|
|
""" |
|
|
Algebraic Neural Network Implementation |
|
|
|
|
|
This module implements various types of algebraic neural networks that don't require |
|
|
traditional gradient-based training. Instead, they use algebraic structures and |
|
|
operations to process information. |
|
|
|
|
|
Author: Algebraic Neural Network Research |
|
|
""" |
|
|
|
|
|
import numpy as np |
|
|
from typing import List, Callable, Union |
|
|
import math |
|
|
|
|
|
|
|
|
class AlgebraicLayer: |
|
|
""" |
|
|
Base class for algebraic layers that use mathematical operations |
|
|
instead of learned weights. |
|
|
""" |
|
|
|
|
|
def __init__(self, input_size: int, output_size: int, operation: str = "polynomial"): |
|
|
self.input_size = input_size |
|
|
self.output_size = output_size |
|
|
self.operation = operation |
|
|
|
|
|
def forward(self, x: np.ndarray) -> np.ndarray: |
|
|
"""Apply algebraic transformation to input.""" |
|
|
raise NotImplementedError("Subclasses must implement forward method") |
|
|
|
|
|
|
|
|
class PolynomialLayer(AlgebraicLayer): |
|
|
""" |
|
|
Layer that applies polynomial transformations without learned weights. |
|
|
Uses fixed polynomial coefficients based on algebraic principles. |
|
|
""" |
|
|
|
|
|
def __init__(self, input_size: int, output_size: int, degree: int = 2): |
|
|
super().__init__(input_size, output_size, "polynomial") |
|
|
self.degree = degree |
|
|
|
|
|
self.coefficients = self._generate_algebraic_coefficients() |
|
|
|
|
|
def _generate_algebraic_coefficients(self) -> np.ndarray: |
|
|
"""Generate polynomial coefficients using algebraic sequences.""" |
|
|
|
|
|
phi = (1 + math.sqrt(5)) / 2 |
|
|
coeffs = [] |
|
|
|
|
|
for i in range(self.output_size): |
|
|
for j in range(self.input_size): |
|
|
|
|
|
coeff = (phi ** (i + 1)) / (j + 1) if j < self.input_size else 1.0 |
|
|
coeffs.append(coeff) |
|
|
|
|
|
return np.array(coeffs).reshape(self.output_size, self.input_size) |
|
|
|
|
|
def forward(self, x: np.ndarray) -> np.ndarray: |
|
|
"""Apply polynomial transformation.""" |
|
|
if x.ndim == 1: |
|
|
x = x.reshape(1, -1) |
|
|
|
|
|
result = np.zeros((x.shape[0], self.output_size)) |
|
|
|
|
|
for i in range(self.output_size): |
|
|
|
|
|
poly_result = np.zeros(x.shape[0]) |
|
|
for degree in range(1, self.degree + 1): |
|
|
poly_term = np.power(x, degree) @ self.coefficients[i] |
|
|
poly_result += poly_term / math.factorial(degree) |
|
|
result[:, i] = poly_result |
|
|
|
|
|
return result |
|
|
|
|
|
|
|
|
class GroupTheoryLayer(AlgebraicLayer): |
|
|
""" |
|
|
Layer based on group theory operations, particularly using cyclic groups |
|
|
and group actions for transformations. |
|
|
""" |
|
|
|
|
|
def __init__(self, input_size: int, output_size: int, group_order: int = 8): |
|
|
super().__init__(input_size, output_size, "group_theory") |
|
|
self.group_order = group_order |
|
|
|
|
|
self.group_elements = self._generate_cyclic_group() |
|
|
|
|
|
def _generate_cyclic_group(self) -> List[np.ndarray]: |
|
|
"""Generate cyclic group elements as rotation matrices.""" |
|
|
elements = [] |
|
|
for k in range(self.group_order): |
|
|
angle = 2 * math.pi * k / self.group_order |
|
|
|
|
|
if self.input_size == 2: |
|
|
rotation = np.array([ |
|
|
[math.cos(angle), -math.sin(angle)], |
|
|
[math.sin(angle), math.cos(angle)] |
|
|
]) |
|
|
elements.append(rotation) |
|
|
else: |
|
|
|
|
|
rotation = np.eye(self.input_size) |
|
|
if self.input_size >= 2: |
