Not-trained-Neural-Networks / algebraic_neural_network.py
ewdlop's picture
Upload folder using huggingface_hub
461349d verified
"""
Algebraic Neural Network Implementation
This module implements various types of algebraic neural networks that don't require
traditional gradient-based training. Instead, they use algebraic structures and
operations to process information.
Author: Algebraic Neural Network Research
"""
import numpy as np
from typing import List, Callable, Union
import math
class AlgebraicLayer:
"""
Base class for algebraic layers that use mathematical operations
instead of learned weights.
"""
def __init__(self, input_size: int, output_size: int, operation: str = "polynomial"):
self.input_size = input_size
self.output_size = output_size
self.operation = operation
def forward(self, x: np.ndarray) -> np.ndarray:
"""Apply algebraic transformation to input."""
raise NotImplementedError("Subclasses must implement forward method")
class PolynomialLayer(AlgebraicLayer):
"""
Layer that applies polynomial transformations without learned weights.
Uses fixed polynomial coefficients based on algebraic principles.
"""
def __init__(self, input_size: int, output_size: int, degree: int = 2):
super().__init__(input_size, output_size, "polynomial")
self.degree = degree
# Generate coefficients using algebraic sequences (e.g., Fibonacci-based)
self.coefficients = self._generate_algebraic_coefficients()
def _generate_algebraic_coefficients(self) -> np.ndarray:
"""Generate polynomial coefficients using algebraic sequences."""
# Use golden ratio and algebraic numbers for coefficients
phi = (1 + math.sqrt(5)) / 2 # Golden ratio
coeffs = []
for i in range(self.output_size):
for j in range(self.input_size):
# Generate coefficients using algebraic properties
coeff = (phi ** (i + 1)) / (j + 1) if j < self.input_size else 1.0
coeffs.append(coeff)
return np.array(coeffs).reshape(self.output_size, self.input_size)
def forward(self, x: np.ndarray) -> np.ndarray:
"""Apply polynomial transformation."""
if x.ndim == 1:
x = x.reshape(1, -1)
result = np.zeros((x.shape[0], self.output_size))
for i in range(self.output_size):
# Apply polynomial of specified degree
poly_result = np.zeros(x.shape[0])
for degree in range(1, self.degree + 1):
poly_term = np.power(x, degree) @ self.coefficients[i]
poly_result += poly_term / math.factorial(degree)
result[:, i] = poly_result
return result
class GroupTheoryLayer(AlgebraicLayer):
"""
Layer based on group theory operations, particularly using cyclic groups
and group actions for transformations.
"""
def __init__(self, input_size: int, output_size: int, group_order: int = 8):
super().__init__(input_size, output_size, "group_theory")
self.group_order = group_order
# Generate group elements (rotations in this case)
self.group_elements = self._generate_cyclic_group()
def _generate_cyclic_group(self) -> List[np.ndarray]:
"""Generate cyclic group elements as rotation matrices."""
elements = []
for k in range(self.group_order):
angle = 2 * math.pi * k / self.group_order
# For 2D case, use rotation matrices
if self.input_size == 2:
rotation = np.array([
[math.cos(angle), -math.sin(angle)],
[math.sin(angle), math.cos(angle)]
])
elements.append(rotation)
else:
# For higher dimensions, use generalized rotations
rotation = np.eye(self.input_size)
if self.input_size >= 2:
rotation[0, 0] = math.cos(angle)
rotation[0, 1] = -math.sin(angle)
rotation[1, 0] = math.sin(angle)
rotation[1, 1] = math.cos(angle)
elements.append(rotation)
return elements
def forward(self, x: np.ndarray) -> np.ndarray:
"""Apply group action to input."""
if x.ndim == 1:
x = x.reshape(1, -1)
results = []
for i, group_element in enumerate(self.group_elements[:self.output_size]):
if x.shape[1] == group_element.shape[0]:
transformed = x @ group_element.T
# Take the norm as a scalar output
result = np.linalg.norm(transformed, axis=1)
else:
# Fallback for size mismatch
result = np.sum(x * (i + 1), axis=1)
results.append(result)
return np.column_stack(results)
class GeometricAlgebraLayer(AlgebraicLayer):
"""
Layer using geometric algebra (Clifford algebra) operations.
Implements basic geometric product and algebraic operations.
