Create patch.py
Browse files
patch.py
ADDED
|
@@ -0,0 +1,387 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import time
|
| 3 |
+
from typing import Type, Dict, Any, Tuple, Callable
|
| 4 |
+
|
| 5 |
+
import numpy as np
|
| 6 |
+
from einops import rearrange
|
| 7 |
+
import torch
|
| 8 |
+
import torch.nn.functional as F
|
| 9 |
+
|
| 10 |
+
from . import merge
|
| 11 |
+
from .utils import isinstance_str, init_generator, join_frame, split_frame, func_warper, join_warper, split_warper
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def compute_merge(module: torch.nn.Module, x: torch.Tensor, tome_info: Dict[str, Any]) -> Tuple[Callable, ...]:
|
| 15 |
+
original_h, original_w = tome_info["size"]
|
| 16 |
+
original_tokens = original_h * original_w
|
| 17 |
+
downsample = int(math.ceil(math.sqrt(original_tokens // x.shape[1])))
|
| 18 |
+
|
| 19 |
+
args = tome_info["args"]
|
| 20 |
+
generator = module.generator
|
| 21 |
+
|
| 22 |
+
# Frame Number and Token Number
|
| 23 |
+
fsize = x.shape[0] // args["batch_size"]
|
| 24 |
+
tsize = x.shape[1]
|
| 25 |
+
|
| 26 |
+
# Merge tokens in high resolution layers
|
| 27 |
+
if downsample <= args["max_downsample"]:
|
| 28 |
+
|
| 29 |
+
if args["generator"] is None:
|
| 30 |
+
args["generator"] = init_generator(x.device)
|
| 31 |
+
# module.generator = module.generator.manual_seed(123)
|
| 32 |
+
elif args["generator"].device != x.device:
|
| 33 |
+
args["generator"] = init_generator(x.device, fallback=args["generator"])
|
| 34 |
+
|
| 35 |
+
# Local Token Merging!
|
| 36 |
+
|
| 37 |
+
local_tokens = join_frame(x, fsize)
|
| 38 |
+
m_ls = [join_warper(fsize)]
|
| 39 |
+
u_ls = [split_warper(fsize)]
|
| 40 |
+
unm = 0
|
| 41 |
+
curF = fsize
|
| 42 |
+
|
| 43 |
+
# Recursive merge multi-frame tokens into one set. Such as 4->1 for 4 frames and 8->2->1 for 8 frames when target stride is 4.
|
| 44 |
+
while curF > 1:
|
| 45 |
+
m, u, ret_dict = merge.bipartite_soft_matching_randframe(
|
| 46 |
+
local_tokens, curF, args["local_merge_ratio"], unm, generator, args["target_stride"], args["align_batch"])
|
| 47 |
+
unm += ret_dict["unm_num"]
|
| 48 |
+
m_ls.append(m)
|
| 49 |
+
u_ls.append(u)
|
| 50 |
+
local_tokens = m(local_tokens)
|
| 51 |
+
|
| 52 |
+
# assert (x.shape[1] - unm) % tsize == 0
|
| 53 |
+
# Total token number = current frame number * per-frame token number + unmerged token number
|
| 54 |
+
curF = (local_tokens.shape[1] - unm) // tsize
|
| 55 |
+
|
| 56 |
+
merged_tokens = local_tokens
|
| 57 |
+
|
| 58 |
+
# Global Token Merging!
|
| 59 |
+
if args["merge_global"]:
|
| 60 |
+
if hasattr(module, "global_tokens") and module.global_tokens is not None:
|
| 61 |
+
# Merge local tokens with global tokens. Randomly determine merging destination.
|
| 62 |
+
if torch.rand(1, generator=generator, device=generator.device) > args["global_rand"]:
|
| 63 |
+
src_len = local_tokens.shape[1]
|
| 64 |
+
tokens = torch.cat(
|
| 65 |
+
[local_tokens, module.global_tokens.to(local_tokens)], dim=1)
|
| 66 |
+
local_chunk = 0
|
| 67 |
+
else:
|
| 68 |
+
src_len = module.global_tokens.shape[1]
|
| 69 |
+
tokens = torch.cat(
|
| 70 |
+
[module.global_tokens.to(local_tokens), local_tokens], dim=1)
|
| 71 |
+
local_chunk = 1
|
| 72 |
+
|
| 73 |
+
m, u, _ = merge.bipartite_soft_matching_2s(
|
| 74 |
+
tokens, src_len, args["global_merge_ratio"], args["align_batch"], unmerge_chunk=local_chunk)
|
| 75 |
+
merged_tokens = m(tokens)
|
| 76 |
+
m_ls.append(m)
|
| 77 |
+
u_ls.append(u)
