--- library_name: transformers license: apache-2.0 base_model: bert-base-multilingual-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: guj-eng-code-switch-bert-multilingual results: [] --- # guj-eng-code-switch-bert-multilingual This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1520 - Precision: 0.8581 - Recall: 0.8478 - F1: 0.8529 - Accuracy: 0.9608 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2148 | 1.0 | 250 | 0.2214 | 0.8414 | 0.7840 | 0.8116 | 0.9432 | | 0.1215 | 2.0 | 500 | 0.1550 | 0.8324 | 0.8250 | 0.8287 | 0.9560 | | 0.0873 | 3.0 | 750 | 0.1520 | 0.8581 | 0.8478 | 0.8529 | 0.9608 | ### Framework versions - Transformers 4.57.1 - Pytorch 2.9.0+cu126 - Datasets 4.4.1 - Tokenizers 0.22.1