|
|
rotation[0, 0] = math.cos(angle) |
|
|
rotation[0, 1] = -math.sin(angle) |
|
|
rotation[1, 0] = math.sin(angle) |
|
|
rotation[1, 1] = math.cos(angle) |
|
|
elements.append(rotation) |
|
|
return elements |
|
|
|
|
|
def forward(self, x: np.ndarray) -> np.ndarray: |
|
|
"""Apply group action to input.""" |
|
|
if x.ndim == 1: |
|
|
x = x.reshape(1, -1) |
|
|
|
|
|
results = [] |
|
|
for i, group_element in enumerate(self.group_elements[:self.output_size]): |
|
|
if x.shape[1] == group_element.shape[0]: |
|
|
transformed = x @ group_element.T |
|
|
|
|
|
result = np.linalg.norm(transformed, axis=1) |
|
|
else: |
|
|
|
|
|
result = np.sum(x * (i + 1), axis=1) |
|
|
results.append(result) |
|
|
|
|
|
return np.column_stack(results) |
|
|
|
|
|
|
|
|
class GeometricAlgebraLayer(AlgebraicLayer): |
|
|
""" |
|
|
Layer using geometric algebra (Clifford algebra) operations. |
|
|
Implements basic geometric product and algebraic operations. |
|
|
""" |
|
|
|
|
|
def __init__(self, input_size: int, output_size: int): |
|
|
super().__init__(input_size, output_size, "geometric_algebra") |
|
|
|
|
|
self.basis_vectors = self._generate_basis_vectors() |
|
|
|
|
|
def _generate_basis_vectors(self) -> List[np.ndarray]: |
|
|
"""Generate basis vectors for geometric algebra.""" |
|
|
basis = [] |
|
|
|
|
|
basis.append(np.ones(self.input_size)) |
|
|
|
|
|
|
|
|
for i in range(self.input_size): |
|
|
e_i = np.zeros(self.input_size) |
|
|
e_i[i] = 1.0 |
|
|
basis.append(e_i) |
|
|
|
|
|
|
|
|
for i in range(self.input_size): |
|
|
for j in range(i + 1, self.input_size): |
|
|
e_ij = np.zeros(self.input_size) |
|
|
e_ij[i] = 1.0 |
|
|
e_ij[j] = 1.0 |
|
|
basis.append(e_ij) |
|
|
|
|
|
return basis[:self.output_size] |
|
|
|
|
|
def geometric_product(self, a: np.ndarray, b: np.ndarray) -> float: |
|
|
"""Compute geometric product of two vectors.""" |
|
|
|
|
|
dot_prod = np.dot(a, b) |
|
|
|
|
|
outer_norm = np.linalg.norm(np.outer(a, b)) |
|
|
return dot_prod + outer_norm |
|
|
|
|
|
def forward(self, x: np.ndarray) -> np.ndarray: |
|
|
"""Apply geometric algebra transformations.""" |
|
|
if x.ndim == 1: |
|
|
x = x.reshape(1, -1) |
|
|
|
|
|
results = [] |
|
|
for basis_vector in self.basis_vectors: |
|
|
|
|
|
result = [] |
|
|
for sample in x: |
|
|
gp = self.geometric_product(sample, basis_vector) |
|
|
result.append(gp) |
|
|
results.append(np.array(result)) |
|
|
|
|
|
return np.column_stack(results) |
|
|
|
|
|
|
|
|
class HaltingOracleLayer(AlgebraicLayer): |
|
|
""" |
|
|
Layer that simulates a halting oracle for specific computational patterns. |
|
|
Uses heuristics and bounded computation to approximate uncomputable halting decisions. |
|
|
""" |
|
|
|
|
|
def __init__(self, input_size: int, output_size: int, max_iterations: int = 1000): |
|
|
super().__init__(input_size, output_size, "halting_oracle") |
|
|
self.max_iterations = max_iterations |
|
|
|
|
|
self.oracle_seed = 42 |
|
|
|
|
|
def _simulate_halting_oracle(self, program_encoding: float) -> float: |
|
|
"""Simulate halting oracle decision for encoded program.""" |
|
|
|
|
|
np.random.seed(int(abs(program_encoding * 1000)) % 2**31) |
|
|
|
|
|
|
|
|
|
|
|
complexity_factor = abs(program_encoding) % 1.0 |
|
|
|
|
|
if complexity_factor < 0.1: |
|
|
return 1.0 |
|
|
elif complexity_factor > 0.9: |
|
|
return 0.1 |
|
|
else: |
|
|
|
|
|
iterations = int(complexity_factor * self.max_iterations) |
|
|
|
|
|