|
| 78 |
+
|
| 79 |
+
# Update global tokens with unmerged local tokens. There should be a better way to do this.
|
| 80 |
+
module.global_tokens = u(merged_tokens).detach().clone().cpu()
|
| 81 |
+
else:
|
| 82 |
+
module.global_tokens = local_tokens.detach().clone().cpu()
|
| 83 |
+
|
| 84 |
+
m = func_warper(m_ls)
|
| 85 |
+
u = func_warper(u_ls[::-1])
|
| 86 |
+
else:
|
| 87 |
+
m, u = (merge.do_nothing, merge.do_nothing)
|
| 88 |
+
merged_tokens = x
|
| 89 |
+
|
| 90 |
+
# Return merge op, unmerge op, and merged tokens.
|
| 91 |
+
return m, u, merged_tokens
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def make_tome_block(block_class: Type[torch.nn.Module]) -> Type[torch.nn.Module]:
|
| 95 |
+
"""
|
| 96 |
+
Make a patched class on the fly so we don't have to import any specific modules.
|
| 97 |
+
This patch applies ToMe to the forward function of the block.
|
| 98 |
+
"""
|
| 99 |
+
|
| 100 |
+
class ToMeBlock(block_class):
|
| 101 |
+
# Save for unpatching later
|
| 102 |
+
_parent = block_class
|
| 103 |
+
|
| 104 |
+
def _forward(self, x: torch.Tensor, context: torch.Tensor = None) -> torch.Tensor:
|
| 105 |
+
m_a, m_c, m_m, u_a, u_c, u_m = compute_merge(
|
| 106 |
+
self, x, self._tome_info)
|
| 107 |
+
|
| 108 |
+
# This is where the meat of the computation happens
|
| 109 |
+
x = u_a(self.attn1(m_a(self.norm1(x)),
|
| 110 |
+
context=context if self.disable_self_attn else None)) + x
|
| 111 |
+
x = u_c(self.attn2(m_c(self.norm2(x)), context=context)) + x
|
| 112 |
+
x = u_m(self.ff(m_m(self.norm3(x)))) + x
|
| 113 |
+
|
| 114 |
+
return x
|
| 115 |
+
|
| 116 |
+
return ToMeBlock
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
def make_diffusers_tome_block(block_class: Type[torch.nn.Module]) -> Type[torch.nn.Module]:
|
| 120 |
+
"""
|
| 121 |
+
Make a patched class for a diffusers model.
|
| 122 |
+
This patch applies ToMe to the forward function of the block.
|
| 123 |
+
"""
|
| 124 |
+
class ToMeBlock(block_class):
|
| 125 |
+
# Save for unpatching later
|
| 126 |
+
_parent = block_class
|
| 127 |
+
|
| 128 |
+
def forward(
|
| 129 |
+
self,
|
| 130 |
+
hidden_states,
|
| 131 |
+
attention_mask=None,
|
| 132 |
+
encoder_hidden_states=None,
|
| 133 |
+
encoder_attention_mask=None,
|
| 134 |
+
timestep=None,
|
| 135 |
+
cross_attention_kwargs=None,
|
| 136 |
+
class_labels=None,
|
| 137 |
+
) -> torch.Tensor:
|
| 138 |
+
|
| 139 |
+
if self.use_ada_layer_norm:
|
| 140 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
| 141 |
+
elif self.use_ada_layer_norm_zero:
|
| 142 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
| 143 |
+
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
| 144 |
+
)
|
| 145 |
+
else:
|
| 146 |
+
norm_hidden_states = self.norm1(hidden_states)
|
| 147 |
+
|
| 148 |
+
# Merge input tokens
|
| 149 |
+
m_a, u_a, merged_tokens = compute_merge(
|
| 150 |
+
self, norm_hidden_states, self._tome_info)
|
| 151 |
+
|
| 152 |
+
norm_hidden_states = merged_tokens
|
| 153 |
+
|
| 154 |
+
# 1. Self-Attention
|
| 155 |
+
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {}
|
| 156 |
+
# tt = time.time()
|
| 157 |
+
attn_output = self.attn1(
|
| 158 |
+
norm_hidden_states,
|
| 159 |
+
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
|
| 160 |
+
attention_mask=attention_mask,
|
| 161 |
+
**cross_attention_kwargs,
|
| 162 |
+
)
|
| 163 |
+
# print(time.time() - tt)
|
| 164 |
+
if self.use_ada_layer_norm_zero:
|