"""
def __init__(self, input_size: int, output_size: int):
super().__init__(input_size, output_size, "geometric_algebra")
# Initialize basis vectors for geometric algebra
self.basis_vectors = self._generate_basis_vectors()
def _generate_basis_vectors(self) -> List[np.ndarray]:
"""Generate basis vectors for geometric algebra."""
basis = []
# Scalar basis
basis.append(np.ones(self.input_size))
# Vector basis
for i in range(self.input_size):
e_i = np.zeros(self.input_size)
e_i[i] = 1.0
basis.append(e_i)
# Bivector basis (for pairs)
for i in range(self.input_size):
for j in range(i + 1, self.input_size):
e_ij = np.zeros(self.input_size)
e_ij[i] = 1.0
e_ij[j] = 1.0
basis.append(e_ij)
return basis[:self.output_size]
def geometric_product(self, a: np.ndarray, b: np.ndarray) -> float:
"""Compute geometric product of two vectors."""
# Simplified geometric product: dot product + outer product norm
dot_prod = np.dot(a, b)
# Approximate outer product contribution
outer_norm = np.linalg.norm(np.outer(a, b))
return dot_prod + outer_norm
def forward(self, x: np.ndarray) -> np.ndarray:
"""Apply geometric algebra transformations."""
if x.ndim == 1:
x = x.reshape(1, -1)
results = []
for basis_vector in self.basis_vectors:
# Compute geometric product with basis vector
result = []
for sample in x:
gp = self.geometric_product(sample, basis_vector)
result.append(gp)
results.append(np.array(result))
return np.column_stack(results)
class HaltingOracleLayer(AlgebraicLayer):
"""
Layer that simulates a halting oracle for specific computational patterns.
Uses heuristics and bounded computation to approximate uncomputable halting decisions.
"""
def __init__(self, input_size: int, output_size: int, max_iterations: int = 1000):
super().__init__(input_size, output_size, "halting_oracle")
self.max_iterations = max_iterations
# Fixed seed for deterministic "non-algorithmic" behavior
self.oracle_seed = 42
def _simulate_halting_oracle(self, program_encoding: float) -> float:
"""Simulate halting oracle decision for encoded program."""
# Use fixed-seed randomness to simulate oracle behavior
np.random.seed(int(abs(program_encoding * 1000)) % 2**31)
# Simple heuristic: programs with certain patterns are more likely to halt
# This is a deterministic approximation of the uncomputable halting problem
complexity_factor = abs(program_encoding) % 1.0
if complexity_factor < 0.1: # Very simple programs likely halt
return 1.0
elif complexity_factor > 0.9: # Very complex programs might not halt
return 0.1
else:
# Use bounded computation simulation
iterations = int(complexity_factor * self.max_iterations)
# Simulate bounded program execution
state = program_encoding
for i in range(iterations):
state = (state * 1.618 + 0.786) % 1.0 # Simple state evolution
if abs(state - 0.5) < 0.01: # "Halting condition"
return 1.0
return 0.3 # Uncertain/timeout case
def forward(self, x: np.ndarray) -> np.ndarray:
"""Apply halting oracle simulation to inputs."""
if x.ndim == 1:
x = x.reshape(1, -1)
results = []
for i in range(self.output_size):
oracle_results = []
for sample in x:
# Encode input as "program" for halting oracle
program_encoding = np.sum(sample * (i + 1)) / len(sample)
halting_prob = self._simulate_halting_oracle(program_encoding)
oracle_results.append(halting_prob)
results.append(np.array(oracle_results))
return np.column_stack(results)
class KolmogorovComplexityLayer(AlgebraicLayer):
"""
Layer that approximates Kolmogorov complexity using compression-based heuristics.
Provides bounded approximations of the uncomputable Kolmogorov complexity function.
"""
def __init__(self, input_size: int, output_size: int, precision: int = 8):
super().__init__(input_size, output_size, "kolmogorov_complexity")
self.precision = precision
def _approximate_kolmogorov_complexity(self, data: np.ndarray) -> float:
"""Approximate Kolmogorov complexity using compressibility heuristics."""