state = program_encoding |
|
|
for i in range(iterations): |
|
|
state = (state * 1.618 + 0.786) % 1.0 |
|
|
if abs(state - 0.5) < 0.01: |
|
|
return 1.0 |
|
|
return 0.3 |
|
|
|
|
|
def forward(self, x: np.ndarray) -> np.ndarray: |
|
|
"""Apply halting oracle simulation to inputs.""" |
|
|
if x.ndim == 1: |
|
|
x = x.reshape(1, -1) |
|
|
|
|
|
results = [] |
|
|
for i in range(self.output_size): |
|
|
oracle_results = [] |
|
|
for sample in x: |
|
|
|
|
|
program_encoding = np.sum(sample * (i + 1)) / len(sample) |
|
|
halting_prob = self._simulate_halting_oracle(program_encoding) |
|
|
oracle_results.append(halting_prob) |
|
|
results.append(np.array(oracle_results)) |
|
|
|
|
|
return np.column_stack(results) |
|
|
|
|
|
|
|
|
class KolmogorovComplexityLayer(AlgebraicLayer): |
|
|
""" |
|
|
Layer that approximates Kolmogorov complexity using compression-based heuristics. |
|
|
Provides bounded approximations of the uncomputable Kolmogorov complexity function. |
|
|
""" |
|
|
|
|
|
def __init__(self, input_size: int, output_size: int, precision: int = 8): |
|
|
super().__init__(input_size, output_size, "kolmogorov_complexity") |
|
|
self.precision = precision |
|
|
|
|
|
def _approximate_kolmogorov_complexity(self, data: np.ndarray) -> float: |
|
|
"""Approximate Kolmogorov complexity using compressibility heuristics.""" |
|
|
|
|
|
discretized = np.round(data * (2**self.precision)).astype(int) |
|
|
|
|
|
|
|
|
data_str = ''.join(map(str, discretized)) |
|
|
|
|
|
|
|
|
unique_chars = len(set(data_str)) |
|
|
total_chars = len(data_str) |
|
|
|
|
|
|
|
|
if total_chars == 0: |
|
|
return 0.0 |
|
|
|
|
|
|
|
|
entropy_approx = (unique_chars / total_chars) * np.log2(unique_chars + 1) |
|
|
|
|
|
|
|
|
pattern_factor = 1.0 |
|
|
for pattern_len in range(2, min(5, len(data_str))): |
|
|
patterns = set() |
|
|
for i in range(len(data_str) - pattern_len + 1): |
|
|
patterns.add(data_str[i:i+pattern_len]) |
|
|
if len(patterns) < len(data_str) - pattern_len + 1: |
|
|
pattern_factor *= 0.8 |
|
|
|
|
|
return entropy_approx * pattern_factor |
|
|
|
|
|
def forward(self, x: np.ndarray) -> np.ndarray: |
|
|
"""Compute approximate Kolmogorov complexity for inputs.""" |
|
|
if x.ndim == 1: |
|
|
x = x.reshape(1, -1) |
|
|
|
|
|
results = [] |
|
|
for i in range(self.output_size): |
|
|
complexity_results = [] |
|
|
for sample in x: |
|
|
|
|
|
projection = sample * (i + 1) / (self.output_size) |
|
|
complexity = self._approximate_kolmogorov_complexity(projection) |
|
|
complexity_results.append(complexity) |
|
|
results.append(np.array(complexity_results)) |
|
|
|
|
|
return np.column_stack(results) |
|
|
|
|
|
|
|
|
class BusyBeaverLayer(AlgebraicLayer): |
|
|
""" |
|
|
Layer using Busy Beaver function values and approximations. |
|
|
The Busy Beaver function is uncomputable for general n, but known for small values. |
|
|
""" |
|
|
|
|
|
def __init__(self, input_size: int, output_size: int): |
|
|
super().__init__(input_size, output_size, "busy_beaver") |
|
|
|
|
|
self.known_bb_values = {1: 1, 2: 4, 3: 6, 4: 13, 5: 4098} |
|
|
|
|
|
def _busy_beaver_approximation(self, n: int) -> float: |
|
|
"""Get Busy Beaver value or approximation.""" |
|
|
if n <= 0: |
|
|
return 0.0 |
|
|
elif n in self.known_bb_values: |
|
|
return float(self.known_bb_values[n]) |
|
|
elif n <= 5: |
|
|
return float(self.known_bb_values[5]) |
|
|
else: |
|
|
|
|
|
|
|
|
return self.known_bb_values[5] * (2.0 ** (n - 5)) |