| 165 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
| 166 |
+
|
| 167 |
+
# Unmerge output tokens
|
| 168 |
+
attn_output = u_a(attn_output)
|
| 169 |
+
hidden_states = attn_output + hidden_states
|
| 170 |
+
|
| 171 |
+
if self.attn2 is not None:
|
| 172 |
+
norm_hidden_states = (
|
| 173 |
+
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(
|
| 174 |
+
hidden_states)
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
+
# 2. Cross-Attention
|
| 178 |
+
attn_output = self.attn2(
|
| 179 |
+
norm_hidden_states,
|
| 180 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 181 |
+
attention_mask=encoder_attention_mask,
|
| 182 |
+
**cross_attention_kwargs,
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
hidden_states = attn_output + hidden_states
|
| 186 |
+
|
| 187 |
+
# 3. Feed-forward
|
| 188 |
+
norm_hidden_states = self.norm3(hidden_states)
|
| 189 |
+
|
| 190 |
+
if self.use_ada_layer_norm_zero:
|
| 191 |
+
norm_hidden_states = norm_hidden_states * \
|
| 192 |
+
(1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
| 193 |
+
|
| 194 |
+
ff_output = self.ff(norm_hidden_states)
|
| 195 |
+
|
| 196 |
+
if self.use_ada_layer_norm_zero:
|
| 197 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
| 198 |
+
|
| 199 |
+
hidden_states = ff_output + hidden_states
|
| 200 |
+
|
| 201 |
+
return hidden_states
|
| 202 |
+
|
| 203 |
+
return ToMeBlock
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
def hook_tome_model(model: torch.nn.Module):
|
| 207 |
+
""" Adds a forward pre hook to get the image size. This hook can be removed with remove_patch. """
|
| 208 |
+
def hook(module, args):
|
| 209 |
+
module._tome_info["size"] = (args[0].shape[2], args[0].shape[3])
|
| 210 |
+
return None
|
| 211 |
+
|
| 212 |
+
model._tome_info["hooks"].append(model.register_forward_pre_hook(hook))
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
def hook_tome_module(module: torch.nn.Module):
|
| 216 |
+
""" Adds a forward pre hook to initialize random number generator.
|
| 217 |
+
All modules share the same generator state to keep their randomness in VidToMe consistent in one pass.
|
| 218 |
+
This hook can be removed with remove_patch. """
|
| 219 |
+
def hook(module, args):
|
| 220 |
+
if not hasattr(module, "generator"):
|
| 221 |
+
module.generator = init_generator(args[0].device)
|
| 222 |
+
elif module.generator.device != args[0].device:
|
| 223 |
+
module.generator = init_generator(
|
| 224 |
+
args[0].device, fallback=module.generator)
|
| 225 |
+
else:
|
| 226 |
+
return None
|
| 227 |
+
|
| 228 |
+
# module.generator = module.generator.manual_seed(module._tome_info["args"]["seed"])
|
| 229 |
+
return None
|
| 230 |
+
|
| 231 |
+
module._tome_info["hooks"].append(module.register_forward_pre_hook(hook))
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
def apply_patch(
|
| 235 |
+
model: torch.nn.Module,
|
| 236 |
+
local_merge_ratio: float = 0.9,
|
| 237 |
+
merge_global: bool = False,
|
| 238 |
+
global_merge_ratio=0.8,
|
| 239 |
+
max_downsample: int = 2,
|
| 240 |
+
seed: int = 123,
|
| 241 |
+
batch_size: int = 2,
|
| 242 |
+
include_control: bool = False,
|
| 243 |
+
align_batch: bool = False,
|
| 244 |
+
target_stride: int = 4,
|
| 245 |
+
global_rand=0.5):
|
| 246 |
+
"""
|
| 247 |
+
Patches a stable diffusion model with VidToMe.
|
| 248 |
+
Apply this to the highest level stable diffusion object (i.e., it should have a .model.diffusion_model).
|
| 249 |
+
|
| 250 |
+
Important Args:
|
| 251 |
+
- model: A top level Stable Diffusion module to patch in place. Should have a ".model.diffusion_model"
|
| 252 |
+
- local_merge_ratio: The ratio of tokens to merge locally. I.e., 0.9 would merge 90% src tokens.
|
| 253 |
+
If there are 4 frames in a chunk (3 src, 1 dst), the compression ratio will be 1.3 / 4.0.
|
| 254 |
+
And the largest compression ratio is 0.25 (when local_merge_ratio = 1.0).
|
| 255 |
+
Higher values result in more consistency, but with more visual quality loss.
|
| 256 |
+
- merge_global: Whether or not to include global token merging.
|
| 257 |
+
- global_merge_ratio: The ratio of tokens to merge locally. I.e., 0.8 would merge 80% src tokens.
|
| 258 |
+
When find significant degradation in video quality. Try to lower the value.
|
| 259 |
+
|
| 260 |
+
Args to tinker with if you want:
|
| 261 |
+
- max_downsample [1, 2, 4, or 8]: Apply VidToMe to layers with at most this amount of downsampling.
|
| 262 |
+
E.g., 1 only applies to layers with no downsampling (4/15) while
|
| 263 |
+
8 applies to all layers (15/15). I recommend a value of 1 or 2.
|
| 264 |
+
- seed: Manual random seed.
|
| 265 |
+
- batch_size: Video batch size. Number of video chunks in one pass. When processing one video, it
|
| 266 |
+
should be 2 (cond + uncond) or 3 (when using PnP, source + cond + uncond).
|
| 267 |
+
- include_control: Whether or not to patch ControlNet model.
|
| 268 |
+
- align_batch: Whether or not to align similarity matching maps of samples in the batch. It should
|
| 269 |
+
be True when using PnP as control.
|
| 270 |
+
- target_stride: Stride between target frames. I.e., when target_stride = 4, there is 1 target frame
|
| 271 |
+
in any 4 consecutive frames.
|
| 272 |
+
- global_rand: Probability in global token merging src/dst split. Global tokens are always src when
|
| 273 |
+
global_rand = 1.0 and always dst when global_rand = 0.0 .
|
| 274 |
+
"""
|
| 275 |
+
|
| 276 |
+
# Make sure the module is not currently patched
|
| 277 |
+
remove_patch(model)
|
| 278 |
+
|
| 279 |
+
is_diffusers = isinstance_str(
|
| 280 |
+
model, "DiffusionPipeline") or isinstance_str(model, "ModelMixin")
|
| 281 |
+
|
| 282 |
+
if not is_diffusers:
|
| 283 |
+
if not hasattr(model, "model") or not hasattr(model.model, "diffusion_model"):
|
| 284 |
+
# Provided model not supported
|
| 285 |
+
raise RuntimeError(
|
| 286 |
+
"Provided model was not a Stable Diffusion / Latent Diffusion model, as expected.")
|
| 287 |
+
diffusion_model = model.model.diffusion_model
|
| 288 |
+
else:
|
| 289 |
+
# Supports "pipe.unet" and "unet"
|
| 290 |
+
diffusion_model = model.unet if hasattr(model, "unet") else model
|
| 291 |
+
|
| 292 |
+
if isinstance_str(model, "StableDiffusionControlNetPipeline") and include_control:
|
| 293 |
+
diffusion_models = [diffusion_model, model.controlnet]
|
| 294 |
+
else:
|
| 295 |
+
diffusion_models = [diffusion_model]
|
| 296 |
+
|
| 297 |
+
for diffusion_model in diffusion_models:
|
| 298 |
+
diffusion_model._tome_info = {
|
| 299 |
+
"size": None,
|
| 300 |
+
"hooks": [],
|
| 301 |
+
"args": {
|
| 302 |
+
"max_downsample": max_downsample,
|
| 303 |
+
"generator": None,
|
| 304 |
+
"seed": seed,
|
| 305 |
+
"batch_size": batch_size,
|
| 306 |
+
"align_batch": align_batch,
|
| 307 |
+
"merge_global": merge_global,
|
| 308 |
+