# Convert to discrete representation
discretized = np.round(data * (2**self.precision)).astype(int)
# Simple compression simulation using pattern detection
data_str = ''.join(map(str, discretized))
# Count repetitive patterns (simple compression heuristic)
unique_chars = len(set(data_str))
total_chars = len(data_str)
# Estimate complexity based on entropy-like measure
if total_chars == 0:
return 0.0
# Normalized complexity estimate
entropy_approx = (unique_chars / total_chars) * np.log2(unique_chars + 1)
# Add pattern complexity (longer patterns suggest lower complexity)
pattern_factor = 1.0
for pattern_len in range(2, min(5, len(data_str))):
patterns = set()
for i in range(len(data_str) - pattern_len + 1):
patterns.add(data_str[i:i+pattern_len])
if len(patterns) < len(data_str) - pattern_len + 1:
pattern_factor *= 0.8 # Reduce complexity for repeated patterns
return entropy_approx * pattern_factor
def forward(self, x: np.ndarray) -> np.ndarray:
"""Compute approximate Kolmogorov complexity for inputs."""
if x.ndim == 1:
x = x.reshape(1, -1)
results = []
for i in range(self.output_size):
complexity_results = []
for sample in x:
# Different projections for different outputs
projection = sample * (i + 1) / (self.output_size)
complexity = self._approximate_kolmogorov_complexity(projection)
complexity_results.append(complexity)
results.append(np.array(complexity_results))
return np.column_stack(results)
class BusyBeaverLayer(AlgebraicLayer):
"""
Layer using Busy Beaver function values and approximations.
The Busy Beaver function is uncomputable for general n, but known for small values.
"""
def __init__(self, input_size: int, output_size: int):
super().__init__(input_size, output_size, "busy_beaver")
# Known Busy Beaver values: BB(1)=1, BB(2)=4, BB(3)=6, BB(4)=13, BB(5)≥4098
self.known_bb_values = {1: 1, 2: 4, 3: 6, 4: 13, 5: 4098}
def _busy_beaver_approximation(self, n: int) -> float:
"""Get Busy Beaver value or approximation."""
if n <= 0:
return 0.0
elif n in self.known_bb_values:
return float(self.known_bb_values[n])
elif n <= 5:
return float(self.known_bb_values[5])
else:
# For n > 5, use exponential approximation
# This is a heuristic since BB(n) grows faster than any computable function
return self.known_bb_values[5] * (2.0 ** (n - 5))
def forward(self, x: np.ndarray) -> np.ndarray:
"""Apply Busy Beaver function to transformed inputs."""
if x.ndim == 1:
x = x.reshape(1, -1)
results = []
for i in range(self.output_size):
bb_results = []
for sample in x:
# Transform input to discrete parameter for Busy Beaver function
# Use log scale to keep values reasonable
param = max(1, int(abs(np.sum(sample) * (i + 1)) % 10) + 1)
bb_value = self._busy_beaver_approximation(param)
# Normalize to prevent overflow
normalized_bb = np.log1p(bb_value)
bb_results.append(normalized_bb)
results.append(np.array(bb_results))
return np.column_stack(results)
class NonRecursiveLayer(AlgebraicLayer):
"""
Layer based on non-recursive sets and functions.
Simulates operations on computably enumerable but non-computable sets.
"""
def __init__(self, input_size: int, output_size: int, enumeration_bound: int = 1000):
super().__init__(input_size, output_size, "non_recursive")
self.enumeration_bound = enumeration_bound
# Simulate a c.e. non-recursive set using a bounded enumeration
self.ce_set = self._generate_ce_set()
def _generate_ce_set(self) -> set:
"""Generate a computably enumerable set simulation."""
ce_set = set()
# Simulate enumeration of a c.e. set (like the set of Gödel numbers of theorems)
for i in range(self.enumeration_bound):
# Simple enumeration rule (this is computable, but simulates c.e. behavior)
if self._enumeration_rule(i):
ce_set.add(i)
return ce_set
def _enumeration_rule(self, n: int) -> bool:
"""Rule for enumerating elements (simulates theorem enumeration)."""
# Simple mathematical property that creates interesting patterns
# Simulates: numbers that can be expressed as sum of two squares
for i in range(int(np.sqrt(n)) + 1):
remainder = n - i*i
if remainder >= 0 and int(np.sqrt(remainder))**2 == remainder:
return True
return False
def _membership_oracle(self, value: float) -> float:
"""Simulate membership oracle for non-recursive set."""
# Convert continuous value to discrete for set membership
discrete_val = int(abs(value * 1000)) % self.enumeration_bound
if discrete_val in self.ce_set:
return 1.0
else:
# For values not yet enumerated, return uncertainty
# This simulates the non-recursive nature
return 0.5
def forward(self, x: np.ndarray) -> np.ndarray:
"""Apply non-recursive set operations to inputs."""
if x.ndim == 1:
x = x.reshape(1, -1)
results = []
for i in range(self.output_size):
membership_results = []
for sample in x:
# Transform input for membership testing
test_value = np.sum(sample * np.arange(len(sample))) * (i + 1)
membership = self._membership_oracle(test_value)
membership_results.append(membership)
results.append(np.array(membership_results))
return np.column_stack(results)
class AlgebraicNeuralNetwork:
"""
Main class for Algebraic Neural Networks that combines different
algebraic layers to create a complete network.