|
|
|
|
|
def forward(self, x: np.ndarray) -> np.ndarray: |
|
|
"""Apply Busy Beaver function to transformed inputs.""" |
|
|
if x.ndim == 1: |
|
|
x = x.reshape(1, -1) |
|
|
|
|
|
results = [] |
|
|
for i in range(self.output_size): |
|
|
bb_results = [] |
|
|
for sample in x: |
|
|
|
|
|
|
|
|
param = max(1, int(abs(np.sum(sample) * (i + 1)) % 10) + 1) |
|
|
bb_value = self._busy_beaver_approximation(param) |
|
|
|
|
|
normalized_bb = np.log1p(bb_value) |
|
|
bb_results.append(normalized_bb) |
|
|
results.append(np.array(bb_results)) |
|
|
|
|
|
return np.column_stack(results) |
|
|
|
|
|
|
|
|
class NonRecursiveLayer(AlgebraicLayer): |
|
|
""" |
|
|
Layer based on non-recursive sets and functions. |
|
|
Simulates operations on computably enumerable but non-computable sets. |
|
|
""" |
|
|
|
|
|
def __init__(self, input_size: int, output_size: int, enumeration_bound: int = 1000): |
|
|
super().__init__(input_size, output_size, "non_recursive") |
|
|
self.enumeration_bound = enumeration_bound |
|
|
|
|
|
self.ce_set = self._generate_ce_set() |
|
|
|
|
|
def _generate_ce_set(self) -> set: |
|
|
"""Generate a computably enumerable set simulation.""" |
|
|
ce_set = set() |
|
|
|
|
|
for i in range(self.enumeration_bound): |
|
|
|
|
|
if self._enumeration_rule(i): |
|
|
ce_set.add(i) |
|
|
return ce_set |
|
|
|
|
|
def _enumeration_rule(self, n: int) -> bool: |
|
|
"""Rule for enumerating elements (simulates theorem enumeration).""" |
|
|
|
|
|
|
|
|
for i in range(int(np.sqrt(n)) + 1): |
|
|
remainder = n - i*i |
|
|
if remainder >= 0 and int(np.sqrt(remainder))**2 == remainder: |
|
|
return True |
|
|
return False |
|
|
|
|
|
def _membership_oracle(self, value: float) -> float: |
|
|
"""Simulate membership oracle for non-recursive set.""" |
|
|
|
|
|
discrete_val = int(abs(value * 1000)) % self.enumeration_bound |
|
|
|
|
|
if discrete_val in self.ce_set: |
|
|
return 1.0 |
|
|
else: |
|
|
|
|
|
|
|
|
return 0.5 |
|
|
|
|
|
def forward(self, x: np.ndarray) -> np.ndarray: |
|
|
"""Apply non-recursive set operations to inputs.""" |
|
|
if x.ndim == 1: |
|
|
x = x.reshape(1, -1) |
|
|
|
|
|
results = [] |
|
|
for i in range(self.output_size): |
|
|
membership_results = [] |
|
|
for sample in x: |
|
|
|
|
|
test_value = np.sum(sample * np.arange(len(sample))) * (i + 1) |
|
|
membership = self._membership_oracle(test_value) |
|
|
membership_results.append(membership) |
|
|
results.append(np.array(membership_results)) |
|
|
|
|
|
return np.column_stack(results) |
|
|
|
|
|
|
|
|
class AlgebraicNeuralNetwork: |
|
|
""" |
|
|
Main class for Algebraic Neural Networks that combines different |
|
|
algebraic layers to create a complete network. |
|
|
""" |
|
|
|
|
|
def __init__(self): |
|
|
self.layers = [] |
|
|
|
|
|
def add_layer(self, layer: AlgebraicLayer): |
|
|
"""Add an algebraic layer to the network.""" |
|
|
self.layers.append(layer) |
|
|
|
|
|
def forward(self, x: np.ndarray) -> np.ndarray: |
|
|
"""Forward pass through all algebraic layers.""" |
|
|
current_input = x |
|
|
for layer in self.layers: |
|
|
current_input = layer.forward(current_input) |
|
|
return current_input |
|
|
|
|
|
def predict(self, x: np.ndarray) -> np.ndarray: |
|
|
"""Alias for forward pass.""" |
|
|
return self.forward(x) |
|
|
|
|
|
|
|
|
def create_sample_network() -> AlgebraicNeuralNetwork: |
|
|
"""Create a sample algebraic neural network for demonstration.""" |
|
|
network = AlgebraicNeuralNetwork() |
|
|
|
|
|
|
|
|
network.add_layer(PolynomialLayer(4, 6, degree=2)) |
|
|
network.add_layer(GroupTheoryLayer(6, 4, group_order=8)) |
|
|
network.add_layer(GeometricAlgebraLayer(4, 2)) |
|
|
|
|
|
return network |
|
|
|
|
|
|
|
|
def create_uncomputable_network() -> AlgebraicNeuralNetwork: |
|
|
"""Create a sample network with uncomputable layers for demonstration.""" |
|
|
network = AlgebraicNeuralNetwork() |
|
|
|
|
|
|
|
|
network.add_layer(HaltingOracleLayer(4, 5, max_iterations=500)) |
|
|
network.add_layer(KolmogorovComplexityLayer(5, 4, precision=6)) |
|
|
network.add_layer(BusyBeaverLayer(4, 3)) |
|
|
network.add_layer(NonRecursiveLayer(3, 2, enumeration_bound=500)) |
|
|
|
|
|
return network |
|
|
|
|
|
|
|
|
def demo_algebraic_neural_network(): |
|
|
"""Demonstrate the algebraic neural network with sample data.""" |
|
|
print("=== Algebraic Neural Network Demo ===\n") |
|
|
|
|
|
|
|
|
network = create_sample_network() |
|
|
|
|
|
|
|
|
np.random.seed(42) |
|
|
sample_input = np.random.randn(5, 4) |
|
|
|
|
|
print("Input data shape:", sample_input.shape) |
|
|
print("Input data:\n", sample_input) |
|
|
|
|
|
|
|
|
output = network.predict(sample_input) |
|
|
|
|
|
print("\nOutput data shape:", output.shape) |
|
|
print("Output data:\n", output) |
|
|
|
|
|
|
|
|
print("\n=== Individual Layer Demonstrations ===\n") |
|
|
|
|
|
|
|
|
poly_layer = PolynomialLayer(4, 3, degree=2) |
|
|
poly_output = poly_layer.forward(sample_input[0]) |
|
|
print("Polynomial Layer Output:", poly_output) |
|
|
|
|
|
|
|
|
group_layer = GroupTheoryLayer(4, 3, group_order=6) |
|
|
group_output = group_layer.forward(sample_input[0]) |
|
|
print("Group Theory Layer Output:", group_output) |
|
|
|
|
|
|
|
|
geo_layer = GeometricAlgebraLayer(4, 3) |
|
|
geo_output = geo_layer.forward(sample_input[0]) |
|
|
print("Geometric Algebra Layer Output:", geo_output) |
|
|
|
|
|
|
|
|
def demo_uncomputable_neural_network(): |
|
|
"""Demonstrate the uncomputable neural network with sample data.""" |
|
|
print("\n=== Uncomputable Neural Network Demo ===\n") |
|
|
|
|
|
|
|
|
network = create_uncomputable_network() |
|
|
|
|
|
|
|
|
np.random.seed(42) |
|
|
sample_input = np.random.randn(3, 4) |
|
|
|
|
|
print("Input data shape:", sample_input.shape) |
|
|
print("Input data:\n", sample_input) |
|
|
|
|
|
|
|
|
output = network.predict(sample_input) |
|
|
|
|
|
print("\nOutput data shape:", output.shape) |
|
|
print("Output data:\n", output) |
|
|
|
|
|
|
|
|
print("\n=== Individual Uncomputable Layer Demonstrations ===\n") |
|
|
|
|
|
|
|
|
halting_layer = HaltingOracleLayer(4, 3, max_iterations=100) |
|
|
halting_output = halting_layer.forward(sample_input[0]) |
|
|
print("Halting Oracle Layer Output:", halting_output) |
|
|
|
|
|
|
|
|
kolmogorov_layer = KolmogorovComplexityLayer(4, 3, precision=6) |
|
|
kolmogorov_output = kolmogorov_layer.forward(sample_input[0]) |
|
|
print("Kolmogorov Complexity Layer Output:", kolmogorov_output) |
|
|
|
|
|
|
|
|
bb_layer = BusyBeaverLayer(4, 3) |
|
|
bb_output = bb_layer.forward(sample_input[0]) |
|
|
print("Busy Beaver Layer Output:", bb_output) |
|
|
|
|
|
|
|
|
nr_layer = NonRecursiveLayer(4, 3, enumeration_bound=100) |
|
|
nr_output = nr_layer.forward(sample_input[0]) |
|
|
print("Non-Recursive Layer Output:", nr_output) |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
demo_algebraic_neural_network() |
|
|
demo_uncomputable_neural_network() |