--- library_name: transformers license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-hyperparam-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.86 --- # distilhubert-finetuned-hyperparam-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 1.2045 - Accuracy: 0.86 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.7469 | 1.0 | 113 | 1.3737 | 0.57 | | 0.7973 | 2.0 | 226 | 1.5247 | 0.57 | | 0.6831 | 3.0 | 339 | 0.8961 | 0.74 | | 0.4573 | 4.0 | 452 | 0.8638 | 0.76 | | 0.1874 | 5.0 | 565 | 0.7839 | 0.81 | | 0.0829 | 6.0 | 678 | 1.0174 | 0.79 | | 0.0306 | 7.0 | 791 | 0.9393 | 0.81 | | 0.004 | 8.0 | 904 | 0.9737 | 0.85 | | 0.1209 | 9.0 | 1017 | 1.0625 | 0.8 | | 0.0237 | 10.0 | 1130 | 1.3653 | 0.8 | | 0.0164 | 11.0 | 1243 | 1.3065 | 0.81 | | 0.0007 | 12.0 | 1356 | 1.1272 | 0.83 | | 0.0004 | 13.0 | 1469 | 1.3226 | 0.83 | | 0.0001 | 14.0 | 1582 | 1.6092 | 0.82 | | 0.0001 | 15.0 | 1695 | 1.2045 | 0.86 | | 0.0002 | 16.0 | 1808 | 1.1312 | 0.85 | | 0.0003 | 17.0 | 1921 | 1.0911 | 0.86 | | 0.0 | 18.0 | 2034 | 1.1983 | 0.84 | | 0.0001 | 19.0 | 2147 | 1.1363 | 0.85 | | 0.0 | 20.0 | 2260 | 1.2547 | 0.85 | | 0.0002 | 21.0 | 2373 | 1.2394 | 0.84 | | 0.0001 | 22.0 | 2486 | 1.5508 | 0.85 | | 0.0 | 23.0 | 2599 | 1.2689 | 0.83 | | 0.0 | 24.0 | 2712 | 1.2343 | 0.83 | | 0.0003 | 25.0 | 2825 | 1.2313 | 0.81 | | 0.0 | 26.0 | 2938 | 1.2217 | 0.83 | | 0.0 | 27.0 | 3051 | 1.1596 | 0.84 | | 0.0 | 28.0 | 3164 | 1.1081 | 0.85 | | 0.0001 | 29.0 | 3277 | 1.1394 | 0.85 | | 0.0 | 30.0 | 3390 | 1.1215 | 0.85 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.6.0+cu126 - Datasets 3.2.0 - Tokenizers 0.21.0