"""
def __init__(self):
self.layers = []
def add_layer(self, layer: AlgebraicLayer):
"""Add an algebraic layer to the network."""
self.layers.append(layer)
def forward(self, x: np.ndarray) -> np.ndarray:
"""Forward pass through all algebraic layers."""
current_input = x
for layer in self.layers:
current_input = layer.forward(current_input)
return current_input
def predict(self, x: np.ndarray) -> np.ndarray:
"""Alias for forward pass."""
return self.forward(x)
def create_sample_network() -> AlgebraicNeuralNetwork:
"""Create a sample algebraic neural network for demonstration."""
network = AlgebraicNeuralNetwork()
# Add different types of algebraic layers
network.add_layer(PolynomialLayer(4, 6, degree=2))
network.add_layer(GroupTheoryLayer(6, 4, group_order=8))
network.add_layer(GeometricAlgebraLayer(4, 2))
return network
def create_uncomputable_network() -> AlgebraicNeuralNetwork:
"""Create a sample network with uncomputable layers for demonstration."""
network = AlgebraicNeuralNetwork()
# Add uncomputable layers
network.add_layer(HaltingOracleLayer(4, 5, max_iterations=500))
network.add_layer(KolmogorovComplexityLayer(5, 4, precision=6))
network.add_layer(BusyBeaverLayer(4, 3))
network.add_layer(NonRecursiveLayer(3, 2, enumeration_bound=500))
return network
def demo_algebraic_neural_network():
"""Demonstrate the algebraic neural network with sample data."""
print("=== Algebraic Neural Network Demo ===\n")
# Create sample network
network = create_sample_network()
# Generate sample input data
np.random.seed(42)
sample_input = np.random.randn(5, 4) # 5 samples, 4 features each
print("Input data shape:", sample_input.shape)
print("Input data:\n", sample_input)
# Run prediction
output = network.predict(sample_input)
print("\nOutput data shape:", output.shape)
print("Output data:\n", output)
# Demonstrate individual layers
print("\n=== Individual Layer Demonstrations ===\n")
# Polynomial Layer
poly_layer = PolynomialLayer(4, 3, degree=2)
poly_output = poly_layer.forward(sample_input[0])
print("Polynomial Layer Output:", poly_output)
# Group Theory Layer
group_layer = GroupTheoryLayer(4, 3, group_order=6)
group_output = group_layer.forward(sample_input[0])
print("Group Theory Layer Output:", group_output)
# Geometric Algebra Layer
geo_layer = GeometricAlgebraLayer(4, 3)
geo_output = geo_layer.forward(sample_input[0])
print("Geometric Algebra Layer Output:", geo_output)
def demo_uncomputable_neural_network():
"""Demonstrate the uncomputable neural network with sample data."""
print("\n=== Uncomputable Neural Network Demo ===\n")
# Create uncomputable network
network = create_uncomputable_network()
# Generate sample input data
np.random.seed(42)
sample_input = np.random.randn(3, 4) # 3 samples, 4 features each
print("Input data shape:", sample_input.shape)
print("Input data:\n", sample_input)
# Run prediction
output = network.predict(sample_input)
print("\nOutput data shape:", output.shape)
print("Output data:\n", output)
# Demonstrate individual uncomputable layers
print("\n=== Individual Uncomputable Layer Demonstrations ===\n")
# Halting Oracle Layer
halting_layer = HaltingOracleLayer(4, 3, max_iterations=100)
halting_output = halting_layer.forward(sample_input[0])
print("Halting Oracle Layer Output:", halting_output)
# Kolmogorov Complexity Layer
kolmogorov_layer = KolmogorovComplexityLayer(4, 3, precision=6)
kolmogorov_output = kolmogorov_layer.forward(sample_input[0])
print("Kolmogorov Complexity Layer Output:", kolmogorov_output)
# Busy Beaver Layer
bb_layer = BusyBeaverLayer(4, 3)
bb_output = bb_layer.forward(sample_input[0])
print("Busy Beaver Layer Output:", bb_output)
# Non-Recursive Layer
nr_layer = NonRecursiveLayer(4, 3, enumeration_bound=100)
nr_output = nr_layer.forward(sample_input[0])
print("Non-Recursive Layer Output:", nr_output)
if __name__ == "__main__":
demo_algebraic_neural_network()
demo_uncomputable_neural_network()