|
|
|
|
|
""" |
|
|
Uncomputable Neural Network Examples |
|
|
|
|
|
This script demonstrates the various types of uncomputable neural network layers |
|
|
and their theoretical foundations. |
|
|
""" |
|
|
|
|
|
import numpy as np |
|
|
import sys |
|
|
import os |
|
|
|
|
|
|
|
|
sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) |
|
|
|
|
|
from algebraic_neural_network import ( |
|
|
HaltingOracleLayer, KolmogorovComplexityLayer, BusyBeaverLayer, |
|
|
NonRecursiveLayer, create_uncomputable_network |
|
|
) |
|
|
|
|
|
def demonstrate_halting_oracle(): |
|
|
"""Demonstrate the Halting Oracle Layer.""" |
|
|
print("=== Halting Oracle Layer Demonstration ===\n") |
|
|
|
|
|
print("The Halting Oracle Layer simulates access to a halting oracle,") |
|
|
print("which can theoretically answer whether a program halts on given input.") |
|
|
print("This is uncomputable in general, but we provide bounded approximations.\n") |
|
|
|
|
|
layer = HaltingOracleLayer(4, 3, max_iterations=1000) |
|
|
|
|
|
|
|
|
test_cases = [ |
|
|
([1, 0, 0, 0], "Simple program"), |
|
|
([0.5, 0.5, 0.5, 0.5], "Balanced program"), |
|
|
([0.9, 0.9, 0.9, 0.9], "Complex program"), |
|
|
([0.1, 0.1, 0.1, 0.1], "Minimal program"), |
|
|
] |
|
|
|
|
|
for i, (input_data, description) in enumerate(test_cases, 1): |
|
|
input_array = np.array(input_data).reshape(1, -1) |
|
|
output = layer.forward(input_array) |
|
|
|
|
|
print(f"Test {i}: {description}") |
|
|
print(f" Input: {input_data}") |
|
|
print(f" Halting probabilities: {output[0]}") |
|
|
print(f" Interpretation: {['Unlikely to halt' if p < 0.5 else 'Likely to halt' for p in output[0]]}") |
|
|
print() |
|
|
|
|
|
def demonstrate_kolmogorov_complexity(): |
|
|
"""Demonstrate the Kolmogorov Complexity Layer.""" |
|
|
print("=== Kolmogorov Complexity Layer Demonstration ===\n") |
|
|
|
|
|
print("The Kolmogorov Complexity Layer approximates the Kolmogorov complexity") |
|
|
print("of inputs - the length of the shortest program that outputs the input.") |
|
|
print("True Kolmogorov complexity is uncomputable, but we use compression heuristics.\n") |
|
|
|
|
|
layer = KolmogorovComplexityLayer(4, 3, precision=8) |
|
|
|
|
|
|
|
|
test_cases = [ |
|
|
([1, 1, 1, 1], "Highly regular pattern"), |
|
|
([1, 2, 3, 4], "Simple arithmetic sequence"), |
|
|
([0.123, 0.456, 0.789, 0.012], "Seemingly random"), |
|
|
([1, 1, 2, 3], "Fibonacci-like pattern"), |
|
|
] |
|
|
|
|
|
for i, (input_data, description) in enumerate(test_cases, 1): |
|
|
input_array = np.array(input_data).reshape(1, -1) |
|
|
output = layer.forward(input_array) |
|
|
|
|
|
print(f"Test {i}: {description}") |
|
|
print(f" Input: {input_data}") |
|
|
print(f" Complexity estimates: {output[0]}") |
|
|
print(f" Average complexity: {np.mean(output[0]):.3f}") |
|
|
print() |
|
|
|
|
|
def demonstrate_busy_beaver(): |
|
|
"""Demonstrate the Busy Beaver Layer.""" |
|
|
print("=== Busy Beaver Layer Demonstration ===\n") |
|
|
|
|
|
print("The Busy Beaver Layer uses the Busy Beaver function BB(n),") |
|
|
print("which gives the maximum number of steps a halting n-state Turing machine can take.") |
|
|
print("BB(n) is uncomputable for general n, but known for small values.\n") |
|
|
|
|
|
layer = BusyBeaverLayer(4, 3) |
|
|
|
|
|
|
|
|
print("Known Busy Beaver values:") |
|
|
print(" BB(1) = 1") |
|
|
print(" BB(2) = 4") |
|
|
print(" BB(3) = 6") |
|
|
print(" BB(4) = 13") |
|
|
print(" BB(5) β₯ 4098") |
|
|
print() |
|
|
|
|
|
|
|
|
test_cases = [ |
|
|
([0.1, 0, 0, 0], "Maps to small machine"), |
|
|
([0.5, 0.5, 0, 0], "Maps to medium machine"), |
|
|
([1.0, 1.0, 1.0, 1.0], "Maps to larger machine"), |
|
|
] |
|
|
|
|
|
for i, (input_data, description) in enumerate(test_cases, 1): |
|
|
input_array = np.array(input_data).reshape(1, -1) |
|
|
output = layer.forward(input_array) |
|
|
|
|
|
print(f"Test {i}: {description}") |
|
|
print(f" Input: {input_data}") |
|
|
print(f" Log BB values: {output[0]}") |
