from sklearn import datasets import matplotlib.pyplot as plt iris = datasets.load_iris() digits = datasets.load_digits() fig = plt.figure(figsize=(8,8)) fig.subplots_adjust(left=0,right=1,bottom=0,top=1,hspace=0.05,wspace=0.05) for i in range(100): ax = fig.add_subplot(10,10,i+1,xticks=[],yticks=[]) ax.imshow(digits.images[i],cmap=plt.cm.binary,interpolation='nearest') ax.text(0,7,str(digits.target[i]),color='green') plt.show() x= digits.data y= digits.target from sklearn.model_selection import train_test_split xtrain,xtest,ytrain,ytest = train_test_split(x,y,test_size=0.2,random_state=0) from sklearn.linear_model import Perceptron perceptron_model = Perceptron(tol=1e-3,random_state=0) perceptron_model.fit(xtrain,ytrain) perceptron_prediction=perceptron_model.predict(xtest) from sklearn import metrics