"global_merge_ratio": global_merge_ratio,
|
| 309 |
+
"local_merge_ratio": local_merge_ratio,
|
| 310 |
+
"global_rand": global_rand,
|
| 311 |
+
"target_stride": target_stride
|
| 312 |
+
}
|
| 313 |
+
}
|
| 314 |
+
hook_tome_model(diffusion_model)
|
| 315 |
+
|
| 316 |
+
for name, module in diffusion_model.named_modules():
|
| 317 |
+
# If for some reason this has a different name, create an issue and I'll fix it
|
| 318 |
+
# if isinstance_str(module, "BasicTransformerBlock") and "down_blocks" not in name:
|
| 319 |
+
if isinstance_str(module, "BasicTransformerBlock"):
|
| 320 |
+
make_tome_block_fn = make_diffusers_tome_block if is_diffusers else make_tome_block
|
| 321 |
+
module.__class__ = make_tome_block_fn(module.__class__)
|
| 322 |
+
module._tome_info = diffusion_model._tome_info
|
| 323 |
+
hook_tome_module(module)
|
| 324 |
+
|
| 325 |
+
# Something introduced in SD 2.0 (LDM only)
|
| 326 |
+
if not hasattr(module, "disable_self_attn") and not is_diffusers:
|
| 327 |
+
module.disable_self_attn = False
|
| 328 |
+
|
| 329 |
+
# Something needed for older versions of diffusers
|
| 330 |
+
if not hasattr(module, "use_ada_layer_norm_zero") and is_diffusers:
|
| 331 |
+
module.use_ada_layer_norm = False
|
| 332 |
+
module.use_ada_layer_norm_zero = False
|
| 333 |
+
|
| 334 |
+
return model
|
| 335 |
+
|
| 336 |
+
|
| 337 |
+
def remove_patch(model: torch.nn.Module):
|
| 338 |
+
""" Removes a patch from a ToMe Diffusion module if it was already patched. """
|
| 339 |
+
# For diffusers
|
| 340 |
+
|
| 341 |
+
model = model.unet if hasattr(model, "unet") else model
|
| 342 |
+
model_ls = [model]
|
| 343 |
+
if hasattr(model, "controlnet"):
|
| 344 |
+
model_ls.append(model.controlnet)
|
| 345 |
+
for model in model_ls:
|
| 346 |
+
for _, module in model.named_modules():
|
| 347 |
+
if hasattr(module, "_tome_info"):
|
| 348 |
+
for hook in module._tome_info["hooks"]:
|
| 349 |
+
hook.remove()
|
| 350 |
+
module._tome_info["hooks"].clear()
|
| 351 |
+
|
| 352 |
+
if module.__class__.__name__ == "ToMeBlock":
|
| 353 |
+
module.__class__ = module._parent
|
| 354 |
+
|
| 355 |
+
return model
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
def update_patch(model: torch.nn.Module, **kwargs):
|
| 359 |
+
""" Update arguments in patched modules """
|
| 360 |
+
# For diffusers
|
| 361 |
+
model0 = model.unet if hasattr(model, "unet") else model
|
| 362 |
+
model_ls = [model0]
|
| 363 |
+
if hasattr(model, "controlnet"):
|
| 364 |
+
model_ls.append(model.controlnet)
|
| 365 |
+
for model in model_ls:
|
| 366 |
+
for _, module in model.named_modules():
|
| 367 |
+
if hasattr(module, "_tome_info"):
|
| 368 |
+
for k, v in kwargs.items():
|
| 369 |
+
setattr(module, k, v)
|
| 370 |
+
return model
|
| 371 |
+
|
| 372 |
+
|
| 373 |
+
def collect_from_patch(model: torch.nn.Module, attr="tome"):
|
| 374 |
+
""" Collect attributes in patched modules """
|
| 375 |
+
# For diffusers
|
| 376 |
+
model0 = model.unet if hasattr(model, "unet") else model
|
| 377 |
+
model_ls = [model0]
|
| 378 |
+
if hasattr(model, "controlnet"):
|
| 379 |
+
model_ls.append(model.controlnet)
|
| 380 |
+
ret_dict = dict()
|
| 381 |
+
for model in model_ls:
|
| 382 |
+
for name, module in model.named_modules():
|
| 383 |
+
if hasattr(module, attr):
|
| 384 |
+
res = getattr(module, attr)
|
| 385 |
+
ret_dict[name] = res
|
| 386 |
+
|
| 387 |
+
return ret_dict
|