|
|
print(f" Approximate BB values: {np.exp(output[0]) - 1}") |
|
|
print() |
|
|
|
|
|
def demonstrate_non_recursive(): |
|
|
"""Demonstrate the Non-Recursive Layer.""" |
|
|
print("=== Non-Recursive Layer Demonstration ===\n") |
|
|
|
|
|
print("The Non-Recursive Layer simulates operations on computably enumerable") |
|
|
print("but non-recursive sets. These are sets that can be enumerated but") |
|
|
print("for which membership cannot be decided algorithmically.\n") |
|
|
|
|
|
layer = NonRecursiveLayer(4, 3, enumeration_bound=1000) |
|
|
|
|
|
print(f"The layer simulates a c.e. set with {len(layer.ce_set)} enumerated elements") |
|
|
print("using the rule: numbers expressible as sum of two squares\n") |
|
|
|
|
|
|
|
|
test_cases = [ |
|
|
([1, 0, 0, 0], "Simple input"), |
|
|
([2, 3, 5, 7], "Prime-like pattern"), |
|
|
([1, 4, 9, 16], "Perfect squares"), |
|
|
([0.5, 0.25, 0.125, 0.0625], "Geometric sequence"), |
|
|
] |
|
|
|
|
|
for i, (input_data, description) in enumerate(test_cases, 1): |
|
|
input_array = np.array(input_data).reshape(1, -1) |
|
|
output = layer.forward(input_array) |
|
|
|
|
|
print(f"Test {i}: {description}") |
|
|
print(f" Input: {input_data}") |
|
|
print(f" Membership probabilities: {output[0]}") |
|
|
print(f" Interpretations: {['Not enumerated' if p == 0.5 else ('In set' if p == 1.0 else 'Not in set') for p in output[0]]}") |
|
|
print() |
|
|
|
|
|
def demonstrate_complete_network(): |
|
|
"""Demonstrate a complete uncomputable neural network.""" |
|
|
print("=== Complete Uncomputable Neural Network ===\n") |
|
|
|
|
|
print("This demonstrates a full network combining all uncomputable layer types.") |
|
|
print("The network processes inputs through:") |
|
|
print(" 1. Halting Oracle Layer (4β5)") |
|
|
print(" 2. Kolmogorov Complexity Layer (5β4)") |
|
|
print(" 3. Busy Beaver Layer (4β3)") |
|
|
print(" 4. Non-Recursive Layer (3β2)") |
|
|
print() |
|
|
|
|
|
network = create_uncomputable_network() |
|
|
|
|
|
|
|
|
test_cases = [ |
|
|
"Random data", |
|
|
"Structured sequence", |
|
|
"Constant values", |
|
|
"Alternating pattern" |
|
|
] |
|
|
|
|
|
np.random.seed(42) |
|
|
test_inputs = [ |
|
|
np.random.randn(4), |
|
|
np.array([1, 2, 3, 4]) / 4.0, |
|
|
np.ones(4) * 0.5, |
|
|
np.array([1, -1, 1, -1]) * 0.5 |
|
|
] |
|
|
|
|
|
for i, (input_data, description) in enumerate(zip(test_inputs, test_cases), 1): |
|
|
output = network.predict(input_data.reshape(1, -1)) |
|
|
|
|
|
print(f"Test {i}: {description}") |
|
|
print(f" Input: {input_data}") |
|
|
print(f" Final output: {output[0]}") |
|
|
print(f" Output interpretation: Decision values for uncomputable questions") |
|
|
print() |
|
|
|
|
|
|
|
|
print("Deterministic behavior verification:") |
|
|
test_input = np.random.randn(1, 4) |
|
|
output1 = network.predict(test_input) |
|
|
output2 = network.predict(test_input) |
|
|
difference = np.linalg.norm(output1 - output2) |
|
|
print(f" Same input produces identical outputs: {difference < 1e-10}") |
|
|
print(f" Difference: {difference:.2e}") |
|
|
|
|
|
def main(): |
|
|
"""Run all uncomputable neural network demonstrations.""" |
|
|
print("π¬ Uncomputable Neural Networks Examples") |
|
|
print("=" * 60) |
|
|
print("Exploring the theoretical boundaries of computation through") |
|
|
print("neural networks that incorporate uncomputable functions.\n") |
|
|
|
|
|
demonstrate_halting_oracle() |
|
|
print("\n" + "β" * 60 + "\n") |
|
|
|
|
|
demonstrate_kolmogorov_complexity() |
|
|
print("\n" + "β" * 60 + "\n") |
|
|
|
|
|
demonstrate_busy_beaver() |
|
|
print("\n" + "β" * 60 + "\n") |
|
|
|
|
|
demonstrate_non_recursive() |
|
|
print("\n" + "β" * 60 + "\n") |
|
|
|
|
|
demonstrate_complete_network() |
|
|
|
|
|
print("\n" + "=" * 60) |
|
|
print("β
Uncomputable neural network demonstrations completed!") |
|
|
print("π See theory/uncomputable_networks.md for mathematical foundations.") |
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |