityLoss`
50
+ - **Training Epochs**: `5`
51
+ - **Batch Size**: `16`
52
+ - **Evaluation Metric**: `Cosine Similarity`
53
+ - **Total Datasets Combined**: 3 corpora (STS Indo + Semantic Relation)
54
 
55
+ ## ๐Ÿ“Š Example Usage
56
 
 
 
 
 
 
 
 
57
  ```python
58
+ from sentence_transformers import SentenceTransformer, util
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
 
60
+ model = SentenceTransformer("eugene702/Automatic-Scoring")
61
 
62
+ score = util.cos_sim(
63
+ model.encode("Apa dampak pemanasan global?", convert_to_tensor=True),
64
+ model.encode("Bagaimana pengaruh perubahan iklim terhadap bumi?", convert_to_tensor=True)
65
+ )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
 
67
+ print("Similarity Score:", score.item())
68
+ ```
69
 
70
+ ## ๐Ÿ“ Datasets Used
 
 
 
 
71
 
72
+ | Dataset | Deskripsi |
73
+ |--------|-----------|
74
+ | [`rzkamalia/stsb-indo-mt-modified`](https://huggingface.co/datasets/rzkamalia/stsb-indo-mt-modified) | Versi modifikasi STS bahasa Indonesia |
75
+ | [`quarkss/stsb-indo-mt`](https://huggingface.co/datasets/quarkss/stsb-indo-mt) | STS benchmark bahasa Indonesia |
76
+ | [`AkshitaS/semrel_2024_plus`](https://huggingface.co/datasets/AkshitaS/semrel_2024_plus) | Dataset Semantic Relation multilingual split `ind_Latn` |
77
 
78
+ ## ๐Ÿ“ˆ Evaluation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79
 
80
+ Evaluasi dilakukan pada data `test` dari ketiga dataset yang digabung. Penilaian dilakukan menggunakan `EmbeddingSimilarityEvaluator` dari `sentence-transformers`.
81
 
82
+ **Metric utama**: *Cosine Similarity* terhadap pasangan kalimat dalam bahasa Indonesia.
 
 
 
 
 
 
 
 
 
 
 
83
 
84
+ ## ๐Ÿ’ก Use Cases
85
 
86
+ - Penilaian otomatis jawaban siswa
87
+ - Deteksi parafrase dalam Bahasa Indonesia
88
+ - Penilaian kesamaan kalimat untuk e-learning
89
+ - Analisis pertanyaan dan jawaban semantik
 
 
 
 
90
 
91
+ ## ๐Ÿ›  Training Code
92
 
93
+ Model dilatih menggunakan `sentence-transformers` di platform Kaggle.
94
+ Kode pelatihan tersedia secara privat namun dapat diminta melalui email.
95
 
96
+ ## ๐Ÿ“Œ Model Availability
 
 
 
 
 
 
 
 
 
 
 
97
 
98
+ Model tersedia di:
99
+ - Hugging Face: [eugene702/Automatic-Scoring](https://huggingface.co/eugene702/Automatic-Scoring)
100
+ - Kaggle Model Hub: [Automatic Scoring](https://www.kaggle.com/models/eugene702/automatic-scoring)
101
 
102
+ ## ๐Ÿ“ฌ Contact
 
103
 
104
+ Untuk pertanyaan atau kolaborasi:
 
105
 
106
+ **Eugene Feilian Putra Rangga**
107
+ ๐Ÿ“ง [email protected]
108
+ ๐Ÿ”— [Hugging Face Profile](https://huggingface.co/eugene702)
109
+ ๐Ÿ”— [GitHub](https://github.com/Eugene702)
110
 
111
+ ---
 
112
 
113
+ > _Model ini merupakan bagian dari eksperimen untuk membangun sistem penilaian otomatis berbasis semantic similarity pada teks Bahasa Indonesia._